1
|
Surface modification strategies for high-dose dry powder inhalers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00529-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Gatti M, De Ponti F. Drug Repurposing in the COVID-19 Era: Insights from Case Studies Showing Pharmaceutical Peculiarities. Pharmaceutics 2021; 13:pharmaceutics13030302. [PMID: 33668969 PMCID: PMC7996547 DOI: 10.3390/pharmaceutics13030302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
COVID-19 may lead to severe respiratory distress syndrome and high risk of death in some patients. So far (January 2021), only the antiviral remdesivir has been approved, although no significant benefits in terms of mortality and clinical improvement were recently reported. In a setting where effective and safe treatments for COVID-19 are urgently needed, drug repurposing may take advantage of the fact that the safety profile of an agent is already well known and allows rapid investigation of the efficacy of potential treatments, at lower costs and with reduced risk of failure. Furthermore, novel pharmaceutical formulations of older agents (e.g., aerosolized administration of chloroquine/hydroxychloroquine, remdesivir, heparin, pirfenidone) have been tested in order to increase pulmonary delivery and/or antiviral effects of potentially active drugs, thus overcoming pharmacokinetic issues. In our review, we will highlight the importance of the drug repurposing strategy in the context of COVID-19, including regulatory and ethical aspects, with a specific focus on novel pharmaceutical formulations and routes of administration.
Collapse
|
3
|
Brunaugh AD, Smyth HDC. Formulation techniques for high dose dry powders. Int J Pharm 2018; 547:489-498. [PMID: 29778822 DOI: 10.1016/j.ijpharm.2018.05.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023]
Abstract
Delivery of drugs to the lungs via dry powder inhaler (DPI) is a promising approach for the treatment of both local pulmonary conditions and systemic diseases. Though DPIs are widely used for the pulmonary deposition of potent bronchodilators, anticholinergics, and corticosteroids, there is growing interest in the utilization of this delivery system for the administration of high drug doses to the lungs, as made evident by recent regulatory approvals for anti-microbial, anti-viral and osmotic agents. However, the formulation of high dose DPIs carries several challenges from both a physiological and physicochemical standpoint. This review describes the various formulation techniques utilized to overcome the barriers associated with the pulmonary delivery of high dose powders.
Collapse
Affiliation(s)
- Ashlee D Brunaugh
- University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 West University Avenue, Austin, TX 78712, United States
| | - Hugh D C Smyth
- University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 West University Avenue, Austin, TX 78712, United States; LaMontagne Center for Infectious Disease, The University of Texas at Austin, United States.
| |
Collapse
|
4
|
Momin MA, Sinha S, Tucker IG, Doyle C, Das SC. Dry powder formulation of kanamycin with enhanced aerosolization efficiency for drug-resistant tuberculosis. Int J Pharm 2017; 528:107-117. [DOI: 10.1016/j.ijpharm.2017.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023]
|
5
|
Zhu L, Li M, Dong J, Jin Y. Dimethyl silicone dry nanoemulsion inhalations: Formulation study and anti-acute lung injury effect. Int J Pharm 2015; 491:292-8. [PMID: 26142249 DOI: 10.1016/j.ijpharm.2015.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 01/18/2023]
Abstract
Acute lung injury (ALI) is a severe disease, leading to death if not treated quickly. An emergency medicine is necessary for ALI therapy. Dimethyl silicone (DMS) is an effective agent to defoam the bubbles in the lung induced by ALI. However, DMS aerosols, a marketed formulation of DMS, affect environments and will be limited in the future. Here we firstly report a dry nanoemulsion inhalation for pulmonary delivery. Novel DMS dry nanoemulsion inhalations (DSNIs) were developed in this study. The optimal formulation of stable and homogenous DMS nanoemulsions (DSNs) was composed of Cremophor RH40/PEG 400/DMS (4:4:2, w/w/w) and water. The DSNs showed the tiny size of 19.8 nm, the zeta potential of -9.66 mV, and the low polydispersity index (PDI) of 0.37. The type of DSNs was identified as oil-in-water. The DSNs were added with mannitol followed by freeze-drying to obtain the DSNIs that were loose white powders, showed good fluidity, and were capable of rapid reconstitution to DSNs. The DSNs could adhere on the surfaces of lyophilized mannitol crystals. The aerodynamic diameter of DSNIs was 4.82 μm, suitable for pulmonary inhalation. The in vitro defoaming rate of DSNIs was 1.25 ml/s, much faster than those of the blank DSNIs, DMS, and DMS aerosols. The DSNIs showed significantly higher anti-ALI effect on the ALI rat models than the blank DSNIs and the DMS aerosols according to lung appearances, histological sections, and lung wet weight/dry weight ratios. The DSNIs are effective anti-ALI nanomedicines. The novel DMS formulation is a promising replacement of DMS aerosols.
