1
|
Bai D, Chen H, Xiang N, Zhang C, Wang Z, Zhang J, Wu C, Wang F, Zhang J. Ionic liquid combined with cationic liposome co-delivers microphthalmia-associated transcription factor small interfering RNA to regulate melanogenesis. Int J Biol Macromol 2024; 281:136027. [PMID: 39332571 DOI: 10.1016/j.ijbiomac.2024.136027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Suppressing allele-specific genes using small interfering RNAs (siRNAs) can effectively whiten skin by influencing cellular gene and protein expression. Topical delivery of siRNA is a promising alternative to injections for RNA interference. However, the barrier function of the skin hinders the effective penetration of siRNA. Here, we report, a novel approach to achieve the transdermal delivery of effective siRNA doses using a complementary synergistic strategy of an ionic liquid (IL) and cationic liposome (CL). Microphthalmia-associated transcription factor (MITF) siRNA molecules were formed through electrostatic adsorption of the IL and CL to form positively charged nanocomposites, which were named IL-CL/p-siM. IL-CL/p-siM has a particle size of 171.47 nm, ζ-potential of 29.94 mV, high encapsulation rate of 92.11 %, and pH-sensitive release properties. In vitro studies on porcine skin confirmed the additive/synergistic effect of this strategy in enhancing epidermal and dermal penetration. This combination enabled superior transfection efficiency and cell viability while inhibiting melanin synthesis in skin melanocytes by downregulating the expression of genes downstream of MITF, namely tyrosinase-related protein-1, tyrosinase, and tyrosinase-related protein-2, which are associated with the melanocortin 1 receptor. We also conducted clinical studies that demonstrated its potential in treating melasma and its anti-melanotic efficacy. To summarize, IL-CL/p-siM represents a simple, personalized, and scalable platform for effective local delivery of siRNA to treat skin complications.
Collapse
Affiliation(s)
- De Bai
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China
| | - Haowei Chen
- Dingmageili Biotechnology Ltd., Beijing 101300, China
| | - Nanxi Xiang
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Chunqiao Zhang
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Zhenyuan Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jichuan Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chengyu Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Fang Wang
- Dingmageili Biotechnology Ltd., Beijing 101300, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Sánchez-Meza LV, Bello-Rios C, Eloy JO, Gómez-Gómez Y, Leyva-Vázquez MA, Petrilli R, Bernad-Bernad MJ, Lagunas-Martínez A, Medina LA, Serrano-Bello J, Organista-Nava J, Illades-Aguiar B. Cationic Liposomes Carrying HPV16 E6-siRNA Inhibit the Proliferation, Migration, and Invasion of Cervical Cancer Cells. Pharmaceutics 2024; 16:880. [PMID: 39065577 PMCID: PMC11279637 DOI: 10.3390/pharmaceutics16070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The E6 and E7 oncoproteins of high-risk types of human papillomavirus (HR-HPV) are crucial for the development of cervical cancer (CC). Small interfering RNAs (siRNAs) are explored as novel therapies that silence these oncogenes, but their clinical use is hampered by inefficient delivery systems. Modification (pegylation) with polyethylene glycol (PEG) of liposomal siRNA complexes (siRNA lipoplexes) may improve systemic stability. We studied the effect of siRNA targeting HPV16 E6, delivered via cationic liposomes (lipoplexes), on cellular processes in a cervical carcinoma cell line (CaSki) and its potential therapeutic use. Lipoplexes-PEG-HPV16 E6, composed of DOTAP, Chol, DOPE, and DSPE-PEG2000 were prepared. The results showed that pegylation (5% DSPE-PEG2000) provided stable siRNA protection, with a particle size of 86.42 ± 3.19 nm and a complexation efficiency of over 80%; the siRNA remained stable for 30 days. These lipoplexes significantly reduced HPV16 E6 protein levels and restored p53 protein expression, inhibiting carcinogenic processes such as proliferation by 25.74%, migration (95.7%), and cell invasion (97.8%) at concentrations of 20 nM, 200 nM, and 80 nM, respectively. In conclusion, cationic lipoplexes-PEG-HPV16 E6 show promise as siRNA carriers for silencing HPV16 E6 in CC.
Collapse
Affiliation(s)
- Luz Victoria Sánchez-Meza
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Ciresthel Bello-Rios
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Josimar O. Eloy
- Department of Pharmacy, Dentistry and Nursing, Faculty of Pharmacy, Federal University of Ceará, 1210 Pastor Samuel Munguba Street, Fortaleza 60430-160, CE, Brazil;
| | - Yazmín Gómez-Gómez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Marco Antonio Leyva-Vázquez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Raquel Petrilli
- Institute of Health Sciences, University of International Integration of the Afro-Brazilian Lusophony, Redenção 62790-000, CE, Brazil;
| | | | - Alfredo Lagunas-Martínez
- Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Luis Alberto Medina
- Instituto de Física, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04510, Mexico;
- Unidad de Investigación Biomédica en Cáncer INCan/UNAM, Instituto Nacional de Cancerología, Actualmente Hospital Ángeles Puebla, Ciudad de Mexico 14080, Mexico
| | - Janeth Serrano-Bello
- Facultad de Odontología, Universidad Nacional Autónoma de Mexico, Ciudad de Mexico 04360, Mexico;
| | - Jorge Organista-Nava
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| | - Berenice Illades-Aguiar
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N, Ciudad Universitaria, Chilpancingo 39090, Guerrero, Mexico; (L.V.S.-M.); (C.B.-R.); (Y.G.-G.); (M.A.L.-V.)
| |
Collapse
|
3
|
Reich N, Parkin E, Dawson N. Liposome nanoparticle conjugation and cell penetrating peptide sequences (CPPs) enhance the cellular delivery of the tau aggregation inhibitor RI-AG03. J Cell Mol Med 2024; 28:e18477. [PMID: 38853458 PMCID: PMC11163028 DOI: 10.1111/jcmm.18477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024] Open
Abstract
Given the pathological role of Tau aggregation in Alzheimer's disease (AD), our laboratory previously developed the novel Tau aggregation inhibitor peptide, RI-AG03. As Tau aggregates accumulate intracellularly, it is essential that the peptide can traverse the cell membrane. Here we examine the cellular uptake and intracellular trafficking of RI-AG03, in both a free and liposome-conjugated form. We also characterize the impact of adding the cell-penetrating peptide (CPP) sequences, polyarginine (polyR) or transactivator of transcription (TAT), to RI-AG03. Our data show that liposome conjugation of CPP containing RI-AG03 peptides, with either the polyR or TAT sequence, increased cellular liposome association three-fold. Inhibition of macropinocytosis modestly reduced the uptake of unconjugated and RI-AG03-polyR-linked liposomes, while having no effect on RI-AG03-TAT-conjugated liposome uptake. Further supporting macropinocytosis-mediated internalization, a 'fair' co-localisation of the free and liposome-conjugated RI-AG03-polyR peptide with macropinosomes and lysosomes was observed. Interestingly, we also demonstrate that RI-AG03-polyR detaches from liposomes following cellular uptake, thereby largely evading organellar entrapment. Collectively, our data indicate that direct membrane penetration and macropinocytosis are key routes for the internalization of liposomes conjugated with CPP containing RI-AG03. Our study also demonstrates that peptide-liposomes are suitable nanocarriers for the cellular delivery of RI-AG03, furthering their potential use in targeting Tau pathology in AD.
Collapse
Affiliation(s)
- Niklas Reich
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Edward Parkin
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and MedicineLancaster UniversityLancasterUK
| |
Collapse
|
4
|
Bioinspired low-density lipoprotein co-delivery system for targeting and synergistic cancer therapy. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102641. [PMID: 36549554 DOI: 10.1016/j.nano.2022.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is the culprit of tumor invasion and metastasis. As a critical transcription factor that induces EMT, snail is of great importance in tumor progression, and knocking down its expression by small interfering RNA (siRNA) may inhibit tumor metastasis. Herein, we developed a core-shelled bioinspired low-density lipoprotein (bio-LDL) in which snail siRNA-loaded calcium phosphate nanoparticles were wrapped as the core and doxorubicin was embedded in the outer phospholipids modified with a synthetic peptide of apoB100 targeting LDL receptor-abundant tumor cells. Bio-LDL exhibited pH-responsive release, lysosomal escape ability, enhanced cytotoxicity and apoptotic induction. Bio-LDL could significantly inhibit the expression of snail and regulate EMT-related proteins to reduce tumor migration and invasion in vitro. Bio-LDL also displayed favorable tumor targeting and synergistic inhibition of tumor growth and metastasis in vivo. Therefore, the multifunctional bio-LDL will be a promising co-delivery vector and holds potential value for clinical translation.
