1
|
Hosseiny A, Talebpour Z, Garkani-Nejad Z, Golestanifar F. The Binding Mechanism Between Cyclodextrins and Anticancer Drug Noscapine: A Spectroscopic and Molecular Docking Study. J Fluoresc 2024:10.1007/s10895-024-03869-5. [PMID: 39060827 DOI: 10.1007/s10895-024-03869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
In this paper the binding of noscapine (NOS) as an anticancer drug with poor bioavailability and low solubility with beta and methyl-beta cyclodextrins (β-CD and M-β-CD) as the biocompatible drug carriers were discussed using ultraviolet-visible, fluorescence and nuclear magnetic resonance spectroscopy, as well as molecular docking. The absorption of NOS changed when it was bound to both cyclodextrins, resulting in a hyperchromic shift. It formed a 1:1 stoichiometry inclusion complex with both cyclodextrins according to the Benesi-Hildebrand equation. The binding affinity was larger in NOS-M-β-CD (5.9 (± 0.66) × 103 M- 1) than NOS-β-CD (3.7 (± 0.22) × 103 M- 1) complex. The fluorescence emission band of NOS at 408 nm was quenched when NOS was complexed with β-CD, and enhanced in the presence of M-β-CD, while the shoulder at 350 nm was enhanced selectively when NOS was complexed with M-β-CD. The fluorescence quenching of NOS with β-CD showed a negative deviation from the Stern-Volmer. The thermodynamic parameters have been estimated with the help of the Van't Hoff equation in different temperatures, and a dynamic mechanism was proposed for quenching. Also, both ΔH and ΔS have positive values thus the main interactions result in hydrophobic forces. Moreover, the negative value of ΔG indicates that the bonding process is spontaneous. 1H NMR chemical shift changes were observable for NOS and both CDs protons due to the chemical environment changes of some nuclei upon complexation. The molecular docking results revealed that the 1:1 inclusion complex possesses a good molecular shape complementarity score for their most probable structures, and indicated that the M-β-CD inclusion system gave the higher complexation efficiency. The binding energy values for β-CD and M-β-CD were determined to be -6.7 and - 9.5 kcal/mol, respectively. These findings suggest the same as the result of experimental tests that the NOS-M-β-CD complex is more stable than the NOS-β-CD complex.
Collapse
Affiliation(s)
- Arezu Hosseiny
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Talebpour
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran.
- Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran.
| | - Zahra Garkani-Nejad
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fereshteh Golestanifar
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
2
|
Jawaharlal S, Subramanian S, Palanivel V, Devarajan G, Veerasamy V. Cyclodextrin-based nanosponges as promising carriers for active pharmaceutical ingredient. J Biochem Mol Toxicol 2024; 38:e23597. [PMID: 38037252 DOI: 10.1002/jbt.23597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Effective drug distribution at the intended or particular location is a critical issue that researchers are now dealing. Nanosponges have significantly increased in importance in medication delivery using nanotechnology in recent years. An important step toward solving these problems has been the development of nanosponges. Recently created and proposed for use in drug delivery, nanosponge is a unique type of hyper-crosslinked polymer-based colloidal structures made up of solid nanoparticles with colloidal carriers. Nanosponges are solid porous particles that may hold pharmaceuticals and other actives in their nanocavities. They can be made into dosage forms for oral, parenteral, topical, or inhalation use. The targeted distribution of drugs in a regulated manner is greatly aided by nanosponge. The utilization of nanosponges, their benefits, their production processes, the polymers they are made of, and their characterization have all been covered in this review article.
