1
|
Zhang S, He X, Liu F, Huang X, Mai S, He J. Preparation of dental resin composites with anti-bacterial adhesion against Streptococcus mutans using fluorinated and silicon containing dimethacrylates. Dent Mater 2025; 41:169-178. [PMID: 39627064 DOI: 10.1016/j.dental.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 01/20/2025]
Abstract
OBJECTIVE The purpose of this study was to enhance the anti-bacterial adhesion effect against Streptococcus mutans (S. mutans) of fluorinated dimethacrylate (DF MA) based dental resin composites (DRCs) by using silicone dimethacrylate (SMA-MEO). METHOD The SMA-MEO was added into mixture of DFMA and tricyclo (5.2.1.0) decanedimethanol diacrylate (SR833s) (DFMA/SR833s = 50 wt./50 wt.) with mass ratios of 10 wt% and 20 wt% to form resin matrix both with fluorinated and silicon containing dimethacrylates, and then DRCs named DS+ 10 %SMA-MEO and DS+ 20 %SMA-MEO were prepared by mixing the resin matrix with silaned BaAlSiO2 filler particles at a mass ratio of 30 wt./70 wt. Double bond conversion, volumetric shrinkage and shrinkage stress, flexural strength and modulus, water sorption and solubility, contact angle and surface free energy, anti-bacterial adhesion effect against Streptococcus mutans (S. mutans), and cytotoxicity of prepared DRCs were investigated according to standard or referenced methods. Fluorinated dimethacrylate (DFMA) based DRC named DS and 2,2-bis[4-(2-hydroxy-3-methacryloy-loxypropyl)-phenyl]propane (Bis-GMA) based DRC named BT were used as controls. RESULTS Adding SMA-MEO into DFMA based DRC could lead to higher double bond conversion (p < 0.05), higher hydrophobicity (p < 0.05), and lower surface free energy (p < 0.05). Only DS+ 10 %SMA-MEO had better anti-bacterial adhesion effect against S. mutans than DS (p < 0.05). The SMA-MEO had no influence on volumetric shrinkage, shrinkage stress, flexural modulus, water sorption and solubility of DRC (p > 0.05), but could reduce flexural strength of dry DRC (p < 0.05). After water immersion, SMA-MEO containing DRCs had comparable flexural strength as DS (p > 0.05). Compared with BT, DS and SMA-MEO containing DRCs had better or comparable physicochemical properties, and lower amount of adherent S. mutans. All of DRCs had comparable cytotoxicity (p > 0.05). SIGNIFICANCE DRCs with both DFMA and SMA-MEO could have better anti-bacterial adhesion effect against S. mutans than DRC only with DFMA due to increased hydrophobicity and decreased Surface free energy, and the optimal mass fraction of SMA-MEO in DFMA based resin matrix was 10 wt%.
Collapse
Affiliation(s)
- Shengcan Zhang
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Liu
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiangya Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Institute of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Sui Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Institute of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Jingwei He
- College of Materials Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
2
|
In vitro surface analysis of the brushing resistance of orthodontic sealants using two different profilometric evaluation methods. Sci Rep 2022; 12:16133. [PMID: 36167702 PMCID: PMC9515092 DOI: 10.1038/s41598-022-19702-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
The enamel can be protected by applying orthodontic sealants at the bracket base to avoid the development of white spot lesions caused by inadequate oral hygiene. The aim of this study was to investigate the mechanical resistance of five commonly used orthodontic sealants against brushing in comparison to a positive group. Hydroxyapatite discs were bonded with a metal bracket and a piece of arch-wire was ligated in order to simulate a daily clinical situation (n = 48). Samples were divided into 6 groups of respectively 8 specimens. Sealants were applied around the bracket base according to manufacturer's instructions. Following sealants were used: Group 1: Pro Seal (Reliance Orthodontic Products, Itasca, Illinois, USA); 2: Light Bond (Reliance Orthodontic Products, Itasca, Illinois, USA); 3: ClinproXT Varnish (3M ESPE, Seefeld, Germany); 4: ProtectoCaF2 Nano (BonaDent GmbH, Frankfurt am Main, Germany); 5: Fluor Protector and 6: Tetric EvoFlow (both Ivoclar Vivadent AG, Schaan Liechtenstein). Tooth brushing were simulated for 6 weeks and 6 months with an electric toothbrush. The sealant thickness was measured by mechanical (MP) and optical profilometry (OP) at baseline, after 6 weeks and after 6 months of brushing. Statistical analysis was performed according to two mixed linear models and post hoc Tukey-Kramer comparisons. The significance level was set at 5% (α ≤ 0.05). Pro Seal (MP: 9%; OP: 22%) and Light Bond (MP: 19%; OP: 16%) showed the lowest changes in sealant thickness after 6 months of simulated brushing. ClinproXT Varnish and Tetric EvoFlow recorded no statistically significant results (p > 0.05). The fluoride varnishes ProtectoCaF2 Nano and Fluor Protector could not be conclusively evaluated since the thickness of the sealants could not be determined at baseline. The results of both evaluation methods MP and OP are in good agreement. Pro Seal and Light Bond were resistant against tooth brushing and were able to adequately keep the bracket environment sealed even after 6 months. The two different measuring methods, MP and OP, provide a precise impression of the changes in the surface.