Collapse
|
5
|
Jacob MM, Santhosh A, Rajeev A, Joy R, John PM, John F, George J. Current Status of Natural Products/siRNA Co‐Delivery for Cancer Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202203476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Megha Mariya Jacob
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Amritha Santhosh
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Reshma Joy
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Pooja Mary John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
6
|
Irinotecan-loaded ROS-responsive liposomes containing thioether phosphatidylcholine for improving anticancer activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Shukla AK, Gao G, Kim BS. Applications of 3D Bioprinting Technology in Induced Pluripotent Stem Cells-Based Tissue Engineering. MICROMACHINES 2022; 13:155. [PMID: 35208280 PMCID: PMC8876961 DOI: 10.3390/mi13020155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023]
Abstract
Induced pluripotent stem cells (iPSCs) are essentially produced by the genetic reprogramming of adult cells. Moreover, iPSC technology prevents the genetic manipulation of embryos. Hence, with the ensured element of safety, they rarely cause ethical concerns when utilized in tissue engineering. Several cumulative outcomes have demonstrated the functional superiority and potency of iPSCs in advanced regenerative medicine. Recently, an emerging trend in 3D bioprinting technology has been a more comprehensive approach to iPSC-based tissue engineering. The principal aim of this review is to provide an understanding of the applications of 3D bioprinting in iPSC-based tissue engineering. This review discusses the generation of iPSCs based on their distinct purpose, divided into two categories: (1) undifferentiated iPSCs applied with 3D bioprinting; (2) differentiated iPSCs applied with 3D bioprinting. Their significant potential is analyzed. Lastly, various applications for engineering tissues and organs have been introduced and discussed in detail.
Collapse
Affiliation(s)
- Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
- Department of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| |
Collapse
|
8
|
Ward DM, Shodeinde AB, Peppas NA. Innovations in Biomaterial Design toward Successful RNA Interference Therapy for Cancer Treatment. Adv Healthc Mater 2021; 10:e2100350. [PMID: 33973393 PMCID: PMC8273125 DOI: 10.1002/adhm.202100350] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Indexed: 12/11/2022]
Abstract
Gene regulation using RNA interference (RNAi) therapy has been developed as one of the frontiers in cancer treatment. The ability to tailor the expression of genes by delivering synthetic oligonucleotides to tumor cells has transformed the way scientists think about treating cancer. However, its clinical application has been limited due to the need to deliver synthetic RNAi oligonucleotides efficiently and effectively to target cells. Advances in nanotechnology and biomaterials have begun to address the limitations to RNAi therapeutic delivery, increasing the likelihood of RNAi therapeutics for cancer treatment in clinical settings. Herein, innovations in the design of nanocarriers for the delivery of oligonucleotides for successful RNAi therapy are discussed.
Collapse
Affiliation(s)
- Deidra M Ward
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Aaliyah B Shodeinde
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, 200 E. Dean Keeton St. Stop C0400, Austin, TX, 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton Street Stop C0800, Austin, TX, 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave. Stop A1900, Austin, TX, 78712, USA
- Department of Pediatrics and Department of Surgery and Perioperative Care, Dell Medical School, 1601 Trinity St., Bldg. B, Stop Z0800, Austin, TX, 78712, USA
| |
Collapse
|
9
|
Rehman TU, Bratlie KM. Improving selective targeting to cancer-associated fibroblasts by modifying liposomes with arginine based materials. J Drug Target 2021; 30:94-107. [PMID: 34116612 DOI: 10.1080/1061186x.2021.1941059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A library of arginine-like surface modifiers was tested to improve the targetability of DOPE:DOPC liposomes towards myofibroblasts in a tumour microenvironment. Liposomes were characterised using zeta potential and dynamic light scattering. Cell viability remained unchanged for all liposomes. Liposomes were encapsulated using doxorubicin (DOX) with an encapsulation efficiency >94%. The toxicity of DOX-loaded liposomes was calculated via half-maximal inhibitory concentration (IC50) for fibroblasts and myofibroblasts. These liposomes resulted in significantly lower IC50-values for myofibroblasts compared to fibroblasts, making them more toxic towards the myofibroblasts. Furthermore, a significant increase in cell internalisation was observed for myofibroblasts compared to fibroblasts, using fluorescein-loaded liposomes. Most importantly, a novel regression model was constructed to predict the IC50-values for different modifications using their physicochemical properties. Fourteen modifications (A-N) were used to train and validate this model; subsequently, this regression model predicted IC50-values for three new modifications (O, P and Q) for both fibroblasts and myofibroblasts. Predicted and measured IC50-values showed no significant difference for fibroblasts. For myofibroblasts, modification O showed no significant difference. This study demonstrates that the tested surface modifications can improve targeting to myofibroblasts in the presence of fibroblasts and hence are suitable drug delivery vehicles for myofibroblasts in a tumour microenvironment.
Collapse
Affiliation(s)
- Tanzeel Ur Rehman
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
Fisher RK, West PC, Mattern-Schain SI, Best MD, Kirkpatrick SS, Dieter RA, Arnold JD, Buckley MR, McNally MM, Freeman MB, Grandas OH, Mountain DJH. Advances in the Formulation and Assembly of Non-Cationic Lipid Nanoparticles for the Medical Application of Gene Therapeutics. NANOMATERIALS 2021; 11:nano11030825. [PMID: 33807086 PMCID: PMC8004789 DOI: 10.3390/nano11030825] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
Lipid nanoparticles have become increasingly popular delivery platforms in the field of gene therapy, but bench-to-bedside success has been limited. Many liposomal gene vectors are comprised of synthetic cationic lipids, which are associated with lipid-induced cytotoxicity and immunogenicity. Natural, non-cationic PEGylated liposomes (PLPs) demonstrate favorable biocompatibility profiles but are not considered viable gene delivery vehicles due to inefficient nucleic acid loading and reduced cellular uptake. PLPs can be modified with cell-penetrating peptides (CPPs) to enhance the intracellular delivery of liposomal cargo but encapsulate leakage upon CPP-PLP assembly is problematic. Here, we aimed to identify parameters that overcome these performance barriers by incorporating nucleic acid condensers during CPP-PLP assembly and screening variable ethanol injection parameters for optimization. CPP-PLPs were formed with R8-amphiphiles via pre-insertion, post-insertion and post-conjugation techniques and liposomes were characterized for size, surface charge, homogeneity, siRNA encapsulation efficiency and retention and cell associative properties. Herein we demonstrate that pre-insertion of stearylated R8 into PLPs is an efficient method to produce non-cationic CPP-PLPs and we provide additional assembly parameter specifications for a modified ethanol injection technique that is optimized for siRNA encapsulation/retention and enhanced cell association. This assembly technique could provide improved clinical translation of liposomal based gene therapy applications.
Collapse
Affiliation(s)
- Richard K. Fisher
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Phillip C. West
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Samuel I. Mattern-Schain
- Department of Chemistry, University of Tennessee Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA; (S.I.M.-S.); (M.D.B.)
| | - Michael D. Best
- Department of Chemistry, University of Tennessee Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA; (S.I.M.-S.); (M.D.B.)
| | - Stacy S. Kirkpatrick
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Raymond A. Dieter
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Joshua D. Arnold
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Michael R. Buckley
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Michael M. McNally
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Michael B. Freeman
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Oscar H. Grandas
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
| | - Deidra J. H. Mountain
- Department of Surgery, University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway Box U-11, Knoxville, TN 37920, USA; (R.K.F.III); (P.C.W.); (S.S.K.); (R.A.D.III); (J.D.A.); (M.R.B.); (M.M.M.); (M.B.F.); (O.H.G.)
- Correspondence: ; Tel.: +1-865-305-9160
| |
Collapse
|
11
|
Ge X, Chen L, Zhao B, Yuan W. Rationale and Application of PEGylated Lipid-Based System for Advanced Target Delivery of siRNA. Front Pharmacol 2021; 11:598175. [PMID: 33716725 PMCID: PMC7944141 DOI: 10.3389/fphar.2020.598175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022] Open
Abstract
RNA interference (RNAi) technology has become a powerful tool in application of unraveling the mechanism of disease and may hold the potential to be developed for clinical uses. Small interfering RNA (siRNA) can bind to target mRNA with high specificity and efficacy and thus inhibit the expression of related protein for the purpose of treatment of diseases. The major challenge for RNAi application is how to improve its stability and bioactivity and therefore deliver therapeutic agents to the target sites with high efficiency and accuracy. PEGylated lipid-based delivery system has been widely used for development of various medicines due to its long circulating half-life time, low toxicity, biocompatibility, and easiness to be scaled up. The PEGylated lipid-based delivery system may also provide platform for targeting delivery of nucleic acids, and some of the research works have moved to the phases for clinical trials. In this review, we introduced the mechanism, major challenges, and strategies to overcome technical barriers of PEGylated lipid-based delivery systems for advanced target delivery of siRNA in vivo. We also summarized recent advance of PEGylated lipid-based siRNA delivery systems and included some successful research works in this field.