Collapse
Affiliation(s)
- Saranya Jawaharlal
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | | | - Venkatesan Palanivel
- Department of Pharmacy, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Geetha Devarajan
- Department of Physics, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| |
Collapse
|
3
|
Varghese S, Chaudhary JP, Thareja P, Ghoroi C. Newly developed nano-biocomposite embedded hydrogel to enhance drug loading and modulated release of anti-inflammatory drug. Pharm Dev Technol 2023; 28:299-308. [PMID: 36940227 DOI: 10.1080/10837450.2023.2193254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A newly developed iron-based nano-biocomposite (nano Fe-CNB) impregnated alginate formulation (CA) is proposed to improve drug loading and exhibit pH-responsive behavior of model anti-inflammatory drug-ibuprofen for controlled release applications. The proposed formulation is investigated with conventional β-CD addition in CA. The nano Fe-CNB-based formulations with and without β-CD, (Fe-CNB β-CD CA and Fe-CNB CA) are compared with only CA and β-CD incorporated CA formulations. The results indicate the incorporation of nano-biocomposite or β-CD into CA enhances the drug loading (>40%). However, pH-responsive controlled release behavior is observed for nano Fe-CNB based formulations only. The release studies from Fe-CNB β-CD CA indicate ∼ 45% release in stomach pH (1.2) within 2 h. In contrast, Fe-CNB CA shows ∼20% release only in stomach pH and improved release (∼49%) at colon pH (7.4). The rheology and swelling studies indicate Fe-CNB CA remains intact in stomach pH with a minimal drug release, but it disintegrates at colon pH due to charge reversal behavior of nano-biocomposite and ionization of polymeric chains. Thus, Fe-CNB CA formulation is found to be a potential candidate for targeting colon delivery, inflammatory bowel disease, and post-operative conditions.
Collapse
Affiliation(s)
- Sophia Varghese
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | | | - Prachi Thareja
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Chinmay Ghoroi
- Chemical Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Lachowicz M, Stańczak A, Kołodziejczyk M. Characteristic of Cyclodextrins: Their Role and Use in the Pharmaceutical Technology. Curr Drug Targets 2021; 21:1495-1510. [PMID: 32538725 DOI: 10.2174/1389450121666200615150039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023]
Abstract
About 40% of newly-discovered entities are poorly soluble in water, and this may be an obstacle in the creation of new drugs. To address this problem, the present review article examines the structure and properties of cyclodextrins and the formation and potential uses of drug - cyclodextrin inclusion complexes. Cyclodextrins are cyclic oligosaccharides containing six or more D-(+)- glucopyranose units linked by α-1,4-glycosidic bonds, which are characterized by a favourable toxicological profile, low local toxicity and low mucous and eye irritability; they are virtually non-toxic when administered orally. They can be incorporated in the formulation of new drugs in their natural form (α-, β-, γ-cyclodextrin) or as chemically-modified derivatives. They may also be used as an excipient in drugs delivered by oral, ocular, dermal, nasal and rectal routes, as described in the present paper. Cyclodextrins are promising compounds with many beneficial properties, and their use may be increasingly profitable for pharmaceutical scientists.
Collapse
Affiliation(s)
- Malwina Lachowicz
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Andrzej Stańczak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Michał Kołodziejczyk
- Department of Technology of Drug Form, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
5
|
Kumar R, Sinha V, Dahiya L, Sarwal A. Transdermal delivery of duloxetine-sulfobutylether-β-cyclodextrin complex for effective management of depression. Int J Pharm 2021; 594:120129. [DOI: 10.1016/j.ijpharm.2020.120129] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/15/2023]
|
6
|
An Experimental Study to Synthesize and Characterize Host–Guest Encapsulation of Anthracene, and the Quenching Effects of Co and Ni. J SOLUTION CHEM 2019. [DOI: 10.1007/s10953-019-00932-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Cyclodextrin-Steroid Interactions and Applications to Pharmaceuticals, Food, Biotechnology and Environment. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-76162-6_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Jadhav NV, Vavia PR. Dodecylamine Template-Based Hexagonal Mesoporous Silica (HMS) as a Carrier for Improved Oral Delivery of Fenofibrate. AAPS PharmSciTech 2017; 18:2764-2773. [PMID: 28353172 DOI: 10.1208/s12249-017-0761-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/10/2017] [Indexed: 11/30/2022] Open
Abstract
The aim of present investigation was the preparation of dodecylamine template-based hexagonal mesoporous silica (HMS) as a carrier for poorly water-soluble drug (fenofibrate). HMS material has distinctive characteristics such as easy synthesis, high surface area and wormhole pores. These characteristics are highly admirable to make use of it as a carrier in drug delivery system. HMS was prepared by pH and temperature-independent process. Fenofibrate was loaded into the HMS by solvent immersion method using organic solvent. The BET surface area of HMS was evaluated by nitrogen adsorption/desorption analysis. HMS and drug-loaded HMS were characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and contact angle study. The HMS-based system was also evaluated for in vitro and in vivo study as compared to plain drug. The BET surface area of HMS was found 974 m2/g with a narrow pore size average of 2.6 nm. The DSC and XRD study confirmed the amorphization of drug within the HMS. SEM and TEM study showed morphological features of HMS as well as revealed the wormhole porous structure. Contact angle study showed improvement in aqueous wetting property of drug within the HMS (contact angle 46°). The In vitro drug release study showed a remarkable dissolution enhancement in HMS-based system as compared to plain drug. In vivo pharmacodynamic study (hyperlipidaemia model) exhibited HMS-based formulation was significantly improved the bioavailability of fenofibrate. Thus, HMS has admirable properties; makes it a potential carrier for delivery system of poorly water-soluble drugs.
