1
|
Li H, Chen S, Wang M, Shi S, Zhao W, Xiong G, Zhou J, Qu J. Phosphate solubilization and plant growth properties are promoted by a lactic acid bacterium in calcareous soil. Appl Microbiol Biotechnol 2024; 108:24. [PMID: 38159115 DOI: 10.1007/s00253-023-12850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
On the basis of good phosphate solubilization ability of a lactic acid bacteria (LAB) strain Limosilactobacillus sp. LF-17, bacterial agent was prepared and applied to calcareous soil to solubilize phosphate and promote the growth of maize seedlings in this study. A pot experiment showed that the plant growth indicators, phosphorus content, and related enzyme activity of the maize rhizospheric soils in the LF treatment (treated with LAB) were the highest compared with those of the JP treatment (treated with phosphate solubilizing bacteria, PSB) and the blank control (CK). The types of organic acids in maize rhizospheric soil were determined through LC-MS, and 12 acids were detected in all the treatments. The abundant microbes belonged to the genera of Lysobacter, Massilia, Methylbacillus, Brevundimonas, and Limosilactobacillus, and they were beneficial to dissolving phosphate or secreting growth-promoting phytohormones, which were obviously higher in the LF and JP treatments than in CK as analyzed by high-throughput metagenomic sequencing methods. In addition, the abundance values of several enzymes, Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology, and Carbohydrate-Active Enzymes (CAZys), which were related to substrate assimilation and metabolism, were the highest in the LF treatment. Therefore, aside from phosphate-solubilizing microorganisms, LAB can be used as environmentally friendly crop growth promoters in agriculture and provide another viable option for microbial fertilizers. KEY POINTS: • The inoculation of LAB strain effectively promoted the growth and chlorophyll synthesis of maize seedlings. • The inoculation of LAB strain significantly increased the TP content of maize seedlings and the AP concentration of the rhizosphere soil. • The inoculation of LAB strain increased the abundances of the dominant beneficial functional microbes in the rhizosphere soil.
Collapse
Affiliation(s)
- Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Siyuan Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Mengyu Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Shuoshuo Shi
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenjian Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Guoyang Xiong
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jia Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Kim TK, Bham AA, Fioretti I, Angelo J, Xu X, Ghose S, Morbidelli M, Sponchioni M. Role of the gradient slope during the product internal recycling for the multicolumn countercurrent solvent gradient purification of PEGylated proteins. J Chromatogr A 2023; 1692:463868. [PMID: 36803771 DOI: 10.1016/j.chroma.2023.463868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Protein PEGylation, i.e. functionalization with poly(ethylene glycol) chains, has been demonstrated an efficient way to improve the therapeutic index of these biopharmaceuticals. We demonstrated that Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) is an efficient process for the separation of PEGylated proteins (Kim et al., Ind. and Eng. Chem. Res. 2021, 60, 29, 10764-10776), thanks to the internal recycling of product-containing side fractions. This recycling phase plays a critical role in the economy of MCSGP as it avoids wasting valuable product, but at the same time impacts its productivity extending the overall process duration. In this study, our aim is to elucidate the role of the gradient slope within this recycling stage on the yield and productivity of MCSGP for two case-studies: PEGylated lysozyme and an industrially relevant PEGylated protein. While all the examples of MCSGP in the literature refer to a single gradient slope in the elution phase, for the first time we systematically investigate three different gradient configurations: i) a single gradient slope throughout the entire elution, ii) recycling with an increased gradient slope, to shed light on the competition between volume of the recycled fraction and required inline dilution and iii) an isocratic elution during the recycling phase. The dual gradient elution proved to be a valuable solution for boosting the recovery of high-value products, with the potential for alleviating the pressure on the upstream processing.
Collapse
Affiliation(s)
- Tae Keun Kim
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7 20131 Milano, Italy
| | - Abdallah Ayub Bham
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7 20131 Milano, Italy
| | - Ismaele Fioretti
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7 20131 Milano, Italy
| | - James Angelo
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, MA, 01434, USA
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, MA, 01434, USA
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, MA, 01434, USA
| | - Massimo Morbidelli
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7 20131 Milano, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7 20131 Milano, Italy.
| |
Collapse
|
3
|
The effect of putrescine on the lysozyme activity and structure: Spectroscopic approaches and molecular dynamic simulation. Colloids Surf B Biointerfaces 2022; 213:112402. [PMID: 35151046 DOI: 10.1016/j.colsurfb.2022.112402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
Abstract
The present research addressed the influence of polyamine (putrescine) on the compound as well as function of lysozyme; accordingly, UV- Visible, fluorescence spectroscopy and simulation method were applied to fulfill this goal. Lysozyme's structural variability was examined at various putrescine concentrations; also, the putrescine binding to lysozyme was addressed using spectrofluorescence, circular dichroism (CD) and UV-Vis measurements. The obtained results indicated that with raising the putrescine concentration, the intrinsic quenching fluorescence of lysozyme was decreased based on the static mechanism. Analysis of thermodynamic parameters also indicated that van der Waals as well as hydrogen bond forces served a fundamental role in determining the resulting stability; this was in agreement with modeling studies. Measurement of UV absorption spectroscopy, fluorescence spectroscopy, and circular dichroism spectroscopy also demonstrated that lysozyme's second and tertiary structures were altered in a putrescine concentration-dependent manner. Putrescine inhibited lysozyme's enzymatic activity, displaying its affinity with the lysozyme's active site. Further, molecular simulation conducted revealed that putrescine could have spontaneous binding to lysozyme, changing its structure, thus further emphasizing the experimental results.