Collapse
Affiliation(s)
- Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Lijuan Chen
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Weien Yuan
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Wang F, Zhang Z. Nanoformulation of Apolipoprotein E3-Tagged Liposomal Nanoparticles for the co-Delivery of KRAS-siRNA and Gemcitabine for Pancreatic Cancer Treatment. Pharm Res 2020; 37:247. [PMID: 33216236 DOI: 10.1007/s11095-020-02949-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE KRAS is the most frequently mutated gene in human cancers, and ~ 90% of pancreatic cancers exhibit KRAS mutations. Despite the well-known role of KRAS in malignancies, directly inhibiting KRAS is challenging. METHODS In this study, we successfully synthesized apolipoprotein E3-based liposomes for the co-delivery of gemcitabine (GEM) and a small interfering RNA targeting KRAS (KRAS-siRNA) to improve the efficacy of pancreatic cancer treatment. RESULTS Apolipoprotein E3 self-assembly on the liposome surface led to a substantial increase in its internalization in PANC1 human pancreatic cancer cells. KRAS-siRNA led to downregulated KRAS protein expression and KRAS-dependent carcinogenic pathways, resulting in the inhibition of cell proliferation, cell cycle arrest, increased apoptosis, and suppression of tumor progression. The combination of KRAS-siRNA and GEM induced a synergistic improvement in cell apoptosis and significantly lower cell viability compared with single-agent therapy. The low IC50 value of A3-SGLP might be attributed to potentiation of the anticancer effect of GEM by siRNA-mediated silencing of KRAS mutations, thereby inducing synergistic effects on cancer cells. CONCLUSION A3-SGLP led to a marked decrease in the overall tumor burden and did not show any signs of toxicity. Therefore, the combination of KRAS-siRNA and GEM holds great potential for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Fengyong Wang
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China
| | - Zhen Zhang
- Department of General Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang Province, China.
| |
Collapse
|
13
|
Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J. Dual-Modified Liposome for Targeted and Enhanced Gene Delivery into Mice Brain. J Pharmacol Exp Ther 2020; 374:354-365. [PMID: 32561686 PMCID: PMC7430450 DOI: 10.1124/jpet.119.264127] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/09/2020] [Indexed: 11/22/2022] Open
Abstract
The development of neuropharmaceutical gene delivery systems requires strategies to obtain efficient and effective brain targeting as well as blood-brain barrier (BBB) permeability. A brain-targeted gene delivery system based on a transferrin (Tf) and cell-penetrating peptide (CPP) dual-functionalized liposome, CPP-Tf-liposome, was designed and investigated for crossing BBB and permeating into the brain. We selected three sequences of CPPs [melittin, Kaposi fibroblast growth factor (kFGF), and penetration accelerating sequence-R8] and compared their ability to internalize into the cells and, subsequently, improve the transfection efficiency. Study of intracellular uptake indicated that liposomal penetration into bEnd.3 cells, primary astrocytes, and primary neurons occurred through multiple endocytosis pathways and surface modification with Tf and CPP enhanced the transfection efficiency of the nanoparticles. A coculture in vitro BBB model reproducing the in vivo anatomophysiological complexity of the biologic barrier was developed to characterize the penetrating properties of these designed liposomes. The dual-functionalized liposomes effectively crossed the in vitro barrier model followed by transfecting primary neurons. Liposome tissue distribution in vivo indicated superior ability of kFGF-Tf-liposomes to overcome BBB and reach brain of the mice after single intravenous administration. These findings demonstrate the feasibility of using strategically designed liposomes by combining Tf receptor targeting with enhanced cell penetration as a potential brain gene delivery vector. SIGNIFICANCE STATEMENT: Rational synthesis of efficient brain-targeted gene carrier included modification of liposomes with a target-specific ligand, transferrin, and with cell-penetrating peptide to enhance cellular internalization. Our study used an in vitro triple coculture blood-brain barrier (BBB) model as a tool to characterize the permeability across BBB and functionality of designed liposomes prior to in vivo biodistribution studies. Our study demonstrated that rational design and characterization of BBB permeability are efficient strategies for development of brain-targeted gene carriers.
Collapse
Affiliation(s)
- Bruna Dos Santos Rodrigues
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Sushant Lakkadwala
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Takahisa Kanekiyo
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota (B.S.R., S.L., J.S.) and Department of Neuroscience, Mayo Clinic, Jacksonville, Florida (T.K.)
| |
Collapse
|
14
|
Muller C, Berber E, Lutzweiler G, Ersen O, Bahri M, Lavalle P, Ball V, Vrana NE, Barthes J. Polyarginine Decorated Polydopamine Nanoparticles With Antimicrobial Properties for Functionalization of Hydrogels. Front Bioeng Biotechnol 2020; 8:982. [PMID: 32974312 PMCID: PMC7461895 DOI: 10.3389/fbioe.2020.00982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/28/2020] [Indexed: 11/13/2022] Open
Abstract
Polydopamine (PDA) nanoparticles are versatile structures that can be stabilized with proteins. In this study, we have demonstrated the feasibility of developing PDA/polypeptides complexes in the shape of nanoparticles. The polypeptide can also render the nanoparticle functional. Herein, we have developed antimicrobial nanoparticles with a narrow size distribution by decorating the polydopamine particles with a chain-length controlled antimicrobial agent Polyarginine (PAR). The obtained particles were 3.9 ± 1.7 nm in diameter and were not cytotoxic at 1:20 dilution and above. PAR-decorated nanoparticles have exhibited a strong antimicrobial activity against S. aureus, one of the most common pathogen involved in implant infections. The minimum inhibitory concentration is 5 times less than the cytotoxicity levels. Then, PAR-decorated nanoparticles have been incorporated into gelatin hydrogels used as a model of tissue engineering scaffolds. These nanoparticles have given hydrogels strong antimicrobial properties without affecting their stability and biocompatibility while improving their mechanical properties (modulus of increased storage). Decorated polydopamine nanoparticles can be a versatile tool for the functionalization of hydrogels in regenerative medicine applications by providing bioactive properties.
Collapse
Affiliation(s)
- Céline Muller
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
| | - Emine Berber
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
| | - Gaetan Lutzweiler
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron, Strasbourg, France
| | - Ovidiu Ersen
- IPCMS, Institut de Physique et de Chimie des Matériaux de Strasbourg, CNRS-UMRS 7504, Strasbourg, France
| | - Mounib Bahri
- IPCMS, Institut de Physique et de Chimie des Matériaux de Strasbourg, CNRS-UMRS 7504, Strasbourg, France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
| | - Vincent Ball
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | - Nihal E. Vrana
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
- Spartha Medical, Strasbourg, France
| | - Julien Barthes
- Institut National de la Santé et de la Recherche Médicale, INSERM UMR 1121 “Biomaterials and Bioengineering”, Strasbourg, France
| |
Collapse
|
15
|
Bulbake U, Kommineni N, Ionov M, Bryszewska M, Khan W. Comparison of cationic liposome and PAMAM dendrimer for delivery of anti-Plk1 siRNA in breast cancer treatment. Pharm Dev Technol 2020; 25:9-19. [PMID: 30633621 DOI: 10.1080/10837450.2019.1567763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/02/2019] [Accepted: 01/05/2019] [Indexed: 12/30/2022]
Abstract
Delivery of negatively charged, high molecular weight and unstable siRNA is difficult. The present study describes the development and comparison of cationic liposomes (CLs) and polyamidoamine (PAMAM) dendrimer generation 4 (PG4) nanocarriers of gene for cancer therapy. CLs and PG4 were complexed with anticancer siRNA (siPlk1) to form siPlk1-CLs lipoplex and siPlk1-PG4 dendriplex. siPlk1-CLs/PG4 complexes were characterized for average particle size, zeta potential, fluorescence and integrity of siPlk1 by agarose gel electrophoresis, ethidium bromide intercalation assay, circular dichroism, protection against RNase and stability in serum. The complexation of CLs/siPlk1 and PG4/siPlk1 were at a 100/1 and 2/1 charge ratio respectively. The CLs and PG4 were effective in protecting siPlk1 from RNase activity, also they enhanced the siPlk1 serum stability. Additionally, siPlk1-CLs and siPlk1-PG4 were evaluated by cell culture studies. In vitro anticancer activity study using MCF-7 cells showed that siPlk1-CLs and siPlk1-PG4 causes nearly similar cell death. Both siPlk1-CLs and siPlk1-PG4 resulted in enhanced cellular uptake of siPlk1 in MDA-MB-231 cells compared to naked siPlk1 solution. Cell cycle analysis suggested that increased cell population arrest in subG1 phase by siPlk1-CLs and siPlk1-PG4 compared to naked siPlk1 solution. These observations suggested that CLs and PG4 can be a potential carrier for siPlk1 delivery in breast cancer treatment.