Collapse
|
9
|
Huang Y, Quan P, Wang Y, Zhang D, Zhang M, Li R, Jiang N. Host-guest interaction of β-cyclodextrin with isomeric ursolic acid and oleanolic acid: physicochemical characterization and molecular modeling study. J Biomed Res 2017; 31:395-407. [PMID: 28958995 PMCID: PMC5706432 DOI: 10.7555/jbr.31.20160073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 01/16/2017] [Indexed: 11/03/2022] Open
Abstract
Ursolic acid (UA) and oleanolic acid (OA) are insoluble drugs. The objective of this study was to encapsulate them into β-cyclodextrin (β-CD) and compare the solubility and intermolecular force of β-CD with the two isomeric triterpenic acids. The host-guest interaction was explored in liquid and solid state by ultraviolet-visible absorption,1 H NMR, phase solubility analysis, and differential scanning calorimetry, X-ray powder diffractometry, and molecular modeling studies. Both experimental and theoretical studies revealed that β-CD formed 1: 1 water soluble inclusion complexes and the complexation process was naturally favorable. In addition, the overall results suggested that ring E with a carboxyl group of the drug was encapsulated into the hydrophobic CD nanocavity. Therefore, a clear different inclusion behavior was observed, and UA exhibited better affinity to β-CD compared with OA in various media due to little steric interference, which was beneficial to form stable inclusion complex with β-CD and increase its water solubility effectively.
Collapse
Affiliation(s)
- Yuan Huang
- . Department of Pharmacy, Affiliated Wuxi Peoples Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Peng Quan
- . Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yongwei Wang
- . School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongsheng Zhang
- . Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Mingwan Zhang
- . School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rui Li
- . School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Nan Jiang
- . School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
10
|
Choi JM, Hahm E, Park K, Jeong D, Rho WY, Kim J, Jeong DH, Lee YS, Jhang SH, Chung HJ, Cho E, Yu JH, Jun BH, Jung S. SERS-Based Flavonoid Detection Using Ethylenediamine-β-Cyclodextrin as a Capturing Ligand. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E8. [PMID: 28336842 PMCID: PMC5295198 DOI: 10.3390/nano7010008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/02/2016] [Accepted: 12/30/2016] [Indexed: 01/16/2023]
Abstract
Ethylenediamine-modified β-cyclodextrin (Et-β-CD) was immobilized on aggregated silver nanoparticle (NP)-embedded silica NPs (SiO₂@Ag@Et-β-CD NPs) for the effective detection of flavonoids. Silica NPs were used as the template for embedding silver NPs to create hot spots and enhance surface-enhanced Raman scattering (SERS) signals. Et-β-CD was immobilized on Ag NPs to capture flavonoids via host-guest inclusion complex formation, as indicated by enhanced ultraviolet absorption spectra. The resulting SiO₂@Ag@Et-β-CD NPs were used as the SERS substrate for detecting flavonoids, such as hesperetin, naringenin, quercetin, and luteolin. In particular, luteolin was detected more strongly in the linear range 10-7 to 10-3 M than various organic molecules, namely ethylene glycol, β-estradiol, isopropyl alcohol, naphthalene, and toluene. In addition, the SERS signal for luteolin captured by the SiO₂@Ag@Et-β-CD NPs remained even after repeated washing. These results indicated that the SiO₂@Ag@Et-β-CD NPs can be used as a rapid, sensitive, and selective sensor for flavonoids.
Collapse
Affiliation(s)
- Jae Min Choi
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Application (UBITA), Konkuk University, Seoul 05029, Korea.
| | - Eunil Hahm
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Kyeonghui Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea.
| | - Daham Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea.
| | - Won-Yeop Rho
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jaehi Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea.