Collapse
|
3
|
Construction strategies and the development trend of antibacterial surfaces. Biointerphases 2022; 17:050801. [DOI: 10.1116/6.0002147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The construction of antibacterial surfaces is an efficient way to respond to the problem of microbial contamination. In this review, we first describe the formation process and characteristics of microbial contamination and the current research status of antibacterial surfaces. Then, the passive antiadhesion, active killing, and combination construction strategies of the antibacterial surface are discussed in detail. Based on different antibacterial mechanisms and existing problems of current antibacterial strategies, we then discuss the future development trends of the next generation of antibacterial surfaces.
Collapse
|
4
|
Zhu J, Chu W, Luo J, Yang J, He L, Li J. Dental Materials for Oral Microbiota Dysbiosis: An Update. Front Cell Infect Microbiol 2022; 12:900918. [PMID: 35846759 PMCID: PMC9280126 DOI: 10.3389/fcimb.2022.900918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
The balance or dysbiosis of the microbial community is a major factor in maintaining human health or causing disease. The unique microenvironment of the oral cavity provides optimal conditions for colonization and proliferation of microbiota, regulated through complex biological signaling systems and interactions with the host. Once the oral microbiota is out of balance, microorganisms produce virulence factors and metabolites, which will cause dental caries, periodontal disease, etc. Microbial metabolism and host immune response change the local microenvironment in turn and further promote the excessive proliferation of dominant microbes in dysbiosis. As the product of interdisciplinary development of materials science, stomatology, and biomedical engineering, oral biomaterials are playing an increasingly important role in regulating the balance of the oral microbiome and treating oral diseases. In this perspective, we discuss the mechanisms underlying the pathogenesis of oral microbiota dysbiosis and introduce emerging materials focusing on oral microbiota dysbiosis in recent years, including inorganic materials, organic materials, and some biomolecules. In addition, the limitations of the current study and possible research trends are also summarized. It is hoped that this review can provide reference and enlightenment for subsequent research on effective treatment strategies for diseases related to oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Jieyu Zhu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenlin Chu
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Libang He
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jiaojiao Yang, ; Libang He,
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, Department of Cariology and Endodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Rahayu DP, Draheim R, Lalatsa A, Roldo M. Harnessing the Antibacterial Properties of Fluoridated Chitosan Polymers against Oral Biofilms. Pharmaceutics 2022; 14:488. [PMID: 35335865 PMCID: PMC8951426 DOI: 10.3390/pharmaceutics14030488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/07/2023] Open
Abstract
Dental caries are a worldwide endemic chronic disease affecting people of all ages. Due to the limitations of daily used oral hygiene products, there is an unmet need for new, effective, safe, and economic oral products. We have recently demonstrated that N-(2(2,6-diaminohexanamide)-chitosan (CS3H Lys) has enhanced antibacterial properties against Streptococcus mutans, the main cariogenic bacterium, and here we investigated the effect of fluoridation of this polymer (CS3H Lys F) on its antibacterial properties and the ability to protect teeth from acid demineralization. We further formulated this polymer into mouthwash preparations and studied their cytocompatibility and physicochemical stability over 6 months. CS3H Lys F was 1.6-fold more effective than the highest tested oral NaF dose in preventing acid demineralization. CS3H Lys F has a 3- to 5-fold lower minimum inhibitory concentration value against S. mutants than the values reported for chitosan polymers and showed negligible cell toxicity. The mouthwashes were stable at both 25 and 40 °C. Further work is under way towards other CS3H Lys F oral hygiene products such as a toothpaste.