Collapse
|
4
|
Abbas MS, Saeed F, Afzaal M, Jianfeng L, Hussain M, Ikram A, Jabeen A. Recent Trends in Encapsulation of Probiotics in Dairy and Beverage: A Review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Farhan Saeed
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Muhammad Afzaal
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Lu Jianfeng
- School of Biotechnology and Food Engineering Hefei University of Technology China
| | - Muzzamal Hussain
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ali Ikram
- Department of Food Sciences Government College University Faisalabad Pakistan
| | - Ayesha Jabeen
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
5
|
Pinheiro-Junior EL, Boldrini-França J, Takeda AAS, Costa TR, Peigneur S, Cardoso IA, Oliveira ISD, Sampaio SV, de Mattos Fontes MR, Tytgat J, Arantes EC. Towards toxin PEGylation: The example of rCollinein-1, a snake venom thrombin-like enzyme, as a PEGylated biopharmaceutical prototype. Int J Biol Macromol 2021; 190:564-573. [PMID: 34506860 DOI: 10.1016/j.ijbiomac.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 12/18/2022]
Abstract
PEGylation was firstly described around 50 years ago and has been used for more than 30 years as a strategy to improve the drugability of biopharmaceuticals. However, it remains poorly employed in toxinology, even though it may be a promising strategy to empower these compounds in therapeutics. This work reports the PEGylation of rCollinein-1, a recombinant snake venom serine protease (SVSP), able to degrade fibrinogen and inhibit the hEAG1 potassium channel. We compared the functional, structural, and immunogenic properties of the non-PEGylated (rCollinein-1) and PEGylated (PEG-rCollinein-1) forms. PEG-rCollinein-1 shares similar kinetic parameters with rCollinein-1, maintaining its capability of degrading fibrinogen, but with reduced activity on hEAG1 channel. CD analysis revealed the maintenance of protein conformation after PEGylation, and thermal shift assays demonstrated similar thermostability. Both forms of the enzyme showed to be non-toxic to peripheral blood mononuclear cells (PBMC). In silico epitope prediction indicated three putative immunogenic peptides. However, immune response on mice showed PEG-rCollinein-1 was devoid of immunogenicity. PEGylation directed rCollinein-1 activity towards hemostasis control, broadening its possibilities to be employed as a defibrinogenant agent.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil; Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Johara Boldrini-França
- University of Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista II, 29102-920 Vila Velha, ES, Brazil
| | | | - Tássia Rafaella Costa
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Steve Peigneur
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Iara Aimê Cardoso
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | - Isadora Sousa de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | - Suely Vilela Sampaio
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil
| | | | - Jan Tytgat
- Toxicology and Pharmacology, KU Leuven, O&N II Herestraat 49 - PO box 922, 3000 Leuven, Belgium
| | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café s/n°, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Kim TK, Botti C, Angelo J, Xu X, Ghose S, Li ZJ, Morbidelli M, Sponchioni M. Experimental Design of the Multicolumn Countercurrent Solvent Gradient Purification (MCSGP) Unit for the Separation of PEGylated Proteins. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01345] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tae Keun Kim
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - Chiara Botti
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - James Angelo
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, Massachusetts 01434, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, Massachusetts 01434, United States
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, Massachusetts 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Inc., Devens, Massachusetts 01434, United States
| | - Massimo Morbidelli
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, Milano, 20131, Italy
| |
Collapse
|
7
|
Zheng Y, Pokorski JK. Hot melt extrusion: An emerging manufacturing method for slow and sustained protein delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1712. [PMID: 33691347 DOI: 10.1002/wnan.1712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
Abstract
With the rapid development of the biopharmaceutical industry, an increasing number of new therapeutic protein products (TPPs) have been approved by the FDA and many others are under pre-clinical and clinical evaluation. A major limitation of biopharmaceuticals is their limited half-life when administered systemically. A one-time, implantable, sustained protein delivery device would be advantageous in order to improve the quality of life of patients. Hot melt extrusion (HME) is a mature technology that has been extensively used for a broad spectrum of applications in the polymer and pharmaceutical industry and has achieved success as evidenced by a variety of FDA-approved commercial products. These commercial products are mostly for sustained delivery of small molecule therapeutics, leaving a significant gap for HME formulation of therapeutic proteins. With the increasing need of sustained TPP delivery, HME shows promise as a downstream processing method due to its high efficiency and economic value. Several challenges remain for the application of HME in protein delivery. Progress of HME for protein delivery, challenges encountered, and potential solutions will be detailed in this review article. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Yi Zheng
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| | - Jonathan K Pokorski
- Department of NanoEngineering, Jacobs School of Engineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
8
|
Atkins DL, Magana JR, Sproncken CCM, van Hest JCM, Voets IK. Single Enzyme Nanoparticles with Improved Biocatalytic Activity through Protein Entrapment in a Surfactant Shell. Biomacromolecules 2021; 22:1159-1166. [PMID: 33630590 PMCID: PMC7944482 DOI: 10.1021/acs.biomac.0c01663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
A polymeric corona
consisting of an alkyl-glycolic acid ethoxylate
(CXEOY) surfactant
offers a promising approach toward endowing proteins with thermotropic
phase behavior and hyperthermal activity. Typically, preparation of
protein–surfactant biohybrids is performed via chemical modification of acidic residues followed by electrostatic
conjugation of an anionic surfactant to encapsulate single proteins.
While this procedure has been applied to a broad range of proteins,
modification of acidic residues may be detrimental to function for
specific enzymes. Herein, we report on the one-pot preparation of
biohybrids via covalent conjugation of surfactants
to accessible lysine residues. We entrap the model enzyme hen egg-white
lysozyme (HEWL) in a shell of carboxyl-functionalized C12EO10 or C12EO22 surfactants. With
fewer surfactants, our covalent biohybrids display similar thermotropic
phase behavior to their electrostatically conjugated analogues. Through
a combination of small-angle X-ray scattering and circular dichroism
spectroscopy, we find that both classes of biohybrids consist of a
folded single-protein core decorated by surfactants. Whilst traditional
biohybrids retain densely packed surfactant coronas, our biohybrids
display a less dense and heterogeneously distributed surfactant coverage
located opposite to the catalytic cleft of HEWL. In solution, this
surfactant coating permits 7- or 3.5-fold improvements in activity
retention for biohybrids containing C12EO10 or
C12EO22, respectively. The reported alternative
pathway for biohybrid preparation offers a new horizon to expand upon
the library of proteins for which functional biohybrid materials can
be prepared. We also expect that an improved understanding of the
distribution of tethered surfactants in the corona will be crucial
for future structure–function investigations.