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul 08826, Korea.
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea.
| | - Sung Ho Jhang
- Department of Physics, Konkuk University, Seoul 05029, Korea.
| | - Hyun Jong Chung
- Department of Physics, Konkuk University, Seoul 05029, Korea.
| | - Eunae Cho
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Application (UBITA), Konkuk University, Seoul 05029, Korea.
| | - Jae-Hyuk Yu
- Departments of Bacteriology and Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Seunho Jung
- Center for Biotechnology Research in UBITA (CBRU), Institute for Ubiquitous Information Technology and Application (UBITA), Konkuk University, Seoul 05029, Korea.
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
11
|
Mohandoss S, Stalin T. Photochemical and computational studies of inclusion complexes between β-cyclodextrin and 1,2-dihydroxyanthraquinones. Photochem Photobiol Sci 2017; 16:476-488. [DOI: 10.1039/c6pp00285d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An inclusion complex is formed between 1,2-DHAQ and β-CD, which is confirmed by UV-visible, fluorescence and electrochemical studies, FT-IR, XRD, DSC, SEM, 1H NMR and computational methods.
Collapse
Affiliation(s)
- Sonaimuthu Mohandoss
- Department of Industrial Chemistry
- School of Chemical Sciences
- Alagappa University
- Karaikudi-630 003
- India
| | - Thambusamy Stalin
- Department of Industrial Chemistry
- School of Chemical Sciences
- Alagappa University
- Karaikudi-630 003
- India
| |
Collapse
|
12
|
Liao Y, Zhang X, Li C, Huang Y, Lei M, Yan M, Zhou Y, Zhao C. Inclusion complexes of HP-β-cyclodextrin with agomelatine: Preparation, characterization, mechanism study and in vivo evaluation. Carbohydr Polym 2016; 147:415-425. [DOI: 10.1016/j.carbpol.2016.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
|
13
|
Rizzi V, Matera S, Semeraro P, Fini P, Cosma P. Interactions between 4-thiothymidine and water-soluble cyclodextrins: Evidence for supramolecular structures in aqueous solutions. Beilstein J Org Chem 2016; 12:549-63. [PMID: 27340447 PMCID: PMC4901997 DOI: 10.3762/bjoc.12.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/04/2016] [Indexed: 01/12/2023] Open
Abstract
Since several years the inclusion of organic compounds (guests) within the hydrophobic cavity (host) of cyclodextrins (CDs) has been the subject of many investigations. Interestingly, the formation of inclusion complexes could affect the properties of the guest molecules and, for example, the influence of the delivery system can be a method to improve/change the photochemical behavior of the guest. In particular, very recent studies have shown the protective role of CDs preventing the degradation of the encapsulated guest. Starting from this consideration, in this work, only the structure and complexation mode of the inclusion complexes involving 4-thiothymidine (S(4)TdR, a known photosensitizer) and five CDs, namely 2-hydroxypropyl-α-cyclodextrin (2-HP-α-CD), 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (2-HP-γ-CD), heptakis-(2,6-di-O-methyl)-β-cyclodextrin (DIMEB CD) and heptakis-(2,3,6-tri-O-methyl)-β-cyclodextrin (TRIMEB CD) were investigated by different spectroscopic techniques (UV-vis, FTIR-ATR, (1)H NMR) and cyclic voltammetry analysis (CV). This work is necessary for a prospective research on the photoreactivity of S(4)TdR in aqueous environment and in the presence of CDs to prevent its degradation under irradiation. UV-vis, FTIR-ATR and CV measurements suggested the formation of supramolecular structures involving the employed CDs and mainly the pyrimidine ring of S(4)TdR. (1)H NMR analyses confirmed such indication, unveiling the presence of inclusion complexes. The strongest and deepest interactions were suggested when TRIMEB and DIMEB CDs were studied. The S(4)TdR affinity towards CDs was also evaluated by using the Benesi-Hildebrand (B-H) equation at 25 °C employing CV and (1)H NMR methods. The stoichiometry of the interaction was also inferred and it appears to be 1:1 for all examined CDs.