Collapse
Affiliation(s)
- Dien Puji Rahayu
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (D.P.R.); (R.D.)
- National Research and Innovation Agency of Indonesia (BRIN), Lebak Bulus Raya No. 49, Jakarta 12440, Indonesia
| | - Roger Draheim
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (D.P.R.); (R.D.)
| | - Aikaterini Lalatsa
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (D.P.R.); (R.D.)
| | - Marta Roldo
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael’s Building, White Swan Road, Portsmouth PO1 2DT, UK; (D.P.R.); (R.D.)
| |
Collapse
|
6
|
Soykan U, Sert Y, Yıldırım G. DFT, Molecular Docking and Drug-likeness Analysis: Acrylate molecule bearing perfluorinated pendant unit. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Liang L, Wang Y, Liu B, Gong J, Zhang C. Fluoropolymer Microemulsion: Preparation and Application in Reservoir Wettability Reversal and Enhancing Oil Recovery. ACS OMEGA 2021; 6:24009-24015. [PMID: 34568679 PMCID: PMC8459406 DOI: 10.1021/acsomega.1c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Reservoir wettability is an important factor in the process of reservoir reconstruction. Especially in hydrophilic formation, it is easy to cause a water-locked phenomenon. A new type of fluoropolymer microemulsion was prepared by emulsion polymerization, and its structure and properties were characterized. The average particle size in the prepared emulsion was about 2.0 μm. The emulsion had good stability and wettability reversal performance for the storage of 30 days. After the treatment of 2.0 wt % emulsion, the contact angle between the core and water changed from 26 to 128°, the core surface free energy decreased from 66 to 2.6 mN/m, and the saturated water imbibition amount of the core decreased from 1.38 to 0.15 g. The ability of the fluoropolymer microemulsion to enhance oil recovery was evaluated by the visual displacement experiment. The fluoropolymer microemulsion can increase the displacement efficiency by more than 10%. The wettability of the core changed from hydrophilicity to hydrophobicity, and wettability reversal was achieved.
Collapse
Affiliation(s)
- Lei Liang
- School
of Petroleum Engineering, China University
of Petroleum (East China), Qingdao 266580, China
- Key
Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry
of Education, Qingdao 266580, China
| | - Yanling Wang
- School
of Petroleum Engineering, China University
of Petroleum (East China), Qingdao 266580, China
- Key
Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry
of Education, Qingdao 266580, China
| | - Bin Liu
- School
of Petroleum Engineering, China University
of Petroleum (East China), Qingdao 266580, China
- Key
Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry
of Education, Qingdao 266580, China
| | - Jincheng Gong
- School
of Petroleum Engineering, China University
of Petroleum (East China), Qingdao 266580, China
- Key
Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry
of Education, Qingdao 266580, China
| | - Chuanbao Zhang
- School
of Petroleum Engineering, China University
of Petroleum (East China), Qingdao 266580, China
- Key
Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Ministry
of Education, Qingdao 266580, China
| |
Collapse
|
8
|
Falireas PG, Ladmiral V, Ameduri B. Synthesis, aqueous solution behavior and self-assembly of a dual pH/thermo-responsive fluorinated diblock terpolymer. Polym Chem 2021. [DOI: 10.1039/d0py01515f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of fluorinated dual-responsive block terpolymers via sequential reversible addition–fragmentation chain transfer (RAFT) polymerization is presented.