Collapse
Affiliation(s)
- Dylan L Atkins
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - J Rodrigo Magana
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Christian C M Sproncken
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Laboratory of Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
9
|
Sozbilen GS, Yemenicioğlu A. Antilisterial effects of lysozyme-nisin combination at temperature and pH ranges optimal for lysozyme activity: Test of key findings to inactivate Listeria in raw milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
|
11
|
Katsura S, Furuishi T, Ueda H, Yonemochi E. Synthesis and Characterization of Cholesteryl Conjugated Lysozyme (CHLysozyme). Molecules 2020; 25:molecules25163704. [PMID: 32823837 PMCID: PMC7465789 DOI: 10.3390/molecules25163704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022] Open
Abstract
Hydrophobic interaction is important for protein conformation. Conjugation of a hydrophobic group can introduce intermolecular hydrophobic contacts that can be contained within the molecule. It is possible that a strongly folded state can be formed in solution compared with the native state. In this study, we synthesized cholesteryl conjugated lysozyme (CHLysozyme) using lysozyme and cholesterol as the model protein and hydrophobic group, respectively. Cholesteryl conjugation to lysozyme was confirmed by nuclear-magnetic resonance. Differential-scanning calorimetry suggested that CHLysozyme was folded in solution. CHLysozyme secondary structure was similar to lysozyme, although circular dichroism spectra indicated differences to the tertiary structure. Fluorescence measurements revealed a significant increase in the hydrophobic surface of CHLysozyme compared with that of lysozyme; CHLysozyme self-associated by hydrophobic interaction of the conjugated cholesterol but the hydrophobic surface of CHLysozyme decreased with time. The results suggested that hydrophobic interaction changed from intramolecular interaction to an intermolecular interaction. Furthermore, the relative activity of CHLysozyme to lysozyme increased with time. Therefore, CHLysozyme likely forms a folded state with an extended durability of activity. Moreover, lysozyme was denatured in 100% DMSO but the local environment of tryptophan in CHLysozyme was similar to that of a native lysozyme. Thus, this study suggests that protein solution stability and resistance to organic solvents may be improved by conjugation of a hydrophobic group.
Collapse
Affiliation(s)
- Shinji Katsura
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
- Formulation research Lab., Taiho Pharmaceutical Co., Ltd., 224-2, Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Takayuki Furuishi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
| | - Haruhisa Ueda
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
| | - Etsuo Yonemochi
- Department of Physical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; (S.K.); (T.F.); (H.U.)
- Correspondence: ; Tel.: +81-3-5498-5048
| |
Collapse
|
12
|
Silva AL, Elcoroaristizabal S, Ryder AG. Characterization of lysozyme PEGylation products using polarized excitation‐emission matrix spectroscopy. Biotechnol Bioeng 2020; 117:2969-2984. [DOI: 10.1002/bit.27483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Ana Luiza Silva
- Nanoscale BioPhotonics Laboratory, School of Chemistry National University of Ireland Galway Galway County Galway Ireland
| | - Saioa Elcoroaristizabal
- Nanoscale BioPhotonics Laboratory, School of Chemistry National University of Ireland Galway Galway County Galway Ireland
| | - Alan George Ryder
- Nanoscale BioPhotonics Laboratory, School of Chemistry National University of Ireland Galway Galway County Galway Ireland
| |
Collapse
|
13
|
Karbasian M, Kouchakzadeh H, Anamaghi PN, Sefidbakht Y. Design, development and evaluation of PEGylated rhGH with preserving its bioactivity at highest level after modification. Int J Pharm 2018; 557:9-17. [PMID: 30576790 DOI: 10.1016/j.ijpharm.2018.12.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 12/08/2018] [Accepted: 12/08/2018] [Indexed: 11/24/2022]
Abstract
Modification of recombinant proteins with polyethylene-glycol (PEG) can improve their pharmacokinetic properties, although their bioactivity may be reduced after PEGylation due to structural changes. In this study, simultaneous optimization of PEGylation efficiency and preserved bioactivity of recombinant human growth hormone (rhGH) was investigated. In this regard, experiments were designed by the response surface methodology (RSM)-central composite design (CCD) utilizing design expert software. Under the obtained optimum conditions of 6.73 molar ratio of PEG to protein and pH 7.71 as the main factors affect the process, 54% PEGylation efficiency and 63% preserved bioactivity can be achieved. Based on the ANOVA table, model F-values equal to 31.16 and 20.8 for PEGylation efficiency and preserved bioactivity, respectively, demonstrated the validity and importance of the models. High performance liquid chromatography (HPLC) and gel electrophorese analyses verified the purity of the PEGylated form of rhGH. Findings showed that the modified protein would be stable for six months at 4 °C. In vitro cell growth assessments revealed Nb2-11 cell proliferation during 48 h, although proliferation rate decrease with the increase of PEGylated rhGH concentration. Half-life prolongation in serum observed for PEGylated form in comparison with the non-modified one on in vivo. In overall, the results are promising for the utilization of the PEGylated form of rhGH for the treatment of human growth deficiency after further investigations.
Collapse
Affiliation(s)
- Masoud Karbasian
- Department of Biotechnology, Faculty of Advanced Science & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasan Kouchakzadeh
- Protein Research Center, Shahid Beheshti University, G.C., Velenjak, Tehran, Iran.
| | | | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, G.C., Velenjak, Tehran, Iran
| |
Collapse
|
14
|
Morgenstern J, Gil Alvaradejo G, Bluthardt N, Beloqui A, Delaittre G, Hubbuch J. Impact of Polymer Bioconjugation on Protein Stability and Activity Investigated with Discrete Conjugates: Alternatives to PEGylation. Biomacromolecules 2018; 19:4250-4262. [PMID: 30222929 DOI: 10.1021/acs.biomac.8b01020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covalent attachment of synthetic polymers to proteins, known as protein-polymer conjugation, is currently one of the main approaches for improving the physicochemical properties of these biomolecules. The most commonly employed polymer is polyethylene glycol (PEG), as evidenced by extensive research and clinical track records for its use in biopharmaceuticals. However, the occurrence of allergic reactions or hypersensitivity and the discovery of PEG antibodies, on the one hand, and the rise of controlled polymerization techniques and novel monomers, on the other hand, have been driving the search for alternative polymers for bioconjugation. The present study describes the synthesis, purification, and properties of conjugates of lysozyme with poly( N-acryloylmorpholine) (PNAM) and poly(oligoethylene glycol methyl ether methacrylate) (POEGMA). Particularly, conjugate species with distinct conjugation degrees are investigated for their residual activity, aggregation behavior, and solubility, by using a high-throughput screening approach. Our study showcases the importance of evaluating conjugates obtained by nonsite-specific modification through isolated species with discrete degrees of conjugation rather than on the batch level. Monovalent conjugates with relatively low molar mass polymers displayed equal or even higher activity than the native protein, while all conjugates showed an improved protein solubility. To achieve a comparable effect on solubility as with PEG, PNAM and POEGMA of higher molar masses were required.