Collapse
Affiliation(s)
- Lifei Zhu
- Anhui Medical University, Hefei 230001, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Yiguang Jin
- Anhui Medical University, Hefei 230001, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
6
|
Hayes AJ, Bakand S. Toxicological perspectives of inhaled therapeutics and nanoparticles. Expert Opin Drug Metab Toxicol 2014; 10:933-47. [PMID: 24810077 DOI: 10.1517/17425255.2014.916276] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION The human respiratory system is an important route for the entry of inhaled therapeutics into the body to treat diseases. Inhaled materials may consist of gases, vapours, aerosols and particulates. In all cases, assessing the toxicological effect of inhaled therapeutics has many challenges. AREAS COVERED This article provides an overview of in vivo and in vitro models for testing the toxicity of inhaled therapeutics and nanoparticles implemented in drug delivery. Traditionally, inhalation toxicity has been performed on test animals to identify the median lethal concentration of airborne materials. Later maximum tolerable concentration denoted by LC0 has been introduced as a more ethically acceptable end point. More recently, in vitro methods have been developed, allowing the direct exposure of airborne material to cultured human target cells on permeable porous membranes at the air-liquid interface. EXPERT OPINION Modifications of current inhalation therapies, new pulmonary medications for respiratory diseases and implementation of the respiratory tract for systemic drug delivery are providing new challenges when conducting well-designed inhalation toxicology studies. In particular, the area of nanoparticles and nanocarriers is of critical toxicological concern. There is a need to develop toxicological test models, which characterise the toxic response and cellular interaction between inhaled particles and the respiratory system.
Collapse
Affiliation(s)
- Amanda J Hayes
- The University of New South Wales, School of Chemistry , UNSW Sydney, 2052 , Australia +61 403 028747 ; +61 2 9385 6141 ;
| | | |
Collapse
|
7
|
Lung [(18)F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch in the early stage of experimental acute smoke inhalation. Anesthesiology 2014; 120:683-93. [PMID: 24051392 DOI: 10.1097/01.anes.0000435742.04859.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Acute lung injury occurs in a third of patients with smoke inhalation injury. Its clinical manifestations usually do not appear until 48-72 h after inhalation. Identifying inflammatory changes that occur in pulmonary parenchyma earlier than that could provide insight into the pathogenesis of smoke-induced acute lung injury. Furthermore, noninvasive measurement of such changes might lead to earlier diagnosis and treatment. Because glucose is the main source of energy for pulmonary inflammatory cells, the authors hypothesized that its pulmonary metabolism is increased shortly after smoke inhalation, when classic manifestations of acute lung injury are not yet expected. METHODS In five sheep, the authors induced unilateral injury with 48 breaths of cotton smoke while the contralateral lung served as control. The authors used positron emission tomography with: (1) [F]fluorodeoxyglucose to measure metabolic activity of pulmonary inflammatory cells; and (2) [N]nitrogen in saline to measure shunt and ventilation-perfusion distributions separately in the smoke-exposed and control lungs. RESULTS The pulmonary [F]fluorodeoxyglucose uptake rate was increased at 4 h after smoke inhalation (mean ± SD: 0.0031 ± 0.0013 vs. 0.0026 ± 0.0010 min; P < 0.05) mainly as a result of increased glucose phosphorylation. At this stage, there was no worsening in lung aeration or shunt. However, there was a shift of perfusion toward units with lower ventilation-to-perfusion ratio (mean ratio ± SD: 0.82 ± 0.10 vs. 1.12 ± 0.02; P < 0.05) and increased heterogeneity of the ventilation-perfusion distribution (mean ± SD: 0.21 ± 0.07 vs. 0.13 ± 0.01; P < 0 .05). CONCLUSION Using noninvasive imaging, the authors demonstrated that increased pulmonary [F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch occur early after smoke inhalation.