Collapse
Affiliation(s)
- Vito Rizzi
- Università degli Studi “Aldo Moro” di Bari, Dipartimento di Chimica Chimica, Via Orabona, 4, 70126 Bari, Italy
| | - Sergio Matera
- Università degli Studi “Aldo Moro” di Bari, Dipartimento di Chimica Chimica, Via Orabona, 4, 70126 Bari, Italy
| | - Paola Semeraro
- Università degli Studi “Aldo Moro” di Bari, Dipartimento di Chimica Chimica, Via Orabona, 4, 70126 Bari, Italy
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| | - Pinalysa Cosma
- Università degli Studi “Aldo Moro” di Bari, Dipartimento di Chimica Chimica, Via Orabona, 4, 70126 Bari, Italy
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4, 70126 Bari, Italy
| |
Collapse
|
14
|
Changes in the Physicochemical Properties of Piperine/β-Cyclodextrin due to the Formation of Inclusion Complexes. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2016; 2016:8723139. [PMID: 26998357 PMCID: PMC4779834 DOI: 10.1155/2016/8723139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 11/17/2022]
Abstract
Piperine (PP) is a pungent component in black pepper that possesses useful biological activities; however it is practically insoluble in water. The aim of the current study was to prepare a coground mixture (GM) of PP and β-cyclodextrin (βCD) (molar ratio of PP/βCD = 1/1) and subsequently evaluate the solubility of PP and physicochemical properties of the GM. DSC thermal behavior of the GM showed the absence of melting peak of piperine. PXRD profile of the GM exhibited halo pattern and no characteristic peaks due to PP and βCD were observed. Based on Job's plot, the PP/βCD complex in solution had a stoichiometric ratio of 1/1. Raman spectrum of the GM revealed scattering peaks assigned for the benzene ring (C=C), the methylene groups (CH2), and ether groups (C-O-C) of PP that were broaden and shifted to lower frequencies. SEM micrographs showed that particles in the GM were agglomerated and had rough surface, unlike pure PP and pure βCD particles. At 15 min of dissolution testing, the amount dissolved of PP in the GM was dramatically increased (about 16 times) compared to that of pure PP. Moreover the interaction between PP and βCD cavity was detected by 1H-1H NMR nuclear Overhauser effect spectroscopy NMR spectroscopy.
Collapse
|
15
|
Preparation and characterization of β-sitosterol/β-cyclodextrin crystalline inclusion complexes. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0550-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Characterisation and anti-inflammatory evaluation of the inclusion complex of ellagic acid with hydroxypropyl-β-cyclodextrin. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0498-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Kellici TF, Ntountaniotis D, Leonis G, Chatziathanasiadou M, Chatzikonstantinou AV, Becker-Baldus J, Glaubitz C, Tzakos AG, Viras K, Chatzigeorgiou P, Tzimas S, Kefala E, Valsami G, Archontaki H, Papadopoulos MG, Mavromoustakos T. Investigation of the Interactions of Silibinin with 2-Hydroxypropyl-β-cyclodextrin through Biophysical Techniques and Computational Methods. Mol Pharm 2015; 12:954-65. [DOI: 10.1021/mp5008053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Tahsin F. Kellici
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
- Department
of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Dimitrios Ntountaniotis
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Georgios Leonis
- Institute
of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | | | | | - Johanna Becker-Baldus
- Institute
of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt, Germany
| | - Clemens Glaubitz
- Institute
of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.