Collapse
Affiliation(s)
- Upendra Bulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Nagavendra Kommineni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Enviromental Protection, University of Lodz, Lodz, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Enviromental Protection, University of Lodz, Lodz, Poland
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
16
|
Schachner-Nedherer AL, Werzer O, Kornmueller K, Prassl R, Zimmer A. Biological Activity Of miRNA-27a Using Peptide-based Drug Delivery Systems. Int J Nanomedicine 2019; 14:7795-7808. [PMID: 31576124 PMCID: PMC6768125 DOI: 10.2147/ijn.s208446] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
Background Endogenously expressed microRNAs (miRNAs) have attracted attention as important regulators in post-transcriptionally controlling gene expression of various physiological processes. As miRNA dysregulation is often associated with various disease patterns, such as obesity, miRNA-27a might therefore be a promising candidate for miRNA mimic replacement therapy by inhibiting adipogenic marker genes. However, application of naked nucleic acids faces some limitations concerning poor enzymatic stability, bio-membrane permeation and cellular uptake. To overcome these obstacles, the development of appropriate drug delivery systems (DDS) for miRNAs is of paramount importance. Methods In this work, a triple combination of atomic force microscopy (AFM), brightfield (BF) and fluorescence microscopy was used to trace the cellular adhesion of N-TER peptide-nucleic acid complexes followed by time-dependent uptake studies using confocal laser scanning microscopy (cLSM). To reveal the biological effect of miRNA-27a on adipocyte development after transfection treatment, Oil-Red-O (ORO)- staining was performed to estimate the degree of in lipid droplets accumulated ORO in mature adipocytes by using light microscopy images as well as absorbance measurements. Results The present findings demonstrated that amphipathic N-TER peptides represent a suitable DDS for miRNAs by promoting non-covalent complexation through electrostatic interactions between both components as well as cellular adhesion of the N-TER peptide – nucleic acid complexes followed by uptake across cell membranes and intracellular release of miRNAs. The anti-adipogenic effect of miRNA-27a in 3T3-L1 cells could be detected in mature adipocytes by reduced lipid droplet formation. Conclusion The present DDS assembled from amphipathic N-TER peptides and miRNAs is capable of inducing the anti-adipogenic effect of miRNA-27a by reducing lipid droplet accumulation in mature adipocytes. With respect to miRNA mimic replacement therapies, this approach might provide new therapeutic strategies to prevent or treat obesity and obesity-related disorders.
Collapse
Affiliation(s)
- Anna-Laurence Schachner-Nedherer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz 8010, Austria
| | - Oliver Werzer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz 8010, Austria
| | - Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Graz 8010, Austria
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Graz 8010, Austria
| | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Graz, Graz 8010, Austria
| |
Collapse
|
17
|
Wang W, Tai W. RNA binding protein as monodisperse carriers for siRNA delivery. MEDICINE IN DRUG DISCOVERY 2019. [DOI: 10.1016/j.medidd.2019.100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Augustine R, Kalva N, Kim HA, Zhang Y, Kim I. pH-Responsive Polypeptide-Based Smart Nano-Carriers for Theranostic Applications. Molecules 2019; 24:E2961. [PMID: 31443287 PMCID: PMC6719039 DOI: 10.3390/molecules24162961] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023] Open
Abstract
Smart nano-carriers have attained great significance in the biomedical field due to their versatile and interesting designs with different functionalities. The initial stages of the development of nanocarriers mainly focused on the guest loading efficiency, biocompatibility of the host and the circulation time. Later the requirements of less side effects with more efficacy arose by attributing targetability and stimuli-responsive characteristics to nano-carriers along with their bio- compatibility. Researchers are utilizing many stimuli-responsive polymers for the better release of the guest molecules at the targeted sites. Among these, pH-triggered release achieves increasing importance because of the pH variation in different organ and cancer cells of acidic pH. This specific feature is utilized to release the guest molecules more precisely in the targeted site by designing polymers having specific functionality with the pH dependent morphology change characteristics. In this review, we mainly concert on the pH-responsive polypeptides and some interesting nano-carrier designs for the effective theranostic applications. Also, emphasis is made on pharmaceutical application of the different nano-carriers with respect to the organ, tissue and cellular level pH environment.
Collapse
Affiliation(s)
- Rimesh Augustine
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Nagendra Kalva
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Ho An Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Yu Zhang
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea
| | - Il Kim
- BK 21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Geumjeong-gu, Busan 46241, Korea.
| |
Collapse
|
19
|
Tunsirikongkon A, Pyo YC, Kim DH, Lee SE, Park JS. Optimization of Polyarginine-Conjugated PEG Lipid Grafted Proliposome Formulation for Enhanced Cellular Association of a Protein Drug. Pharmaceutics 2019; 11:pharmaceutics11060272. [PMID: 31212607 PMCID: PMC6630419 DOI: 10.3390/pharmaceutics11060272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to develop an oral proliposomal powder of protein using poly-l-arginine-conjugated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) (PLD) for enhancing cellular association upon reconstitution and to compare its effects with a non-grafted and PEGylated formulation. Cationic proliposome (CATL), PLD-grafted CATL (PLD-CATL), PEGylated CATL (PEG CATL), and PLD grafted-PEG CATL (PLD-PEG CATL) were prepared and compared. Successful conjugation between poly-l-arginine and DSPE-PEG was confirmed by 1H NMR and FT-IR. PLD was successfully grafted onto the proliposomal powder during the slurry process. Although reconstituted liposomal sizes of CATL and PLD-CATL were increased by agglomeration, PEGylation reduced the agglomeration and increased the encapsulation. The viabilities of cells treated with both CATL and PLD-CATL formulations were low but increased following PEGylation. With regard to cellular association, PLD-CATL enhanced cellular association/uptake more rapidly than did CATL. Upon PEGylation, PEG CATL showed a lower level of cellular association/uptake compared with CATL while PLD-PEG CATL did not exhibit the rapid cellular association/uptake as seen with PLD-CATL. However, PLD-PEG CATL still enhanced the higher cellular association/uptake than PEG CATL did without PLD. In conclusion, proliposomes with PLD could accelerate cellular association/uptake but also caused high cellular toxicity. PEGylation reduced cellular toxicity and also changed the cellular association pattern of the PLD formulation.
Collapse
Affiliation(s)
- Amolnat Tunsirikongkon
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Rangsit Center, Pathumthani 12120, Thailand.
| | - Yong-Chul Pyo
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Dong-Hyun Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sang-Eun Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
20
|
Zhang M, Wang Q, Wan KW, Ahmed W, Phoenix DA, Zhang Z, Elrayess MA, Elhissi A, Sun X. Liposome mediated-CYP1A1 gene silencing nanomedicine prepared using lipid film-coated proliposomes as a potential treatment strategy of lung cancer. Int J Pharm 2019; 566:185-193. [PMID: 31051230 DOI: 10.1016/j.ijpharm.2019.04.078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022]
Abstract
The occurrence of lung cancer is linked with tobacco smoking, mainly through the generation of polycyclic aromatic hydrocarbons (PAHs). Elevated activity of cytochrome P4501A1 (CYP1A1) plays an important role in the metabolic processing of PAHs and its carcinogenicity. The present work aimed to investigate the role of CYP1A1 gene in PAH-mediated growth and tumor development in vitro and using an in vivo animal model. RNAi strategy was utilized to inhibit the overexpression of CYP1A1 gene using cationic liposomes generated using a lipid film-coated proliposome microparticles. Treatment of PAH-induced human alveolar adenocarcinoma cell line with cationic liposomes carrying CYP1A1 siRNA resulted in down regulation of CYP1A1 mRNA, protein as well as its enzymatic activity, triggering apoptosis and inhibiting multicellular tumor spheroids formation in vitro. Furthermore, silencing of CYP1A1 gene in BALB/c nude xenografts inhibited tumor growth via down regulation of CYP1A1 expression. Altogether, our findings showed that liposome-based gene delivery technology is a viable and stable approach for targeting cancer causing genes such as CY1PA1. This technology facilitated by the use of sugar particles coated with lipid films has demonstrated ability to generate anticancer effects that might be used in the future for therapeutic intervention and treatment of lung cancer.
Collapse
Affiliation(s)
- Mengtian Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Qin Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Ka-Wai Wan
- Institute of Nanotechnology and Bioengineering, School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Waqar Ahmed
- Nanoscience Research Group, School of Mathematics and Physics, College of Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | | | - Abdelbary Elhissi
- Office of Vice President for Research and Graduate Studies, Qatar University, Doha, Qatar, and College of Pharmacy, Qatar University, Doha, Qatar.
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
21
|
Bulbake U, Kommineni N, Bryszewska M, Ionov M, Khan W. Cationic liposomes for co-delivery of paclitaxel and anti-Plk1 siRNA to achieve enhanced efficacy in breast cancer. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Panigrahi B, Singh RK, Mishra S, Mandal D. Cyclic peptide-based nanostructures as efficient siRNA carriers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S763-S773. [DOI: 10.1080/21691401.2018.1511574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bijayananda Panigrahi
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rohit Kumar Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Dindyal Mandal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
23
|
Pandi P, Jain A, Kommineni N, Ionov M, Bryszewska M, Khan W. Dendrimer as a new potential carrier for topical delivery of siRNA: A comparative study of dendriplex vs. lipoplex for delivery of TNF-α siRNA. Int J Pharm 2018; 550:240-250. [PMID: 30165098 DOI: 10.1016/j.ijpharm.2018.08.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
Topical delivery of siRNA is challenging task due to complex barrier property of stratum corneum and cationic lipid based carriers have been widely explored for this purpose due to improved permeation through skin. For gene delivery application, dendrimers are considered as efficient carrier due to their cationic nature and well-defined surface groups. However, they are not well explored for topical delivery. This work compares the suitability of PAMAM dendrimer with DOTAP liposome for topical delivery of siRNA against TNF-α. The particle size, zeta potential and entrapment efficiency of dendriplex were 99.80 ± 1.80 nm, 13.40 ± 4.84 mV and 98.72 ± 2.02% whereas for lipoplex were 174.80 ± 0.80 nm, 29.96 ± 0.51 mV and 94.99 ± 5.01% respectively. Both the formulations were stable in serum and in the presence of RNAse. TNF-α is inflammatory cytokine, hence the in vivo efficacy of developed formulations was determined using psoriatic plaque model. Results suggested improved phenotypic and histopathological features and reduced levels of IL-6, TNF-α, IL-17 and IL-22 for dendriplex and lipoplex treated groups in comparison to Imiquimod treated group. These findings suggest that dendrimer can be a potential carrier for topical gene delivery.