Collapse
|
9
|
Oliveira TA, Anágua-Bravo E, Aoki IV, Scaramucci T, Sobral MAP. Chemical and mechanical resistance of novel experimental hybrid coatings on dentin permeability. Microsc Res Tech 2020; 84:163-170. [PMID: 32869428 DOI: 10.1002/jemt.23574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 11/06/2022]
Abstract
This study aimed to evaluate the capacity of novel experimental hybrid coatings (HC) to reduce dentin permeability and to verify their resistance to erosive and abrasive challenges. Dentin disc specimens (1 mm thick) were treated with 0.5 M EDTA solution and randomly allocated into three experimental groups (n = 10): Control (Saliva); Concentrated Hybrid Coating (TEOS/GPTMS/Y-APS); and Diluted Hybrid Coating (1:3 ratio with distilled water). Dentin permeability was assessed by hydraulic conductance in the following experimental time periods: post-EDTA, post treatment, post erosion (5 min in 0.05 M citric acid solution, pH = 3.8), and post abrasion (toothbrushing for 3,900 cycles). Dentin permeability percent was calculated with respect the values of post-EDTA for each experimental time. The morphology of the surface of extra dentin specimens was examined by scanning electron microscopy (SEM) in the same time periods (n = 3). Permeability data were analyzed by two-way repeated measures ANOVA and Tukey tests (p < .05). Both HC presented significantly lower dentin permeability than control post treatment and post erosion (p < .05), without difference between them (p > .05). Post abrasion, there were no significant difference among groups (p > .05). Post treatment and post erosion, the HC seemed to flow into the tubules, occluding them, while the tubules in control remained opened. Post abrasion, the tubules appear to be occluded in all groups. In conclusion, the experimental hybrid coatings were capable of reducing dentin permeability after treatment. They were also able to resist to erosive and abrasive challenges, with the advantage of forming thinner and colorless films that can be potentially used to treat dentin hypersensitivity.
Collapse
Affiliation(s)
- Tatiane Alexandre Oliveira
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Ernesto Anágua-Bravo
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo, SP, Brazil
| | - Idalina Vieira Aoki
- Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo, SP, Brazil
| | - Taís Scaramucci
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Angela Pita Sobral
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Hou J, Ding W, Feng Y, Shui L, Wang Y, Li H, Li N, Zhou G. Electrowetting Performances of Novel Fluorinated Polymer Dielectric Layer Based on Poly(1H,1H,2H,2H-perfluoroctylmethacrylate) Nanoemulsion. Polymers (Basel) 2017; 9:polym9060217. [PMID: 30970896 PMCID: PMC6432406 DOI: 10.3390/polym9060217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 05/26/2017] [Accepted: 06/08/2017] [Indexed: 12/14/2022] Open
Abstract
In electrowetting devices, hydrophobic insulating layer, namely dielectric layer, is capable of reversibly switching surface wettability through applied electric field. It is critically important but limited by material defects in dielectricity, reversibility, film forming, adhesiveness, price and so on. To solve this key problem, we introduced a novel fluorinated polyacrylate—poly(1H,1H,2H,2H-perfluoroctylmethacrylate (PFMA) to construct micron/submicron-scale dielectric layer via facile spray coating of nanoemulsion for replacing the most common Teflon AF series. All the results illustrated that, continuous and dense PFMA film with surface relief less than 20 nm was one-step fabricated at 110 °C, and exhibited much higher static water contact angle of 124°, contact angle variation of 42°, dielectric constant of about 2.6, and breakdown voltage of 210 V than Teflon AF 1600. Particularly, soft and highly compatible polyacrylate mainchain assigned five times much better adhesiveness than common adhesive tape, to PFMA layer. As a promising option, PFMA dielectric layer may further facilitate tremendous development of electrowetting performances and applications.
Collapse
Affiliation(s)
- Jiaxin Hou
- Institute of Electronic Paper Display, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Wenwen Ding
- Institute of Electronic Paper Display, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Yancong Feng
- Institute of Electronic Paper Display, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Lingling Shui
- Institute of Electronic Paper Display, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Yao Wang
- Institute of Electronic Paper Display, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Hao Li
- Institute of Electronic Paper Display, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Nan Li
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd., Shenzhen 518110, China.
| | - Guofu Zhou
- Institute of Electronic Paper Display, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
- Shenzhen Guohua Optoelectronics Tech. Co. Ltd., Shenzhen 518110, China.
- Academy of Shenzhen Guohua Optoelectronics, Shenzhen 518110, China.