9, 60438 Frankfurt, Germany
| | - Andreas G. Tzakos
- Department
of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Kyriakos Viras
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Petros Chatzigeorgiou
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Stavros Tzimas
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Evangelia Kefala
- Department
of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece
| | - Georgia Valsami
- Department
of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Greece
| | - Helen Archontaki
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| | - Manthos G. Papadopoulos
- Institute
of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | - Thomas Mavromoustakos
- Department
of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis
Zografou 15771, Greece
| |
Collapse
|
18
|
Mura P. Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: A review. J Pharm Biomed Anal 2014; 101:238-50. [DOI: 10.1016/j.jpba.2014.02.022] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 11/26/2022]
|
19
|
Anby MU, Nguyen TH, Yeap YY, Feeney OM, Williams HD, Benameur H, Pouton CW, Porter CJH. An in vitro digestion test that reflects rat intestinal conditions to probe the importance of formulation digestion vs first pass metabolism in Danazol bioavailability from lipid based formulations. Mol Pharm 2014; 11:4069-83. [PMID: 25265395 DOI: 10.1021/mp500197b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The impact of gastrointestinal (GI) processing and first pass metabolism on danazol oral bioavailability (BA) was evaluated after administration of self-emulsifying drug delivery systems (SEDDS) in the rat. Danazol absolute BA was determined following oral and intraduodenal (ID) administration of LFCS class IIIA medium chain (MC) formulations at high (SEDDSH-III) and low (SEDDSL-III) drug loading and a lipid free LFCS class IV formulation (SEDDS-IV). Experiments were conducted in the presence and absence of ABT (1-aminobenzotriazole) to evaluate the effect of first pass metabolism. A series of modified in vitro lipolysis tests were developed to better understand the in vivo processing of SEDDS in the rat. Danazol BA was low (<13%) following oral and ID administration of either SEDDS. Increasing drug loading, ID rather than oral administration, and administration of SEDDS-IV rather than SEDDS-III led to higher oral BA. After pretreatment with ABT, however, danazol oral BA significantly increased (e.g., 60% compared to 2% after administration of SEDDSL-III), no effect was observed on increasing drug loading, and differences between SEDDS-III and -IV were minimal. In vitro digestion models based on the lower enzyme activity and lower dilution conditions expected in the rat resulted in significantly reduced danazol precipitation from SEDDS-III or SEDDS-IV on initiation of digestion. At the doses administered here (4-8 mg/kg), the primary limitation to danazol oral BA in the rat was first pass metabolism, and the fraction absorbed was >45% after oral administration of SEDDS-III or SEDDS-IV. In contrast, previous studies in dogs suggest that danazol BA is less dependent on first pass metabolism and more sensitive to changes in formulation processing. In vitro digestion models based on likely rat GI conditions suggest less drug precipitation on formulation digestion when compared to equivalent dog models, consistent with the increases in in vivo exposure (fraction absorbed) seen here in ABT-pretreated rats.
Collapse
Affiliation(s)
- Mette U Anby
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus) , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nano-amorphous composites of cilostazol–HP-β-CD inclusion complexes: physicochemical characterization, structure elucidation, thermodynamic studies and in vitro evaluation. J INCL PHENOM MACRO 2014. [DOI: 10.1007/s10847-014-0447-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Transdermal iontophoretic delivery of a liquid lipophilic drug by complexation with an anionic cyclodextrin. J Control Release 2014; 189:11-8. [DOI: 10.1016/j.jconrel.2014.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/09/2014] [Indexed: 11/20/2022]
|
22
|
Host-guest interaction between herbicide oxadiargyl and hydroxypropyl-β-cyclodextrin. ScientificWorldJournal 2014; 2013:825206. [PMID: 24396310 PMCID: PMC3874296 DOI: 10.1155/2013/825206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 09/26/2013] [Indexed: 11/18/2022] Open
Abstract
In the face of a growing human population and increased urbanization, the demand for pesticides will simply rise. Farmers must escalate yields on increasingly fewer farm acres. However, the risks of pesticides, whether real or perceived, may force changes in the way these chemicals are used. Scientists are working toward pest control plans that are environmentally sound, effective, and profitable. In this context the development of new pesticide formulations which may improve application effectiveness, safety, handling, and storage can be pointed out as a solution. As a contribution to the area, the microencapsulation of the herbicide oxadiargyl (OXA) in (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) was performed. The study was conducted in different aqueous media (ultrapure water and in different pH buffer solutions). In all cases an increment of the oxadiargyl solubility as a function of the HP-β-CD concentration that has been related to the formation of an inclusion complex was verified. UV-Vis and NMR experiments allowed concluding that the stoichiometry of the OXA/HP-β-CD complex formed is 1 : 1. The gathered results can be regarded as an important step for its removal from industrial effluents and/or to increase the stabilizing action, encapsulation, and adsorption in water treatment plants.