Collapse
Affiliation(s)
- Palpandi Pandi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500037, India
| | - Anjali Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500037, India
| | - Nagavendra Kommineni
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500037, India
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland
| | - Wahid Khan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
24
|
The Mechanism for siRNA Transmembrane Assisted by PMAL. Molecules 2018; 23:molecules23071586. [PMID: 29966273 PMCID: PMC6099945 DOI: 10.3390/molecules23071586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/10/2018] [Accepted: 06/19/2018] [Indexed: 11/29/2022] Open
Abstract
The capacity of silencing genes makes small interfering RNA (siRNA) appealing for curing fatal diseases. However, the naked siRNA is vulnerable to and degraded by endogenous enzymes and is too large and too negatively charged to cross cellular membranes. An effective siRNA carrier, PMAL (poly(maleic anhydride-alt-1-decene) substituted with 3-(dimethylamino) propylamine), has been demonstrated to be able to assist siRNA transmembrane by both experiments and molecular simulation. In the present work, the mechanism of siRNA transmembrane assisted by PMAL was studied using steered molecular dynamics simulations based on the martini coarse-grained model. Here two pulling rates, i.e., 10−6 and 10−5 nm·ps−1, were chosen to imitate the passive and active transport of siRNA, respectively. Potential of mean force (PMF) and interactions among siRNA, PMAL, and lipid bilayer membrane were calculated to describe the energy change during siRNA transmembrane processes at various conditions. It is shown that PMAL-assisted siRNA delivery is in the mode of passive transport. The PMAL can help siRNA insert into lipid bilayer membrane by lowering the energy barrier caused by siRNA and lipid bilayer membrane. PMAL prefers to remain in the lipid bilayer membrane and release siRNA. The above simulations establish a molecular insight of the interaction between siRNA and PMAL and are helpful for the design and applications of new carriers for siRNA delivery.
Collapse
|
25
|
|
26
|
Development of a novel cationic liposome: Evaluation of liposome mediated transfection and anti-proliferative effects of miR-101 in acute myeloid leukemia. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
DU J, Sun Y, Li FH, DU LF, Duan YR. Enhanced delivery of biodegradable mPEG-PLGA-PLL nanoparticles loading Cy3-labelled PDGF-BB siRNA by UTMD to rat retina. J Biosci 2018; 42:299-309. [PMID: 28569253 DOI: 10.1007/s12038-017-9677-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We investigated the efficacy and safety of ultrasound (US)-targeted microbubble (MB) destruction (UTMD)-enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-L-lysine (mPEG-PLGA-PLL) nanoparticles (NPs) loading Cy3-labelled platelet-derived growth factor BB (PDGF-BB) siRNA to rat retina in vivo. Eighty Wistar rats were divided into five groups (G). The right eyes, respectively, received an intravitreal injection as follows: normal saline (NS) (G1), NPs and NS (G2), NPs and MBs (G3), NPs and NS (G4) and NPs and MBs (G5). In G4 and G5, the eyes were exposed to US for 5 mins. Twenty-four hours after transfection, the uptake and distribution of Cy3-labelled siRNA in rat retina were observed by fluorescent microscope. The percentage of Cy3- labelled siRNA-positive cells was evaluated by flow cytometer. The levels of PDGF-BB mRNA in retinal pigment epithelium (RPE) cells and secreted PDGF-BB proteins were also measured. Hematoxylin and eosin staining and frozen sections were used to observe tissue damage. Our results showed that the number of Cy3-labelled siRNApositive cells in G5 was significantly higher than those of the other groups (P less than 0.05 for all comparisons). The maximum efficiency of siRNA uptake in neural retina was 18.22 +/_ 1.67%. In G4 and G5, a small number of Cy3- labelled siRNA-positive cells were also detected in the pigmented cell layer of the retina. NPs loading siRNA delivered with UTMD could more effectively down-regulate the mRNA and protein expression of PDGF-BB than NPs plus US (P=0.014 and P=0.007, respectively). Histology showed no evident tissue damage after UTMDmediated NPs loading siRNA transfection. UTMD could be used safely to enhance the delivery of mPEG-PLGAPLL NPs loading siRNA into rat retina.
Collapse
Affiliation(s)
- Jing DU
- Department of Ultrasound, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pu Jian Road, Shanghai 200127, China
| | | | | | | | | |
Collapse
|
28
|
Yu Q, Chen J, Deng W, Cao X, Adu-Frimpong M, Yu J, Xu X. Neural differentiation of fibroblasts induced by intracellular co-delivery of Ascl1, Brn2 and FoxA1 via a non-viral vector of cationic polysaccharide. Biomed Mater 2017; 13:015022. [DOI: 10.1088/1748-605x/aa8962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Kabilova TO, Shmendel EV, Gladkikh DV, Chernolovskaya EL, Markov OV, Morozova NG, Maslov MA, Zenkova MA. Targeted delivery of nucleic acids into xenograft tumors mediated by novel folate-equipped liposomes. Eur J Pharm Biopharm 2017; 123:59-70. [PMID: 29162508 DOI: 10.1016/j.ejpb.2017.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
Folate receptors (FR) are cellular markers highly expressed in various cancer cells. Here, we report on the synthesis of a novel folate-containing lipoconjugate (FC) built of 1,2-di-O-ditetradecyl-rac-glycerol and folic acid connected via a PEG spacer, and the evaluation of the FC as a targeting component of liposomal formulations for nucleic acid (NA) delivery into FR expressing tumor cells. FR-targeting liposomes, based on polycationic lipid 1,26-bis(cholest-5-en-3β-yloxycarbonylamino)-7,11,16,20-tetraazahexacosan tetrahydrochloride (2X3), lipid helper dioleoylphosphatidylethanolamine (DOPE) and novel FC, formed small compact particles in solution with diameters of 60 ± 22 nm, and were not toxic to cells. Complexes of NAs with the liposomes were prepared at various nitrogen to phosphate ratios (N/P) to optimize liposome/cell interactions. We showed that FR-mediated delivery of different nucleic acids mediated by 2X3-DOPE/FC liposomes occurs in vitro at low N/P (1/1 and 2/1); under these conditions FC-containing liposomes display 3-4-fold higher transfection efficiency in comparison with conventional formulation. Lipoplexes formed at N/P 1/1 by targeted liposomes and cargo (Cy7-labeled siRNA targeting MDR1 mRNA) in vivo efficiently accumulate in tumor (∼15-18% of total amount), and kidneys (71%), and were retained there for more than 24 h, causing efficient downregulation of p-glycoprotein expression (to 40% of control) in tumors. Thus, FC containing liposomes provide effective targeted delivery of nucleic acids into tumor cells in vitro and in xenograft tumors in vivo.
Collapse
Affiliation(s)
- Tatyana O Kabilova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Elena V Shmendel
- Institute of Fine Chemical Technologies, Moscow Technological University, Vernadskogo ave. 86, Moscow 119571, Russia
| | - Daniil V Gladkikh
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Elena L Chernolovskaya
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Oleg V Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia
| | - Nina G Morozova
- Institute of Fine Chemical Technologies, Moscow Technological University, Vernadskogo ave. 86, Moscow 119571, Russia
| | - Mikhail A Maslov
- Institute of Fine Chemical Technologies, Moscow Technological University, Vernadskogo ave. 86, Moscow 119571, Russia
| | - Marina A Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
30
|
Zhu L, Simpson JM, Xu X, He H, Zhang D, Yin L. Cationic Polypeptoids with Optimized Molecular Characteristics toward Efficient Nonviral Gene Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23476-23486. [PMID: 28653538 DOI: 10.1021/acsami.7b06031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The rational design of gene vectors relies on the understanding of their structure-property relationship. Polypeptoids, which are structural isomers of natural polypeptides, hold great potential as gene delivery vectors due to their facile preparation, structural tunability, and most importantly, their desirable proteolytic stability. We herein designed a library of polypeptoids with different cationic side-chain terminal groups, degree of polymerizations (DPs), side-chain lengths, and incorporated aliphatic side chains, to unravel the structure-property relationships so that gene delivery efficiency can be maximized and cytotoxicity can be minimized. In HeLa cells, a polypeptoid bearing a primary amine side-chain terminal group exhibited remarkably higher transfection efficiency than that of its analogues containing secondary, tertiary, or quaternary amine groups. Elongation of the polypeptoid backbone length (from 28 to 251 mer) led to enhanced DNA condensation as well as cellular uptake levels, however it also caused higher cytotoxicity. Upon a proper balance between DNA uptake and cytotoxicity, the polypeptoid with a DP of 46 afforded the highest transfection efficiency. Elongating the aliphatic spacer between the backbone and side amine groups enhanced the hydrophobicity of the side chains, which resulted in notably increased membrane activities and transfection efficiency. Further incorporation of hydrophobic decyl side chains led to an improvement in transfection efficiency of ∼6 fold. The top-performing material identified, P11, mediated successful gene transfection under serum-containing conditions, outperforming the commercial transfection reagent poly(ethylenimine) by nearly 4 orders of magnitude. Reflecting its excellent serum-resistant properties, P11 further enabled effective transfection in vivo following intratumoral injection to melanoma-bearing mice. This study will help the rational design of polypeptoid-based gene delivery materials, and the best-performing material identified may provide a potential supplement to existing gene vectors.