Collapse
Affiliation(s)
- Josefine Morgenstern
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2 , 76131 Karlsruhe , Germany
| | - Gabriela Gil Alvaradejo
- Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.,Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Nicolai Bluthardt
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2 , 76131 Karlsruhe , Germany
| | - Ana Beloqui
- Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.,Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , Hermann-von-Helmholtz-Platz 1 , 76344 Eggenstein-Leopoldshafen , Germany.,Macromolecular Architectures, Institute for Chemical Technology and Polymer Chemistry (ITCP) , Karlsruhe Institute of Technology (KIT) , 76131 Karlsruhe , Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering , Karlsruhe Institute of Technology (KIT) , Fritz-Haber-Weg 2 , 76131 Karlsruhe , Germany
| |
Collapse
|
15
|
Carmali S, Murata H, Matyjaszewski K, Russell AJ. Tailoring Site Specificity of Bioconjugation Using Step-Wise Atom-Transfer Radical Polymerization on Proteins. Biomacromolecules 2018; 19:4044-4051. [DOI: 10.1021/acs.biomac.8b01064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Xu C, Yin X, Zhang C, Chen H, Huang H, Hu Y. Improving Catalytic Performance of Burkholderiacepacia Lipase by Chemical Modification with Functional Ionic Liquids. Chem Res Chin Univ 2018. [DOI: 10.1007/s40242-018-7246-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Wilding KM, Smith AK, Wilkerson JW, Bush DB, Knotts TA, Bundy BC. The Locational Impact of Site-Specific PEGylation: Streamlined Screening with Cell-Free Protein Expression and Coarse-Grain Simulation. ACS Synth Biol 2018; 7:510-521. [PMID: 29295615 DOI: 10.1021/acssynbio.7b00316] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although polyethylene glycol (PEG) is commonly used to improve protein stability and therapeutic efficacy, the optimal location for attaching PEG onto proteins is not well understood. Here, we present a cell-free protein synthesis-based screening platform that facilitates site-specific PEGylation and efficient evaluation of PEG attachment efficiency, thermal stability, and activity for different variants of PEGylated T4 lysozyme, including a di-PEGylated variant. We also report developing a computationally efficient coarse-grain simulation model as a potential tool to narrow experimental screening candidates. We use this simulation method as a novel tool to evaluate the locational impact of PEGylation. Using this screen, we also evaluated the predictive impact of PEGylation site solvent accessibility, conjugation site structure, PEG size, and double PEGylation. Our findings indicate that PEGylation efficiency, protein stability, and protein activity varied considerably with PEGylation site, variations that were not well predicted by common PEGylation guidelines. Overall our results suggest current guidelines are insufficiently predictive, highlighting the need for experimental and simulation screening systems such as the one presented here.
Collapse
Affiliation(s)
- Kristen M. Wilding
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Addison K. Smith
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Joshua W. Wilkerson
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Derek B. Bush
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Thomas A. Knotts
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Bradley C. Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
18
|
Ho HT, Bénard A, Forcher G, Le Bohec M, Montembault V, Pascual S, Fontaine L. Azlactone-based heterobifunctional linkers with orthogonal clickable groups: efficient tools for bioconjugation with complete atom economy. Org Biomol Chem 2018; 16:7124-7128. [DOI: 10.1039/c8ob01807c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New azlactone-based heterobifunctional linkers that proceed in orthogonal click-like reactions for chemical ligations in biologically relevant medium without releasing any byproduct.
Collapse
Affiliation(s)
- Hien The Ho
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans cedex 9
- France
| | - Alexandre Bénard
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans cedex 9
- France
| | - Gwenaël Forcher
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans cedex 9
- France
| | - Maël Le Bohec
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans cedex 9
- France
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans cedex 9
- France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans cedex 9
- France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS – Le Mans Université
- 72085 Le Mans cedex 9
- France
| |
Collapse
|
19
|
Lee PW, Maia J, Pokorski JK. Milling solid proteins to enhance activity after melt-encapsulation. Int J Pharm 2017; 533:254-265. [PMID: 28939464 DOI: 10.1016/j.ijpharm.2017.09.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/06/2017] [Accepted: 09/16/2017] [Indexed: 12/25/2022]
Abstract
Polymeric systems for the immobilization and delivery of proteins have been extensively used for therapeutic and catalytic applications. While most devices have been created via solution based methods, hot melt extrusion (HME) has emerged as an alternative due to the high encapsulation efficiencies and solvent-free nature of the process. HME requires high temperatures and mechanical stresses that can result in protein aggregation and denaturation, but additives and chemical modifications have been explored to mitigate these effects. This study explores the use of solid-state ball milling to decrease protein particle size before encapsulation within poly(lactic-co-glycolic acid) (PLGA) via HME. The impact of milling on particle dispersion, retained enzymatic activity, secondary structure stability, and release was explored for lysozyme, glucose oxidase, and the virus-like particle derived from Qβ to fully understand the impact of milling on protein systems with different sizes and complexities. The results of this study describe the utility of milling to further increase the stability of protein/polymer systems prepared via HME.
Collapse
Affiliation(s)
- Parker W Lee
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering, Cleveland, OH 44106, United States
| | - João Maia
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering, Cleveland, OH 44106, United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering, Cleveland, OH 44106, United States.
| |
Collapse
|
20
|
Carmali S, Murata H, Amemiya E, Matyjaszewski K, Russell AJ. Tertiary Structure-Based Prediction of How ATRP Initiators React with Proteins. ACS Biomater Sci Eng 2017; 3:2086-2097. [DOI: 10.1021/acsbiomaterials.7b00281] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sheiliza Carmali
- Center
for Polymer-Based Protein Engineering and ‡Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Center
for Polymer-Based Protein Engineering and ‡Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Erika Amemiya
- Center
for Polymer-Based Protein Engineering and ‡Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center
for Polymer-Based Protein Engineering and ‡Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Center
for Polymer-Based Protein Engineering and ‡Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
21
|
Morgenstern J, Baumann P, Brunner C, Hubbuch J. Effect of PEG molecular weight and PEGylation degree on the physical stability of PEGylated lysozyme. Int J Pharm 2017; 519:408-417. [PMID: 28130198 DOI: 10.1016/j.ijpharm.2017.01.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
During production, purification, formulation, and storage proteins for pharmaceutical or biotechnological applications face solution conditions that are unfavorable for their stability. Such harmful conditions include extreme pH changes, high ionic strengths or elevated temperatures. The characterization of the main influencing factors promoting undesired changes of protein conformation and aggregation, as well as the manipulation and selective control of protein stabilities are crucially important to biopharmaceutical research and process development. In this context PEGylation, i.e. the covalent attachment of polyethylene glycol (PEG) to proteins, represents a valuable strategy to improve the physico-chemical properties of proteins. In this work, the influence of PEG molecular weight and PEGylation degree on the physical stability of PEGylated lysozyme is investigated. Specifically, conformational and colloidal properties were studied by means of high-throughput melting point determination and automated generation of protein phase diagrams, respectively. Lysozyme from chicken egg-white as a model protein was randomly conjugated to 2kDa, 5kDa and 10kDa mPEG-aldehyde and resulting PEGamer species were purified by chromatographic separation. Besides protein stability assessment, residual enzyme activities were evaluated employing a Micrococcus lysodeikticus based activity assay. PEG molecules with lower molecular weights and lower PEGylation degrees resulted in higher residual activities. Changes in enzyme activities upon PEGylation have shown to result from a combination of steric hindrance and molecular flexibility. In contrast, higher PEG molecular weights and PEGylation degrees enhanced conformational and colloidal stability. By PEGylating lysozyme an increase of the protein solubility by more than 11-fold was achieved.