| |
Collapse
|
11
|
Ávila DMDS, Zanatta RF, Scaramucci T, Aoki IV, Torres CRG, Borges AB. Influence of bioadhesive polymers on the protective effect of fluoride against erosion. J Dent 2016; 56:45-52. [PMID: 27793704 DOI: 10.1016/j.jdent.2016.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE This study investigated if the incorporation of the bioadhesive polymers Carbopol 980, Carboxymethyl cellulose (CMC), and Aristoflex AVC in a fluoridated solution (NaF-900ppm) would increase the solution's protective effect against enamel erosion. METHODS Enamel specimens were submitted to a 5-day de-remineralization cycling model, consisting of 2min immersions in 0.3% citric acid (6x/day), 1min treatments with the polymers (associated or not with fluoride), and 60min storage in artificial saliva. Ultrapure water was used as the negative control and a 900ppm fluoride solution as positive control. The initial Knoop microhardness (KHN1) was used to randomize the samples into groups. Another two microhardness assessments were performed after the first (KHN2) and second (KHN3) acid immersions, to determine initial erosion in the first day. The formula: %KHNalt=[(KHN3-KHN2)/KHN2]*100 was used to define the protective effect of the treatments. After the 5-day cycling, surface loss (SL, in μm) was evaluated with profilometry. Data were analyzed with 2-way ANOVA and Tukey's tests (p<0.05). RESULTS For %KHNalt, the polymers alone did not reduce enamel demineralization when compared to the negative control, but Carbopol associated with NaF significantly improved its protective effect. The profilometric analysis showed that Carbopol, associated or not with NaF, exhibited the lowest SL, while CMC and Aristoflex did not exhibit a protective effect, nor were they able to improve the protection of NaF. CONCLUSIONS It is concluded that Carbopol enhanced NaF's protection against initial erosion. Carbopol alone or associated with NaF was able to reduce SL after several erosive challenges. CLINICAL SIGNIFICANCE Carbopol by itself was able to reduce the erosive wear magnitude to the same extent as the sodium fluoride, therefore, is a promising agent to prevent or control enamel erosion.
Collapse
Affiliation(s)
- Daniele Mara da Silva Ávila
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University-UNESP, São Paulo, Brazil.
| | - Rayssa Ferreira Zanatta
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University-UNESP, São Paulo, Brazil.
| | - Tais Scaramucci
- Department of Restorative Dentistry, São Paulo University-USP, São Paulo, Brazil.
| | - Idalina Vieira Aoki
- Department of Chemical Engineering, Polytechnic School, São Paulo University-USP, São Paulo, Brazil.
| | - Carlos Rocha Gomes Torres
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University-UNESP, São Paulo, Brazil.
| | - Alessandra Bühler Borges
- Department of Restorative Dentistry, Institute of Science and Technology, São Paulo State University-UNESP, São Paulo, Brazil.
| |
Collapse
|
12
|
Jowett AK, Marlow I, Rawlinson A. A double blind randomised controlled clinical trial comparing a novel anti-stain and calculus reducing dentifrice with a standard fluoride dentifrice. J Dent 2013; 41:313-20. [DOI: 10.1016/j.jdent.2012.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 11/01/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022] Open
|
13
|
Tsibouklis J, Middleton AM, Patel N, Pratten J. Toward mucoadhesive hydrogel formulations for the management of xerostomia: the physicochemical, biological, and pharmacological considerations. J Biomed Mater Res A 2013; 101:3327-38. [PMID: 23529996 DOI: 10.1002/jbm.a.34626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/17/2013] [Accepted: 01/22/2013] [Indexed: 01/17/2023]
Abstract
Although hydrogel formulations that may be applied to many mucosal surfaces are now readily accessible, little research effort has been concentrated on the development of systems that may be usefully employed for the prolonged hydration of the oral cavity. To this end, and set within the context of oral care in general, this review considers the requirements for the design of hydrogel formulations with an affinity for buccal cells and details methods for evaluating the performance of these formulations as treatments for the management of xerostomia.