Collapse
Affiliation(s)
- Lipeng Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, P. R. China
| | - Jessica M Simpson
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Xin Xu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, P. R. China
| | - Hua He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, P. R. China
| | - Donghui Zhang
- Department of Chemistry and Macromolecular Studies Group, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
31
|
Lu Y, Li J, Lu D. The mechanism for the complexation and dissociation between siRNA and PMAL: a molecular dynamics simulation study based on a coarse-grained model. MOLECULAR SIMULATION 2017. [DOI: 10.1080/08927022.2017.1350663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yanfei Lu
- Key Laboratory of Industrial Biocatalysis, Chinese Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jipeng Li
- Key Laboratory of Industrial Biocatalysis, Chinese Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Diannan Lu
- Key Laboratory of Industrial Biocatalysis, Chinese Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Bakan F, Kara G, Cokol Cakmak M, Cokol M, Denkbas EB. Synthesis and characterization of amino acid-functionalized calcium phosphate nanoparticles for siRNA delivery. Colloids Surf B Biointerfaces 2017; 158:175-181. [PMID: 28689100 DOI: 10.1016/j.colsurfb.2017.06.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 01/05/2023]
Abstract
Small interfering RNAs (siRNA) are short nucleic acid fragments of about 20-27 nucleotides, which can inhibit the expression of specific genes. siRNA based RNAi technology has emerged as a promising method for the treatment of a variety of diseases. However, a major limitation in the therapeutic use of siRNA is its rapid degradation in plasma and cellular cytoplasm, resulting in short half-life. In addition, as siRNA molecules cannot penetrate into the cell efficiently, it is required to use a carrier system for its delivery. In this work, chemically and morphologically different calcium phosphate (CaP) nanoparticles, including spherical-like hydroxyapatite (HA-s), needle-like hydroxyapatite (HA-n) and calcium deficient hydroxyapatite (CDHA) nanoparticles were synthesized by the sol-gel technique and the effects of particle characteristics on the binding capacity of siRNA were investigated. In order to enhance the gene loading efficiency, the nanoparticles were functionalized with arginine and the morphological and their structural characteristics were analyzed. The addition of arginine did not significantly change the particle sizes; however, it provided a significantly increased binding of siRNA for all types of CaP nanoparticles, as revealed by spectrophotometric measurements analysis. Arginine functionalized HA-n nanoparticles showed the best binding behavior with siRNA among the other nanoparticles due to its high, positive zeta potential (+18.8mV) and high surface area of Ca++ rich "c" plane. MTT cytotoxicity assays demonstrated that all the nanoparticles tested herein were biocompatible. Our results suggest that high siRNA entrapment in each of the three modified non-toxic CaP nanoparticles make them promising candidates as a non-viral vector for delivering therapeutic siRNA molecules to treat cancer.
Collapse
Affiliation(s)
- Feray Bakan
- Sabanci University Nanotechnology Research and Application Center (SUNUM), 34956, Istanbul, Turkey.
| | - Goknur Kara
- Hacettepe University, Department of Chemistry, Biochemistry Division, 06800, Ankara, Turkey
| | - Melike Cokol Cakmak
- Sabanci University, Molecular Biology, Genetics and Bioengineering Program, 34956, Istanbul, Turkey
| | - Murat Cokol
- Tufts University School of Medicine, Department of Molecular Biology and Microbiology, Harvard Medical School, Laboratory of Systems Pharmacology, Boston, MA, USA
| | - Emir Baki Denkbas
- Hacettepe University, Department of Chemistry, Biochemistry Division, 06800, Ankara, Turkey
| |
Collapse
|
33
|
Sun M, Zhu Z, Wang H, Han C, Liu D, Tian L, Yang X, Pan W. Surface density of polyarginine influence the size, zeta potential, cellular uptake and tissue distribution of the nanostructured lipid carrier. Drug Deliv 2017; 24:519-526. [PMID: 28181841 PMCID: PMC8253139 DOI: 10.1080/10717544.2016.1269849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Poly-arginines are strong tools to elevate the cellular uptake of nanopreparations. To learn the influence of poly-arginine (RRRRRRRR, R8) density on a series of properties of nanostructured lipid carrier (NLC), we build six R8 modified NLCs with different R8 densities (nR-NLC, where n represents the R8 ratio) by fusion–emulsion method with the aid of stearyl-R8. The pharmaceutical characteristics like size, zeta potential and in vitro drug release, cellular uptake, cytotoxicity to A549 cells and tissue distribution in S180 tumor-bearing mice of the six nR-NLCs are all investigated. It turns out that with as little as 2% weight ratio of stearyl-R8 modified on NLC, its pharmaceutical properties, especially zeta potential changes astonishingly; however, the stearyl-R8 ratio should be higher than 4% to upgrade the cellular uptake and cytotoxicity evidently; in the ex vivo tissue distribution assessment, the nR-NLC with less than 8% R8 showed similar tissue accumulation, while NLC with 10% R8 shows obvious acute toxicity to mice. Our study pays attention to the effect of the R8 ratio on the changes of cargo properties, and the results indicate that this topic is essential and worth to be further developed.
Collapse
Affiliation(s)
- Mingshuang Sun
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| | - Zhihong Zhu
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| | - Huixin Wang
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| | - Cuiyan Han
- b School of Pharmacy, Qiqihar Medical University , Qiqihar , China , and
| | - Dandan Liu
- c School of Biomedical & Chemical Engineering, Liaoning Institute of Science and Technology , Benxi , China
| | - Lei Tian
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| | - Xinggang Yang
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| | - Weisan Pan
- a School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
34
|
Bochicchio S, Dapas B, Russo I, Ciacci C, Piazza O, De Smedt S, Pottie E, Barba AA, Grassi G. In vitro and ex vivo delivery of tailored siRNA-nanoliposomes for E2F1 silencing as a potential therapy for colorectal cancer. Int J Pharm 2017; 525:377-387. [PMID: 28189855 DOI: 10.1016/j.ijpharm.2017.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/18/2017] [Accepted: 02/07/2017] [Indexed: 02/01/2023]
Abstract
Tailored developed nanoliposomes loaded with a siRNA against the transcription factor E2F1 (siE2F1), were produced and delivered to human colorectal adenocarcinoma cell lines and to intestinal human biopsies. siE2F1 loaded nanoliposomes were produced through a dedicated ultrasound assisted technique producing particles with about 40nm size (Small Unilamellar Vesicles, SUVs) and 100% siRNA encapsulation efficiency. Compared to other production methods, the one proposed here can easily produce particles in the nanometric scale by suitable ultrasonic duty cycle treatments. Furthermore, SUVs have a high degree of size homogeneity, a relevant feature for uniform delivery behaviour. siE2F1-loaded SUVs demonstrated a very low cytotoxicity in cells when compared to a commercial transfection agent. Moreover, SUVs loaded with siE2F1 were effective in the down regulation of the target in cultured colon carcinoma cells and in the consequent reduction of cell growth. Finally, a remarkable uptake and target silencing efficiencies were observed in cultured human biopsy of colonic mucosa. In conclusion, whereas further studies in more complex models are required, the siE2F1-SUVs generated have the potential to contribute to the development of novel effective inflammatory bowel diseases-associated colorectal cancer therapies for a future personalized medicine.