Collapse
Affiliation(s)
- Josefine Morgenstern
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Pascal Baumann
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | - Carina Brunner
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
22
|
Maksimenko AV. Modified enzymes for pharmaceutical purposes. Extension of the goals and objectives for consistent investigation. Russ Chem Bull 2017. [DOI: 10.1007/s11172-017-1691-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
|
24
|
|
25
|
Widening and Elaboration of Consecutive Research into Therapeutic Antioxidant Enzyme Derivatives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3075695. [PMID: 27148430 PMCID: PMC4842371 DOI: 10.1155/2016/3075695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/16/2016] [Accepted: 03/16/2016] [Indexed: 01/03/2023]
Abstract
Undiminishing actuality of enzyme modification for therapeutic purposes has been confirmed by application of modified enzymes in clinical practice and numerous research data on them. Intravenous injection of the superoxide dismutase-chondroitin sulfate-catalase (SOD-CHS-CAT) conjugate in preventive and medicative regimes in rats with endotoxin shock induced with a lipopolysaccharide bolus has demonstrated that antioxidant agents not only effectively prevent damage caused by oxidative stress (as believed previously) but also can be used for antioxidative stress therapy. The results obtained emphasize the importance of investigation into the pathogenesis of vascular damage and the role of oxidative stress in it. The effects of intravenous medicative injection of SOD-CHS-CAT in a rat model of endotoxin shock have demonstrated a variety in the activity of this conjugate in addition to prevention of NO conversion in peroxynitrite upon interaction with O2∙− superoxide radical. Together with the literature data, these findings offer a prospect for the study of NO-independent therapeutic effects of SOD-CHS-CAT, implying the importance of a better insight into the mechanisms of the conjugate activity in modeled cardiovascular damage involving vasoactive agents other than NO.
Collapse
|
26
|
Lucius M, Falatach R, McGlone C, Makaroff K, Danielson A, Williams C, Nix JC, Konkolewicz D, Page RC, Berberich JA. Investigating the Impact of Polymer Functional Groups on the Stability and Activity of Lysozyme–Polymer Conjugates. Biomacromolecules 2016; 17:1123-34. [DOI: 10.1021/acs.biomac.5b01743] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | | | | | | | - Jay C. Nix
- Molecular
Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | | | | |
Collapse
|
27
|
Monoconjugation of Human Amylin with Methylpolyethyleneglycol. PLoS One 2015; 10:e0138803. [PMID: 26448437 PMCID: PMC4598023 DOI: 10.1371/journal.pone.0138803] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
Amylin is a pancreatic hormone cosecreted with insulin that exerts unique roles in metabolism and glucose homeostasis. The therapeutic restoration of postprandial and basal amylin levels is highly desirable in diabetes mellitus. Protein conjugation with the biocompatible polymer polyethylene glycol (PEG) has been shown to extend the biological effects of biopharmaceuticals. We have designed a PEGylated human amylin by using the aminoreactive compound methoxylpolyethylene glycol succinimidyl carbonate (mPEGsc). The synthesis in organic solvent resulted in high yields of monoPEGylated human amylin, which showed large stability against aggregation, an 8 times increase in half-life in vivo compared to the non-conjugated amylin, and pharmacological activity as shown by modulation of cAMP production in MCF–7 cell line, decrease in glucagon and modulation of glycemia following subcutaneous administration in mice. Altogether these data reveal the potential use of PEGylated human amylin for the restoration of fasting amylin levels.
Collapse
|
28
|
Lee P, Towslee J, Maia J, Pokorski J. PEGylation to Improve Protein Stability During Melt Processing. Macromol Biosci 2015; 15:1332-7. [PMID: 26097064 PMCID: PMC4615555 DOI: 10.1002/mabi.201500143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/14/2015] [Indexed: 12/19/2022]
Abstract
Biopharmaceuticals are some of the most effective drugs on the market, however, delivery remains a challenge. Melt processing is a viable protein encapsulation method because it is solvent free, is high throughput, and yields very high encapsulation efficiencies. Problematically, proteins can lose activity during melt processing due to high heat and shear forces. Covalent attachment of poly(ethylene glycol), or PEGylation, has been widely used to increase thermal stability and prevent aggregation in solution. This study explored the effect of PEGylation on protein stability during melt processing using lysozyme and PLGA. The results indicate that PEGylation increases the retained activity of lysozyme, increases dispersion in the melt, and reduces the biphasic release profile in melt processed systems.