Collapse
|
8
|
Jacob S, Zhu Y, Asmussen S, Ito H, Herndon DN, Enkhbaatar P, Hawkins HK, Cox RA. Tiotropium bromide suppresses smoke inhalation and burn injury-induced ERK 1/2 and SMAD 2/3 signaling in sheep bronchial submucosal glands. Toxicol Mech Methods 2014; 24:250-8. [PMID: 24417427 DOI: 10.3109/15376516.2013.879504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of tiotropium bromide on ERK 1/2, SMAD 2/3 and NFκB signaling in bronchial submucosal gland (SMG) cells of sheep after smoke inhalation and burn injury (S + B) were studied. We hypothesized that tiotropium would modify intracellular signaling processes within SMG cells after injury. Bronchial tissues were obtained from uninjured (sham, n = 6), S + B injured sheep 48 h after injury (n = 6), and injured sheep nebulized with tiotropium (n = 6). The percentage (mean ± SD) of cells showing nuclear localization of phosphorylated ERK 1/2, pSMAD 2/3, and NFκB (p65) was determined by immunohistochemistry. Nuclear pERK 1/2 staining was increased in injured animals as compared to sham, (66 ± 20 versus 14 ± 9), p = 0.0022, as was nuclear pSMAD, 84 ± 10 versus 20 ± 10, p = 0.0022. There was a significant decrease in pERK 1/2 labeling in the tiotropium group compared to the injured group (31 ± 20 versus 66 ± 20, p = 0.013), and also a decrease in pSMAD labeling, 62 ± 17 versus 84 ± 10, p = 0.04. A significant increase for NFκB (p65) was noted in injured animals as compared to sham (73 ± 16 versus 7 ± 6, p = 0.0022). Tiotropium-treated animals showed decreased p65 labeling as compared to injured (35 ± 17 versus 74 ± 16, p = 0.02). The decrease in nuclear expression of pERK, pSMAD and NFκB molecules in SMG cells with tiotropium treatment is suggestive that their activation after injury is mediated in part through muscarinic receptors.
Collapse
Affiliation(s)
- Sam Jacob
- Shriners Hospital for Children and the University of Texas Medical Branch , Galveston, TX , USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Hoe S, Boraey MA, Ivey JW, Finlay WH, Vehring R. Manufacturing and device options for the delivery of biotherapeutics. J Aerosol Med Pulm Drug Deliv 2013; 27:315-28. [PMID: 24299502 DOI: 10.1089/jamp.2013.1090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biotherapeutic aerosol formulations are an intense area of interest for systemic and local drug delivery. This article provides a short overview of typical factors required specifically for biotherapeutic aerosol formulation design, the processing options open for consideration, and the issue of inhalation device selection. Focusing on spray drying, four case studies are used to highlight the relevant issues, describing investigations into: (1) the mechanical stresses occurring in bacteriophage formulations during spray-dryer atomization; (2) modeling of the spray-dryer process and droplet drying kinetics, to assist process design and predictions of formulation stability; (3) a predictive approach to the design and processing of a five-component dry powder aerosol formulation; and (4) the survival of bacteriophages after pressurized metered dose inhaler atomization.
Collapse
Affiliation(s)
- Susan Hoe
- Department of Mechanical Engineering, University of Alberta , Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
10
|
Abstract
Like the previous year, 2010 was another active year for research in burn care. For this year, more than 1200 burn-related articles were published on a diverse array of topics. In this review, we focus on innovative and impactful burn injury-related research. As in the previous review, we group articles according to the following categories: critical care, infection, inhalation injury, epidemiology, psychology, wound characterization and treatment, nutrition and metabolism, pain and itch management, burn reconstruction, and rehabilitation. We have found that burn research continues to be prolific throughout the world and reflects the wide-ranging and complex care requirements of burn survivors.
Collapse
|
11
|
Boraey MA, Hoe S, Sharif H, Miller DP, Lechuga-Ballesteros D, Vehring R. Improvement of the dispersibility of spray-dried budesonide powders using leucine in an ethanol–water cosolvent system. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.02.047] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
The therapeutic efficacy of Ulinastatin for rats with smoking inhalation injury. Int Immunopharmacol 2012; 14:289-95. [DOI: 10.1016/j.intimp.2012.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 07/30/2012] [Accepted: 08/02/2012] [Indexed: 11/23/2022]
|
13
|
Aquino R, Prota L, Auriemma G, Santoro A, Mencherini T, Colombo G, Russo P. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells. Int J Pharm 2012; 426:100-107. [DOI: 10.1016/j.ijpharm.2012.01.026] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 11/26/2022]
|