Collapse
Affiliation(s)
- Sabrina Bochicchio
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy; Dipartimento di Ingegneria Industriale, University of Salerno, Fisciano, SA, Italy
| | - Barbara Dapas
- Dipartimento di Scienze della Vita, University of Trieste, Italy
| | - Ilaria Russo
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Fisciano, SA, Italy
| | - Carolina Ciacci
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Fisciano, SA, Italy
| | - Ornella Piazza
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", University of Salerno, Fisciano, SA, Italy
| | | | - Eline Pottie
- Department of Pharmaceutics, University of Gent, Belgium
| | - Anna Angela Barba
- Dipartimento di Farmacia, University of Salerno, Fisciano, SA, Italy.
| | - Gabriele Grassi
- Dipartimento di Scienze della Vita, University of Trieste, Italy; Dipartimento di Scienze Mediche, Chirurgiche e della Salute, Ospedale di Cattinara, University of Trieste, Italy
| |
Collapse
|
35
|
Giraud L, Viricel W, Leblond J, Giasson S. Single stranded siRNA complexation through non-electrostatic interactions. Biomaterials 2017; 113:230-242. [DOI: 10.1016/j.biomaterials.2016.10.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/19/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022]
|
36
|
Jose A, Labala S, Venuganti VVK. Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. J Drug Target 2016; 25:330-341. [PMID: 27819148 DOI: 10.1080/1061186x.2016.1258567] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Skin cancer is one of the most widely prevalent cancer types with over expression of multiple oncogenic signaling molecules including STAT3. Curcumin is a natural compound with effective anti-cancer properties. The objective of this work was to investigate the liposomal co-delivery of curcumin and STAT3 siRNA by non-invasive topical iontophoretic application to treat skin cancer. Curcumin was encapsulated in cationic liposomes and then complexed with STAT3 siRNA. The liposomal nanocomplex was characterized for particle size, zeta-potential, drug release and stability. Human epidermoid (A431) cancer cells were used to study the cell uptake, growth inhibition and apoptosis induction of curcumin-loaded liposome-siRNA complex. Topical iontophoresis was applied to study the skin penetration of nanocomplex in excised porcine skin model. Results showed that curcumin-loaded liposome-siRNA complex was rapidly taken up by cells preferentially through clathrin-mediated endocytosis pathway. The co-delivery of curcumin and STAT3 siRNA using liposomes resulted in significantly (p < .05) greater cancer cell growth inhibition and apoptosis events compared with neat curcumin and free STAT3 siRNA treatment. Furthermore, topical iontophoresis application enhanced skin penetration of nanocomplex to penetrate viable epidermis. In conclusion, cationic liposomal system can be developed for non-invasive iontophoretic co-delivery of curcumin and siRNA to treat skin cancer.
Collapse
Affiliation(s)
- Anup Jose
- a Department of Pharmacy , Birla Institute of Technology and Science (BITS) Pilani , Hyderabad Campus , Hyderabad , India
| | - Suman Labala
- a Department of Pharmacy , Birla Institute of Technology and Science (BITS) Pilani , Hyderabad Campus , Hyderabad , India
| | | |
Collapse
|
37
|
Andrzejewska W, Pietralik Z, Skupin M, Kozak M. Structural studies of the formation of lipoplexes between siRNA and selected bis-imidazolium gemini surfactants. Colloids Surf B Biointerfaces 2016; 146:598-606. [DOI: 10.1016/j.colsurfb.2016.06.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/27/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
38
|
Sun P, Huang W, Jin M, Wang Q, Fan B, Kang L, Gao Z. Chitosan-based nanoparticles for survivin targeted siRNA delivery in breast tumor therapy and preventing its metastasis. Int J Nanomedicine 2016; 11:4931-4945. [PMID: 27729789 PMCID: PMC5045910 DOI: 10.2147/ijn.s105427] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nanoparticle-mediated small interfering RNA (siRNA) delivery is a promising therapeutic strategy in various cancers. However, it is difficult to deliver degradative siRNA to tumor tissue, and thus a safe and efficient vector for siRNA delivery is essential for cancer therapy. In this study, poly(ethylene glycol)-modified chitosan (PEG-CS) was synthesized successfully for delivering nucleic acid drug. We deemed that PEGylated CS could improve its solubility by forming a stable siRNA loaded in nanoparticles, and enhancing transfection efficiency of siRNA-loaded CS nanoparticles in cancer cell line. The research results showed that siRNA loaded in PEGylated CS (PEG-CS/siRNA) nanoparticles with smaller particle size had superior structural stability in the physical environment compared to CS nanoparticles. The data of in vitro antitumor activity revealed that 4T1 tumor cell growth was significantly inhibited and cellular uptake of PEG-CS/siRNA nanoparticles in 4T1 cells was dramatically enhanced compared to naked siRNA groups. The results from flow cytometry and confocal laser scanning microscopy showed that PEG-CS/siRNA nanoparticles were more easily taken up than naked siRNA. Importantly, PEG-CS/siRNA nanoparticles significantly reduced the growth of xenograft tumors of 4T1 cells in vivo. It has been demonstrated that the PEG-CS is a safe and efficient vector for siRNA delivery, and it can effectively reduce tumor growth and prevent metastasis.
Collapse
Affiliation(s)
- Ping Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Bo Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Lin Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
39
|
Chira S, Jackson CS, Oprea I, Ozturk F, Pepper MS, Diaconu I, Braicu C, Raduly LZ, Calin GA, Berindan-Neagoe I. Progresses towards safe and efficient gene therapy vectors. Oncotarget 2016; 6:30675-703. [PMID: 26362400 PMCID: PMC4741561 DOI: 10.18632/oncotarget.5169] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/22/2015] [Indexed: 12/11/2022] Open
Abstract
The emergence of genetic engineering at the beginning of the 1970′s opened the era of biomedical technologies, which aims to improve human health using genetic manipulation techniques in a clinical context. Gene therapy represents an innovating and appealing strategy for treatment of human diseases, which utilizes vehicles or vectors for delivering therapeutic genes into the patients' body. However, a few past unsuccessful events that negatively marked the beginning of gene therapy resulted in the need for further studies regarding the design and biology of gene therapy vectors, so that this innovating treatment approach can successfully move from bench to bedside. In this paper, we review the major gene delivery vectors and recent improvements made in their design meant to overcome the issues that commonly arise with the use of gene therapy vectors. At the end of the manuscript, we summarized the main advantages and disadvantages of common gene therapy vectors and we discuss possible future directions for potential therapeutic vectors.
Collapse
Affiliation(s)
- Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Carlo S Jackson
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Iulian Oprea
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Ferhat Ozturk
- Department of Molecular Biology and Genetics, Canik Başari University, Samsun, Turkey
| | - Michael S Pepper
- Department of Immunology and Institute for Cellular and Molecular Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania
| | - Lajos-Zsolt Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Physiopathology, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Cluj Napoca, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Immunology, University of Medicine and Pharmacy "Iuliu Haţieganu", Cluj Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, Oncological Institute "Prof. Dr. Ion Chiricuţă", Cluj Napoca, Romania.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Sun M, Gao Y, Zhu Z, Wang H, Han C, Yang X, Pan W. A systematic in vitro investigation on poly-arginine modified nanostructured lipid carrier: Pharmaceutical characteristics, cellular uptake, mechanisms and cytotoxicity. Asian J Pharm Sci 2016; 12:51-58. [PMID: 32104313 PMCID: PMC7032249 DOI: 10.1016/j.ajps.2016.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/09/2016] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
The aim of the present study was to develop a poly-arginine modified nanostructured lipid carrier (R-NLC) by fusion-emulsification method and to test its pharmaceutical characteristics. The influence of R-NLC on A549 cells like cellular uptake and cytotoxicity was also appraised using unmodified NLC as the controlled group. As the results revealed, R-NLC had an average diameter of about 40 nm and a positive zeta potential of about +17 mv, the entrapment efficiency decreased apparently, and no significant difference on the in vitro drug release was found after R8-modification. The cellular uptake and cytotoxicity increased obviously compared with unmodified NLC. The cellular uptake mechanisms of R-NLC involved energy, macropinocytosis, clathrin-mediated endocytosis, and caveolin-mediated endocytosis. The outcomes of the present study strongly support the theory that cell penetrating peptides have the ability of enhancing the cellular uptake of nanocarriers.
Collapse
Affiliation(s)
- Mingshuang Sun
- Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Yunyun Gao
- Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Zhihong Zhu
- Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Huixin Wang
- Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Cuiyan Han
- Qiqihar Medical University, No. 333, Bukuibei Road, Qiqihar 161000, China
| | - Xinggang Yang
- Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Weisan Pan
- Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| |
Collapse
|
41
|
Li J, Xue S, Mao ZW. Nanoparticle delivery systems for siRNA-based therapeutics. J Mater Chem B 2016; 4:6620-6639. [DOI: 10.1039/c6tb01462c] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RNA interference (RNAi) is a naturally occurring endogenous regulatory process in which the short double-stranded RNA causes sequence-specific post-transcriptional gene silencing.