Collapse
Affiliation(s)
- Parker Lee
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Jenna Towslee
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - João Maia
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Jonathan Pokorski
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio, 44106, USA.
| |
Collapse
|
29
|
Preparation, characterization and molecular modeling of PEGylated human growth hormone with agonist activity. Int J Biol Macromol 2015; 80:400-9. [DOI: 10.1016/j.ijbiomac.2015.06.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/19/2023]
|
30
|
Hsieh YP, Lin SC. Effect of PEGylation on the activity and stability of horseradish peroxidase and l-N-carbamoylase in aqueous phases. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Li X, Zhang C, Li S, Huang H, Hu Y. Improving Catalytic Performance of Candida rugosa Lipase by Chemical Modification with Polyethylene Glycol Functional Ionic Liquids. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01881] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiujuan Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Chuan Zhang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Shuang Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - He Huang
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented
Chemical Engineering, College of Biotechnology and Pharmaceutical
Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, China
| |
Collapse
|
32
|
Abstract
It is well recognized that protein product development is far more challenging than that for small-molecule drugs. The major challenges include inherent sensitivity to different types of stresses during the drug product manufacturing process, high rate of physical and chemical degradation during long-term storage, and enhanced aggregation and/or viscosity at high protein concentrations. In the past decade, many novel formulation concepts and technologies have been or are being developed to address these product development challenges for proteins. These concepts and technologies include use of uncommon/combination of formulation stabilizers, conjugation or fusion with potential stabilizers, site-specific mutagenesis, and preparation of nontraditional types of dosage forms-semiaqueous solutions, nonfreeze-dried solid formulations, suspensions, and other emerging concepts. No one technology appears to be mature, ideal, and/or adequate to address all the challenges. These gaps will likely remain in the foreseeable future and need significant efforts for ultimate resolution.
Collapse
Affiliation(s)
- Wei Wang
- BioTherapeutics Pharmaceutical Sciences, Pfizer Inc, 700 Chesterfield Parkway West, Chesterfield, MO, 63017.,Wang Biologics, LLC, 907 Wellesley Place, Chesterfield, Missouri, 63017
| |
Collapse
|
33
|
Koshani R, Aminlari M, Niakosari M, Farahnaky A, Mesbahi G. Production and properties of tragacanthin-conjugated lysozyme as a new multifunctional biopolymer. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Kowalski K, Goszczyński T, Leśnikowski ZJ, Boratyński J. Synthesis of lysozyme-metallacarborane conjugates and the effect of boron cluster modification on protein structure and function. Chembiochem 2015; 16:424-31. [PMID: 25589498 DOI: 10.1002/cbic.201402611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Indexed: 11/11/2022]
Abstract
Two complementary methods, "in solution" and "in solid state", for the synthesis of lysozyme modified with metallacarborane (cobalt bis(dicarbollide), Co(C2 B9 H11 )2 (2-) ) were developed. As metallacarborane donors, oxonium adducts of cobalt bis(dicarbollide) and 1,4-dioxane or tetrahydropyran were used. The physicochemical and biochemical properties of the obtained lysozyme-metallacarborane conjugates were studied for changes in secondary and tertiary structure, aggregation behavior, and biological activity. Only minor changes in primary, secondary, and tertiary protein structure were observed, caused by the single substitution of metallacarborane on lysozyme. However, the modification produced significant changes in lysozyme enzymatic activity and a tendency toward time- and temperature-dependent aggregation.
Collapse
Affiliation(s)
- Konrad Kowalski
- "Neolek" Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Institute of Immunology and Experimental Therapy, Polish Academy of Science, 12 Rudolf Weigl Street, 53-114 Wrocław (Poland).
| | | | | | | |
Collapse
|
35
|
Roque C, Sheung A, Rahman N, Ausar SF. Effect of polyethylene glycol conjugation on conformational and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab'). Mol Pharm 2015; 12:562-75. [PMID: 25548945 DOI: 10.1021/mp500658w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We have investigated the effects of site specific "hinge" polyethylene glycol conjugation (PEGylation) on thermal, pH, and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab') using a variety of biophysical techniques. The results obtained by circular dichroism (CD), ultraviolet (UV) absorbance, and fluorescence spectroscopy suggested that the physical stability of the Fab' is maximized at pH 6-7 with no apparent differences due to PEGylation. Temperature-induced aggregation experiments revealed that PEGylation was able to increase the transition temperature, as well as prevent the formation of visible and subvisible aggregates. Statistical comparison of the three-index empirical phase diagram (EPD) revealed significant differences in thermal and pH stability signatures between Fab' and PEG-Fab'. Upon mechanical stress, micro-flow imaging (MFI) and measurement of the optical density at 360 nm showed that the PEG-Fab' had significantly higher resistance to surface-induced aggregation compared to the Fab'. Analysis of the interaction parameter, kD, indicated repulsive intermolecular forces for PEG-Fab' and attractive forces for Fab'. In conclusion, PEGylation appears to protect Fab' against thermal and mechanical stress-induced aggregation, likely due to a steric hindrance mechanism.
Collapse
Affiliation(s)
- Cristopher Roque
- Bioprocess Research & Development, Sanofi Pasteur , 1755 Steeles Avenue West, Toronto, Ontario M2R 3T4, Canada
| | | | | | | |
Collapse
|
36
|
Uygun M, Akduman B, Uygun DA, Akgöl S, Denizli A. Dye functionalized cryogel columns for reversible lysozyme adsorption. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:277-89. [DOI: 10.1080/09205063.2014.997560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Muñoz F, Caracciolo PC, Daleo G, Abraham GA, Guevara MG. Evaluation of in vitro cytotoxic activity of mono-PEGylated StAP3 ( Solanum tuberosum aspartic protease 3) forms. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2014; 3:1-7. [PMID: 28626641 PMCID: PMC5466107 DOI: 10.1016/j.btre.2014.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
StAP3 is a plant aspartic protease with cytotoxic activity toward a broad spectrum of pathogens, including potato and human pathogen microorganisms, and cancer cells, but not against human T cells, human red blood cells or plant cells. For this reason, StAP3 could be a promising and potential drug candidate for future therapies. In this work, the improvement of the performance of StAP3 was achieved by means of a modification with PEG. The separation of a mono-PEGylated StAP3 fraction was easily performed by gel filtration chromatography. The mono-PEGylated StAP3 fraction was studied in terms of in vitro antimicrobial activity, exhibiting higher antimicrobial activity against Fusarium solani spores and Bacillus cereus, but slightly lower activity against Escherichia coli than native protein. Such increase in antifungal activity has not been reported previously for a PEGylated plant protein. In addition, PEGylation did not affect the selective cytotoxicity of StAP3, since no hemolytic activity was observed.