Collapse
|
23
|
Ali MT, Fule R, Sav A, Amin P. Porous starch: a novel carrier for solubility enhancement of carbamazepine. AAPS PharmSciTech 2013; 14:919-26. [PMID: 23715951 DOI: 10.1208/s12249-013-9985-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/15/2013] [Indexed: 02/06/2023] Open
Abstract
To circumvent the solubility-related issues associated with Biopharmaceutics Classification System class II drugs, a novel porous carrier has been developed. In the present study, a process for preparation of porous starch (PS) is demonstrated. The process briefly comprises of translucent gel preparation followed by solvent replacement, drying, and sizing. Carbamazepine (CBZ) was used as a drug candidate to exhibit solubility enhancement potential of PS. PS and CBZ-loaded PS (CBZ-PS) systems were characterized with respect to IR, DSC, XRD, SEM, and dissolution kinetic studies. PS-CBZ was found to follow a Fickian behavior during dissolution. In vivo studies conducted in mice displayed a superior performance of CBZ-PS as compared to neat CBZ.
Collapse
|
24
|
Rai VK, Dwivedi H, Yadav NP, Chanotiya CS, Saraf SA. Solubility enhancement of miconazole nitrate: binary and ternary mixture approach. Drug Dev Ind Pharm 2013; 40:1021-9. [DOI: 10.3109/03639045.2013.801487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Fabrication of cyclodextrin-templated mesoporous silica for improved dissolution of carbamazepine. Drug Deliv Transl Res 2013; 3:235-42. [DOI: 10.1007/s13346-013-0147-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Manivannan C, Vijay Solomon R, Venuvanalingam P, Renganathan R. Studies on the inclusion behavior of 9-Aminoacridine into cyclodextrins: spectroscopic and theoretical evidences. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 103:18-24. [PMID: 23257326 DOI: 10.1016/j.saa.2012.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/28/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
9-Aminoacridine (9-AA) is an important attractive pharmaceutical drug employed as chemotheraptic agent for wound dressings. However, 9-AA possesses limited solubility and rapid metabolic decomposition renders this potential drug to limit its applications. Here we propose cyclodextrins (CDs) as a drug carrier to improve the bioavailability, solubility of 9-AA. The interaction between 9-AA and CDs (α-CD and β-CD) has been studied using UV-Vis absorption, steady state time resolved fluorescence, (1)H NMR and FT-IR spectroscopy techniques. The spectroscopic measurements show that 9-AA does not form stable complex with α-CD and also confirmed by DFT calculations. On the other hand, 9-AA forms inclusion complex with β-CD in a 1:1 stoichiometry ratio. Our DFT results suggest that 9-AA stabilizes inside the CD environment through hydrogen bonding that has unambiguously confirmed by AIM analysis. Thus our studies provide a useful insights in the development of Aminoacridine based drugs & its delivery through a suitable carrier like CDs.
Collapse
Affiliation(s)
- C Manivannan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India
| | | | | | | |
Collapse
|
27
|
Kuentz M, Imanidis G. In silico prediction of the solubility advantage for amorphous drugs – Are there property-based rules for drug discovery and early pharmaceutical development? Eur J Pharm Sci 2013; 48:554-62. [DOI: 10.1016/j.ejps.2012.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/23/2012] [Accepted: 11/23/2012] [Indexed: 10/27/2022]
|
28
|
Abuasal BS, Bolger MB, Walker DK, Kaddoumi A. In Silico Modeling for the Nonlinear Absorption Kinetics of UK-343,664: A P-gp and CYP3A4 Substrate. Mol Pharm 2012; 9:492-504. [DOI: 10.1021/mp200275j] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Bilal S. Abuasal
- Department of Basic Pharmaceutical
Science, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Michael B. Bolger
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, California
93534, United States
| | - Don K. Walker
- Department
of Drug Metabolism, Pfizer Global Research and Development, Sandwich CT13
9NJ, U.K
| | - Amal Kaddoumi
- Department of Basic Pharmaceutical
Science, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| |
Collapse
|
29
|
Liquid antisolvent precipitation process for solubility modulation of bicalutamide. ACTA PHARMACEUTICA 2011; 61:435-45. [PMID: 22202202 DOI: 10.2478/v10007-011-0036-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquid antisolvent process was explored as a solubility modulating tool. Bicalutamide, a poorly water soluble drug, was used as a candidate. Low aqueous solubility and poor dissolution of bicalutamide results into poor and variable bioavailability. Therefore, the objective of the present work was to modify the solubility of bicalutamide using the liquid antisolvent precipitation process. HPMC E5 and Poloxamer 407 were shortlisted as a hydrophilic polymer and surfactant, respectively, for the process. Process optimization was done with respect to the hydrophilic polymer, surfactant and drug loading concentration. The resultant microcrystals were characterized with various instrumental techniques for material characterization such as IR, DSC, SEM, XRD, particle size, specific surface area and dissolution kinetics.