Collapse
Affiliation(s)
- John Tsibouklis
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, Hampshire, PO1 2DT, United Kingdom
| | | | | | | |
Collapse
|
14
|
WATANABE T, TATEISHI T, SAKAI T, TOYAMA K, HAYAKAWA Y, ONO T. Fluorinated Polymer/Silica Composites with Remarkable Mechanical and Antifouling Properties^|^mdash;Design for Artificial Teeth with Improved Durability and Esthetics. KOBUNSHI RONBUNSHU 2013. [DOI: 10.1295/koron.70.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Hayakawa Y, Ono T, Watanabe T, Tateishi T, Sakai T, Toyama K. Anti-Staining Polymer Composites Consisting of a Methacrylic Resin Matrix Containing Biphenyl and Fluorinated Moieties. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2013. [DOI: 10.1080/10601325.2013.780949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Attenuating the size and molecular carrier capabilities of polyacrylate nanoparticles by a hydrophobic fluorine effect. Bioorg Med Chem 2012; 20:5042-5. [PMID: 22789705 DOI: 10.1016/j.bmc.2012.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/01/2012] [Accepted: 06/05/2012] [Indexed: 11/23/2022]
Abstract
This study investigates the effect of introducing alkyl chain fluorination on the properties of polyacrylate nanoparticles prepared in aqueous solution by emulsion polymerization. For this, 2,2,3,3,4,4,4-heptafluorobutyl acrylate (1) and methyl trifluoroacrylate (2) were tested as monomers as a means to prepare fluorinated polyacrylate nanoparticles to evaluate how side chain fluorination may affect nanoparticle size and drug carrier properties. Our results show that as fluorine content within the polyacrylate matrix increases, the size of the nanoparticle systematically diminishes, from 45 nm (for nanoparticles containing no fluoroacrylate) to ~7 nm (for nanoparticles constructed solely of fluoroacrylate). We also observe that as fluoroacrylate content and hydrophobicity increases, the nanoparticles decrease their ability to incorporate lipophilic molecules during the process of emulsification. These findings have meaningful implications in the implementation of fluorinated nanoparticles in molecular delivery.
Collapse
|
17
|
Lee HS, Tsai S, Kuo CC, Bassani AW, Pepe-Mooney B, Miksa D, Masters J, Sullivan R, Composto RJ. Chitosan adsorption on hydroxyapatite and its role in preventing acid erosion. J Colloid Interface Sci 2012; 385:235-43. [PMID: 22840874 DOI: 10.1016/j.jcis.2012.06.074] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Polymer adsorption onto an artificial saliva (AS) layer is investigated using quartz-crystal microbalance with dissipation (QCM-D) and chitosan as the model polymer. QCM-D is utilized in an innovative manner to monitor in situ adsorption of chitosan (CH) onto a hydroxyapatite (HA) coated crystal and to examine the ability of the adsorbed layer to "protect" the HA upon sequential exposure to acidic solutions. After deposition of a thin AS layer (16 nm), the total thickness on the HA substrate increases to 37 nm upon exposure to CH at pH 5.5 for 10 min. Correspondingly, the surface charge changes from negative (i.e., AS) to positive, consistent with the adsorption the polycationic CH onto or into the AS layer. Upon exposure to an oxidizing agent, the chitosan cross-links and collapses as noted by a decrease in thickness to 10 nm and an increase in the shear modulus by an order of magnitude. Atomic force microscopy (AFM) is used to determine the surface morphology and RMS roughness of the coated and HA surfaces after citric acid challenges. Both physisorbed and cross-linked chitosan are demonstrated to limit and prevent the erosion of HA, respectively.
Collapse
Affiliation(s)
- Hyun-Su Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kwong P, Flowers CA, Gupta M. Directed deposition of functional polymers onto porous substrates using metal salt inhibitors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10634-10641. [PMID: 21838237 DOI: 10.1021/la201532s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This paper demonstrates the ability to control the location of polymer deposition onto porous substrates using vapor phase polymerization in combination with metal salt inhibitors. Functional polymers such as hydrophobic poly(1H,1H,2H,2H-perfluorodecyl acrylate), click-active poly(pentafluorophenyl methacrylate), and light-responsive poly(ortho-nitrobenzyl methacrylate) were patterned onto porous hydrophilic substrates using metal salts. A combinatorial screening approach was used to determine the effects of different transition metal salts and reaction parameters on the patterning process. It was found that CuCl(2) and Cu(NO(3))(2) were effective at uniformly inhibiting the deposition of all three polymers through the depth of the porous substrate and along the entire cross section. This study offers a new and convenient method to selectively deposit a wide variety of functional polymers onto porous materials and will enable the production of next-generation multifunctional paper-based microfluidic devices, polymeric photonic crystals, and filtration membranes.
Collapse
Affiliation(s)
- Philip Kwong
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
19
|
Poly(alkyl methacrylate) Tooth Coatings for Dental Care: Evaluation of the Demineralisation-Protection Benefit Using a Time-Resolved In Vitro Method. Polymers (Basel) 2011. [DOI: 10.3390/polym3010314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
20
|
Nielsen BV, Nevell TG, Barbu E, Smith JR, Rees GD, Tsibouklis J. Multifunctional poly(alkyl methacrylate) films for dental care. Biomed Mater 2011; 6:015003. [DOI: 10.1088/1748-6041/6/1/015003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|