Collapse
Key Words
- AMPPs, antimicrobial proteins and peptides
- ATCC, American Type Culture Collection
- Antimicrobial protein
- BSA, bovine serum albumin
- DTT, dithiothreitol
- PBS, phosphate buffered saline
- PDA, potato dextrose agar
- PEG, polyethylene glycol
- PEGylation
- Plant aspartic protease
- SDS, sodium dodecyl sulphate
- SDS-PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis
- Selective cytotoxicity
- StAP3, Solanum tuberosum aspartic protease 3
- StAsp-PSI, plant-specific insert of potato aspartic protease
- hRBC, Fresh human red blood cells
- mPEG-SVA, succinimidyl valerate monomethoxy polyethylene glycol
Collapse
Affiliation(s)
- Fernando Muñoz
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Pablo C. Caracciolo
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, 7600, Mar del Plata, Argentina
| | - Gustavo Daleo
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Gustavo A. Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, 7600, Mar del Plata, Argentina
| | - M. Gabriela Guevara
- Plant Biochemistry Laboratory, Biological Research Institute, IIB (UNMdP-CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| |
Collapse
|
38
|
Aminlari L, Hashemi MM, Aminlari M. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods. J Food Sci 2014; 79:R1077-90. [PMID: 24837015 DOI: 10.1111/1750-3841.12460] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/15/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. PRACTICAL APPLICATION The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which might potentially replace the currently used synthetic food preservatives.
Collapse
Affiliation(s)
- Ladan Aminlari
- Dept. of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz Univ, Shiraz, Iran
| | | | | |
Collapse
|
39
|
Hu Y, Yang J, Jia R, Ding Y, Li S, Huang H. Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of Candida rugosa lipase. Bioprocess Biosyst Eng 2014; 37:1617-26. [DOI: 10.1007/s00449-014-1134-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/16/2014] [Indexed: 01/04/2023]
|
40
|
Zhou Z, Zhang J, Sun L, Ma G, Su Z. Comparison of Site-Specific PEGylations of the N-Terminus of Interferon Beta-1b: Selectivity, Efficiency, and in Vivo/Vitro Activity. Bioconjug Chem 2013; 25:138-46. [DOI: 10.1021/bc400435u] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhan Zhou
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhang
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijing Sun
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Guanghui Ma
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Su
- National
Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
41
|
Guerreiro LH, Guterres MFAN, Melo-Ferreira B, Erthal LCS, da Silva Rosa M, Lourenço D, Tinoco P, Lima LMTR. Preparation and characterization of PEGylated amylin. AAPS PharmSciTech 2013; 14:1083-97. [PMID: 23818080 DOI: 10.1208/s12249-013-9987-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/28/2013] [Indexed: 01/26/2023] Open
Abstract
Amylin is a pancreatic hormone that plays important roles in overall metabolism and in glucose homeostasis. The therapeutic restoration of postprandial and basal amylin levels is highly desirable for patients with diabetes who need to avoid glucose excursions. Protein conjugation with polyethylene glycol (PEG) has long been known to be a convenient approach for extending the biological effects of biopharmaceuticals. We have investigated the reactivity of amylin with methoxy polyethylene glycol succinimidyl carbonate and methoxy polyethylene glycol succinimidyl propionate, which have an average molecular weight of 5 kDa. The reaction, which was conducted in both aqueous and organic (dimethyl sulfoxide) solvents, occurred within a few minutes and resulted in at least four detectable products with distinct kinetic phases. These results suggest a kinetic selectivity for PEGylation by succinimidyl derivatives; these derivatives exhibit enhanced reactivity with primary amine groups, as indicated by an evaluation of the remaining amino groups using fluorescamine. The analysis of tryptic fragments from mono- and diPEGylated amylin revealed that conjugation occurred within the 1-11 amino acid region, most likely at the two amine groups of Lys(1). The reaction products were efficiently separated by C-18 reversed phase chromatography. Binding assays confirmed the ability of mono- and diPEGylated amylin to interact with the amylin co-receptor receptor activity-modifying protein 2. Subcutaneous administration in mice revealed the effectiveness of monoPEG-amylin and diPEG-amylin in reducing glycemia; both compounds exhibited prolonged action compared to unmodified amylin. These features suggest the potential use of PEGylated amylin to restore basal amylin levels.
Collapse
|
42
|
Maiser B, Dismer F, Hubbuch J. Optimization of random PEGylation reactions by means of high throughput screening. Biotechnol Bioeng 2013; 111:104-14. [PMID: 23939788 DOI: 10.1002/bit.25000] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 06/09/2013] [Accepted: 07/08/2013] [Indexed: 01/10/2023]
Abstract
Since the first FDA approval of a PEGylated product in 1990, so called random PEGylation reactions are still used to increase the efficacy of biopharmaceuticals and represent the major technology of all approved PEG-modified drugs. However, the great influence of process parameters on PEGylation degree and the PEG-binding site results in a lack of reaction specificity which can have severe impact on the product profile. Consequently, reproducible and well characterized processes are essential to meet increasing regulative requirements resulting from the quality-by-design (QbD) initiative, especially for this kind of modification type. In this study we present a general approach which combines the simple chemistry of random PEGylation reactions with high throughput experimentation (HTE) to achieve a well-defined process. Robotic based batch experiments have been established in a 96-well plate format and were analyzed to investigate the influence of different PEGylation conditions for lysozyme as model protein. With common SEC analytics highly reproducible reaction kinetics were measured and a significant influence of PEG-excess, buffer pH, and reaction time could be investigated. Additional mono-PEG-lysozyme analytics showed the impact of varying buffer pH on the isoform distribution, which allowed us to identify optimal process parameters to get a maximum concentration of each isoform. Employing Micrococcus lysodeikticus based activity assays, PEG-lysozyme33 was identified to be the isoform with the highest residual activity, followed by PEG-lysozyme1 . Based on these results, a control space for a PEGylation reaction was defined with respect to an optimal overall volumetric activity of mono-PEG-lysozyme isoform mixtures.
Collapse
Affiliation(s)
- Benjamin Maiser
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Science, Karlsruhe Institute of Technology (KIT), 76131, Karlsruhe, Germany
| | | | | |
Collapse
|
43
|
da Silva Freitas D, Mero A, Pasut G. Chemical and Enzymatic Site Specific PEGylation of hGH. Bioconjug Chem 2013; 24:456-63. [DOI: 10.1021/bc300594y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Débora da Silva Freitas
- Research Fellow
of the National Council for Scientific and Technological Development, SHIS QI 1 Conjunto B - Bloco B, Edifício
Santos Dumont,
Lago Sul, CEP 71605-170 Brasília - DF- Brazil
| | - Anna Mero
- Department of Pharmaceutical
and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical
and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| |
Collapse
|
44
|
Muraoka T, Adachi K, Ui M, Kawasaki S, Sadhukhan N, Obara H, Tochio H, Shirakawa M, Kinbara K. A structured monodisperse PEG for the effective suppression of protein aggregation. Angew Chem Int Ed Engl 2013; 52:2430-4. [PMID: 23361965 DOI: 10.1002/anie.201206563] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Indexed: 11/09/2022]
Abstract
Part of the solution: A PEG with a discrete triangular structure exhibits hydrophilicity/hydrophobicity switching upon increasing temperatures, and suppresses the thermal aggregation of lysozyme to retain nearly 80 % of the enzymatic activity. CD and NMR spectroscopic studies revealed that, with the structured PEG, the higher-order structures of lysozyme persist at high temperature, and the native conformation is recovered after cooling.