Collapse
|
30
|
Soleymanpour A, Abdifar S, Bani R. Development of a New Coated Graphite Phenylephrine Potentiometric Sensor and Its Applications to Pharmaceutical and Biological Analysis. ELECTROANAL 2011. [DOI: 10.1002/elan.201100281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Kuo WY, Lai HM. Morphological, structural and rheological properties of beta-cyclodextrin based polypseudorotaxane gels. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal 2011; 55:618-44. [DOI: 10.1016/j.jpba.2010.12.020] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/11/2010] [Accepted: 12/15/2010] [Indexed: 11/26/2022]
|
33
|
Radia O, Rogalska E, Moulay-Hassane G. Preparation of meloxicam-β-cyclodextrin-polyethylene glycol 6000 ternary system: characterization, in vitro and in vivo bioavailability. Pharm Dev Technol 2011; 17:632-7. [PMID: 21428700 DOI: 10.3109/10837450.2011.565347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ternary complexes of meloxicam (ML), a poorly water-soluble anti-inflammatory drug, with β-cyclodextrin (βCD) and polyethylene glycol (PEG) 6000 were prepared from an equimolar (ML-βCD) and 10% of PEG. Characterization of the ternary complex was carried out by differential scanning calorimetry and X-ray diffractometry. The solubility of ML increased as a function of increasing the concentration of βCD and PEG 6000. Ternary system increased significantly ML solubility in water. Ternary complexes improved drug release compared with ML and ML-βCD. The oral bioavailability of ML-βCD-PEG was investigated by administration to rat and compared with ML and ML-βCD. The results confirmed that the oral bioavailability of ML was significantly improved by complexation with βCD in the presence of PEG.
Collapse
Affiliation(s)
- Ourezki Radia
- Laboratoire de chromatographie, Faculté de chimie, El-Alia, Bab-Ezzouar, Alger, Algeria
| | | | | |
Collapse
|
34
|
Comparison between 2-hydroxypropyl-β-cyclodextrin and 2-hydroxypropyl-γ-cyclodextrin for inclusion complex formation with danazol. J INCL PHENOM MACRO 2011. [DOI: 10.1007/s10847-010-9917-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
35
|
Li H, Sun J, Wang Y, Sui X, Sun L, Zhang J, He Z. Structure-based in silico model profiles the binding constant of poorly soluble drugs with β-cyclodextrin. Eur J Pharm Sci 2010; 42:55-64. [PMID: 20979986 DOI: 10.1016/j.ejps.2010.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Revised: 09/26/2010] [Accepted: 10/19/2010] [Indexed: 11/15/2022]
Abstract
Cyclodextrin inclusion complexation technique is the key method to enhance the solubility and absorption of poorly soluble drugs in the early development stage, and thus it is essential to predict the binding constant between drug molecules and cyclodextrin. Structure-based in silico model was constructed for a data set of 86 poorly soluble drugs and used to profile the binding constant of drug-β-cyclodextrin inclusion complex. The stepwise regression was employed to select the optimum subset of the independent variables. The in silico model was built by the multiple linear regression method and validated by the residual analysis, the normal Probability-Probability plot and Williams plot. For the entire data set, the R(2) and Q(2) of the model were 0.78 and 0.67, respectively. The results indicated that the fitted model is robust, stable and satisfies all the prerequisites of the regression models. The chemical space position and important contributors were compared between selected drug molecules and organic compounds available in the literature. It was suggested that the binding behavior of drug molecules with β-CD should differ from that of the common organic compounds. Focusing on structurally diverse drugs, the in silico model can be used as an efficient tool to rapidly screen the drug-β-cyclodextrin inclusion complex stability and to rationally design the new drug delivery system of poorly soluble drugs.
Collapse
Affiliation(s)
- Haiyan Li
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Synthesis, characterization and potential application of monoacyl-cyclodextrins. Carbohydr Res 2010; 345:191-8. [DOI: 10.1016/j.carres.2009.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 11/20/2022]
|