Collapse
Affiliation(s)
- Takahiro Muraoka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Muraoka T, Adachi K, Ui M, Kawasaki S, Sadhukhan N, Obara H, Tochio H, Shirakawa M, Kinbara K. A Structured Monodisperse PEG for the Effective Suppression of Protein Aggregation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201206563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Synthesis and characterization of amino acid containing Cu(II) chelated nanoparticles for lysozyme adsorption. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:532-6. [DOI: 10.1016/j.msec.2012.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 08/14/2012] [Accepted: 09/28/2012] [Indexed: 11/20/2022]
|
47
|
McRae S, Chen X, Kratz K, Samanta D, Henchey E, Schneider S, Emrick T. Pentafluorophenyl Ester-Functionalized Phosphorylcholine Polymers: Preparation of Linear, Two-Arm, and Grafted Polymer–Protein Conjugates. Biomacromolecules 2012; 13:2099-109. [DOI: 10.1021/bm3004836] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samantha McRae
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Xiangji Chen
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Katrina Kratz
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Debasis Samanta
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| | - Elizabeth Henchey
- Pioneer Valley Life Sciences Institute, 3601 Main Street, Springfield,
Massachusetts 01199, United States
| | - Sallie Schneider
- Pioneer Valley Life Sciences Institute, 3601 Main Street, Springfield,
Massachusetts 01199, United States
| | - Todd Emrick
- Polymer Science & Engineering Department, University of Massachusetts, 120 Governors Drive, Amherst, Massachusetts 01003, United States
| |
Collapse
|
48
|
Pai SS, Hammouda B, Hong K, Pozzo DC, Przybycien TM, Tilton RD. The Conformation of the Poly(ethylene glycol) Chain in Mono-PEGylated Lysozyme and Mono-PEGylated Human Growth Hormone. Bioconjug Chem 2011; 22:2317-23. [DOI: 10.1021/bc2003583] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Boualem Hammouda
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg,
Maryland 20899, United States
| | - Kunlun Hong
- Center for Nanophase Materials
Sciences and Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Danilo C. Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195,
United States
| | | | | |
Collapse
|
49
|
Haselberg R, Harmsen S, Dolman MEM, de Jong GJ, Kok RJ, Somsen GW. Characterization of drug-lysozyme conjugates by sheathless capillary electrophoresis-time-of-flight mass spectrometry. Anal Chim Acta 2011; 698:77-83. [PMID: 21645662 DOI: 10.1016/j.aca.2011.04.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 12/27/2022]
Abstract
Drug-protein conjugates have been widely used for the cell-specific targeting of drugs to cells that can bind and internalize the proteinaceous carrier. For renal drug targeting, lysozyme (LZM) can be used as an effective carrier that accumulates in proximal tubular cells. We used capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF-MS) for the characterization of different drug-LZM conjugates. A recently developed prototype porous tip sprayer was employed for sheathless electrospray ionization (ESI) CE-MS interfacing. In order to prevent adsorption of LZM conjugates to the capillary wall, a positively charged polyethylenimine capillary coating was used in combination with a low-pH background electrolyte. Drug-LZM products had been prepared by first coupling BOC-l-methionine hydroxysuccinimide ester (BOCmet) to lysine residues of LZM followed by conjugation with the kinase inhibitors LY364947, erlotinib, or Y27632 via a platinum(II)-based linker. CE-TOF-MS of each preparation showed narrow symmetrical peaks for the various reaction products demonstrating that drug-LZM conjugates remained stable during the CE analysis and subsequent ESI. Components observed in the drug-LZM products were assigned based on their relative migration times and on molecular mass as obtained by TOF-MS. The TOF-MS data obtained for the individual components revealed that the preparations contained LZM carrying one or two drug molecules, next to unmodified and BOCmet-modified LZM. Based on relative peak areas (assuming an equimolar response for each component) a quantitative conjugate profile could be derived for every preparation leading to drug loading values of 0.4-0.6 mol drug per mole protein.
Collapse
Affiliation(s)
- R Haselberg
- Biomolecular Analysis, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
50
|
Zhu B, Lu D, Ge J, Liu Z. Uniform polymer-protein conjugate by aqueous AGET ATRP using protein as a macroinitiator. Acta Biomater 2011; 7:2131-8. [PMID: 21277397 DOI: 10.1016/j.actbio.2011.01.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 01/13/2011] [Accepted: 01/21/2011] [Indexed: 11/15/2022]
Abstract
In situ aqueous activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) in air, using an enzyme as a macroinitiator, has been proposed to prepare uniform polymer-protein conjugates with improved stability under adverse conditions. In the first step, an initiator, 2-bromoisobutyryl bromide (BIB), was grafted onto the protein surface by reaction with the amino groups. The second step was in situ AGET ATRP polymerization in air using CuBr(2)/1,1,4,7,7-pentamethyldiethylenetriamine as a catalyst and ascorbic acid as a reducing agent. The effectiveness of this method has been demonstrated using horseradish peroxidase (HRP) as a model protein and acrylamide as the monomer, which yielded HRP-polyacrylamide conjugate with a mean particle size of about 20-30 nm. The grafting of BIB onto HRP and the subsequent polymerization yielding a polyacrylamide chain were confirmed by nuclear magnetic resonance and matrix-assisted laser desorption ionization time-of-flight spectrometry analysis. The size of the conjugate was shown to be a function of monomer loading and reaction time. The HRP conjugates yielded essentially retained the catalytic behavior of HRP in free form, as shown by K(m) and V(max) values, but exhibited significantly enhanced thermal stability against high temperature and trypsin digestion. The use of protein as the macroinitiator prevented the formation of copolymer and thus facilitated purification of the protein conjugate. The uniform size indicates a well-defined composition of protein and polymer, which is essential for applications that request a precise control of the dosage of enzyme activity.
Collapse
Affiliation(s)
- Binbin Zhu
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|