Collapse
Affiliation(s)
- Jinming Li
- MOE Key Laboratory of Bio-inorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Shanshan Xue
- MOE Key Laboratory of Bio-inorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bio-inorganic and Synthetic Chemistry
- School of Chemistry and Chemical Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| |
Collapse
|
42
|
Yu Q, Cao J, Chen B, Deng W, Cao X, Chen J, Wang Y, Wang S, Yu J, Xu X, Gao X. Efficient gene delivery to human umbilical cord mesenchymal stem cells by cationized Porphyra yezoensis polysaccharide nanoparticles. Int J Nanomedicine 2015; 10:7097-107. [PMID: 26604758 PMCID: PMC4655959 DOI: 10.2147/ijn.s93122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study centered on an innovative application of Porphyra yezoensis polysaccharide (PPS) with cationic modification as a safe and efficient nonviral gene vector to deliver a plasmid encoding human Wnt3a (pWnt3a) into human umbilical cord mesenchymal stem cells (HUMSCs). After modification with branched low-molecular-weight (1,200 Da) polyethylenimine, the cationized PPS (CPPS) was combined with pWnt3a to form spherical nanoscale particles (CPPS-pWnt3a nanoparticles). Particle size and distribution indicated that the CPPS-pWnt3a nanoparticles at a CPPS:pWnt3a weight ratio of 40:1 might be a potential candidate for DNA plasmid transfection. A cytotoxicity assay demonstrated that the nanoparticles prepared at a CPPS:pWnt3a weight ratio of 40:1 were nontoxic to HUMSCs compared to those of Lipofectamine 2000 and polyethylenimine (25 kDa). These nanoparticles were further transfected to HUMSCs. Western blotting demonstrated that the nanoparticles (CPPS:pWnt3a weight ratio 40:1) had the greatest transfection efficiency in HUMSCs, which was significantly higher than that of Lipofectamine 2000; however, when the CPPS:pWnt3a weight ratio was increased to 80:1, the nanoparticle-treated group showed no obvious improvement in translation efficiency over Lipofectamine 2000. Therefore, CPPS, a novel cationic polysaccharide derived from P. yezoensis, could be developed into a safe, efficient, nonviral gene vector in a gene-delivery system.
Collapse
Affiliation(s)
- Qingtong Yu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China ; Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jin Cao
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Baoding Chen
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jingjing Chen
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Shicheng Wang
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiangdong Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
43
|
Singh Y, Tomar S, Khan S, Meher JG, Pawar VK, Raval K, Sharma K, Singh PK, Chaurasia M, Surendar Reddy B, Chourasia MK. Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes. J Control Release 2015; 220:368-387. [PMID: 26528900 DOI: 10.1016/j.jconrel.2015.10.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/04/2023]
Abstract
The scope of RNAi based therapeutics is unquestionable. However, if we dissect the current trend of clinical trials for afore mentioned drug class, some stark trends appear: 1) naked siRNA only exerts influence in topical mode whilst systemic delivery requires a carrier and 2) even after two decades of extensive efforts, not even a single siRNA containing product is commercially available. It was therefore felt that a perspective simplifying the unique intricacies of working with a merger of siRNA and liposomes from a pharmaceutical viewpoint could draw the attention of a wider array of interested researchers. We begin from the beginning and attempt to conduit the gap between theoretical logic and experimental/actual constraints. This, in turn could stimulate the next generation of investigators, gearing them to tackle the conundrum, which is siRNA delivery.
Collapse
Affiliation(s)
- Yuvraj Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sandeep Tomar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shariq Khan
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jaya Gopal Meher
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vivek K Pawar
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kavit Raval
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Komal Sharma
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pankaj K Singh
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Mohini Chaurasia
- Amity Institute of Pharmacy, Amity University, Lucknow, UP 226028, India
| | - B Surendar Reddy
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manish K Chourasia
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
44
|
Lopes I, C. N. Oliveira A, P. Sárria M, P. Neves Silva J, Gonçalves O, Gomes AC, Real Oliveira MECD. Monoolein-based nanocarriers for enhanced folate receptor-mediated RNA delivery to cancer cells. J Liposome Res 2015; 26:199-210. [DOI: 10.3109/08982104.2015.1076463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ivo Lopes
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | - Ana C. N. Oliveira
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | | | - João P. Neves Silva
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
| | - Odete Gonçalves
- Department of Physics, University of Minho, Campus of Gualtar, Braga, Portugal and
- Department of Biology, University of Minho, Braga, Portugal
| | | | | |
Collapse
|
45
|
Enhanced survivin siRNA delivery using cationic liposome incorporating fatty acid-modified polyethylenimine. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5060-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Abstract
Nucleic acids show immense potential to treat cancer, acquired immune deficiency syndrome, neurological diseases and other incurable human diseases. Upon systemic administration, they encounter a series of barriers and hence barely reach the site of action, the cell. Intracellular delivery of nucleic acids is facilitated by nanovectors, both viral and non-viral. A major advantage of non-viral vectors over viral vectors is safety. Nanovectors evaluated specifically for nucleic acid delivery include polyplexes, lipoplexes and other cationic carrier-based vectors. However, more recently there is an increased interest in inorganic nanovectors for nucleic acid delivery. Nevertheless, there is no comprehensive review on the subject. The present review would cover in detail specific properties and types of inorganic nanovectors, their preparation techniques and various biomedical applications as therapeutics, diagnostics and theranostics. Future prospects are also suggested.
Collapse
|
47
|
Tila D, Ghasemi S, Yazdani-Arazi SN, Ghanbarzadeh S. Functional liposomes in the cancer-targeted drug delivery. J Biomater Appl 2015; 30:3-16. [PMID: 25823898 DOI: 10.1177/0885328215578111] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is considered as one of the most severe health problems and is currently the third most common cause of death in the world after heart and infectious diseases. Novel therapies are constantly being discovered, developed and trialed. Many of the current anticancer agents exhibit non-ideal pharmaceutical and pharmacological properties and are distributed non-specifically throughout the body. This results in death of the both normal healthy and malignant cells and substantially leads to accruing a variety of serious toxic side effects. Therefore, the efficient systemic therapy of cancer is almost impossible due to harmful side effects of anticancer agents to the healthy organs and tissues. Furthermore, several problems such as low bioavailability of the drugs, low drug concentrations at the site of action, lack of drug specificity and drug-resistance also cause many restrictions on clinical applications of these drugs in the tumor therapy. Different types of the liposomal formulations have been used in medicine due to their distinctive advantages associated with their structural flexibility in the encapsulation of various agents with different physicochemical properties. They can also mediate delivery of the cargo to the appropriate cell type and subcellular compartment, reducing the effective dosage and possible side effects which are related to high systemic concentrations. Therefore, these novel systems were found very promising and encouraging dosage forms for the treatment of different types of cancer by increasing efficiency and reducing the systemic toxicity due to the specific drug delivery and targeting.
Collapse
Affiliation(s)
- Dena Tila
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Saeed Ghanbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Jagani H, Kasinathan N, Meka SR, Josyula VR. Antiapoptotic Bcl-2 protein as a potential target for cancer therapy: A mini review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1212-21. [DOI: 10.3109/21691401.2015.1019668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hitesh Jagani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Narayanan Kasinathan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Sreenivasa Reddy Meka
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| | - Venkata Rao Josyula
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, India
| |
Collapse
|
49
|
Lechanteur A, Furst T, Evrard B, Delvenne P, Hubert P, Piel G. Development of anti-E6 pegylated lipoplexes for mucosal application in the context of cervical preneoplastic lesions. Int J Pharm 2015; 483:268-77. [PMID: 25701628 DOI: 10.1016/j.ijpharm.2015.02.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/12/2015] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
Cervical cancer induced by human papillomavirus (HPV) is the fourth highest mortality causing cancer in women despite the use of prophylactic vaccines. E6 targeting represents an attractive strategy to treat this cancer. Indeed, oncoprotein E6 is produced by keratinocytes infected by HPV and is partially responsible for carcinogenesis. E6 interferes with the apoptosis process in stressed cells by degradation of p53 tumor suppressor gene. Our strategy consists in using E6 siRNA complexed with pegylated lipoplexes. The addition of hydrophilic polymer around the nanoparticles is crucial to use them by vaginal application on account of cervicovaginal mucus. Physicochemical characteristics were evaluated and in vitro assays were performed to evaluate transfection potential, E6 mRNA extinction and p53 re-expression. Cationic liposomes DOTAP/Cholesterol/DOPE 1/0.75/0.5 (N/P 2.5) with or without 50% DSPE-PEG2000 and associated with siE6 have demonstrated good physicochemical characteristics in terms of complexation, size, surface charge and stability. Both lipoplexes have been tested on CaSki cell line (HPV 16+) with 50 nM and 100 nM of siE6. Lipoplexes formulations induce 30-40% of E6 mRNA extinction and induce the re-expression of p53. In conclusion, pegylated anti-E6 lipoplexes have demonstrated their efficiency to cross the cellular membrane and to release siRNA into the cytoplasm confirmed by final p53 protein production.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium; Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium.
| | - Tania Furst
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium.
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liège, Liège 4000, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|
50
|
Zhao Y, Zheng C, Zhang L, Chen Y, Ye Y, Zhao M. Knockdown of STAT3 expression in SKOV3 cells by biodegradable siRNA-PLGA/CSO conjugate micelles. Colloids Surf B Biointerfaces 2015; 127:155-63. [PMID: 25677339 DOI: 10.1016/j.colsurfb.2015.01.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/13/2015] [Accepted: 01/20/2015] [Indexed: 11/26/2022]
Abstract
Biodegradable and biocompatible poly(d,l-lactic-co-glycolic acid) (PLGA)was conjugated to the 5'-thiol end of signal transducer and activator of transcription 3 (STAT3) small interfering RNA (STAT3-siRNA) via a disulfide bond. In aqueous environments, these siRNA-PLGA conjugates can spontaneously form core/shell type spherical micelles with a particle size of about 200 nm. A biodegradable, low molecular weight cationic polymer, chitosan oligosaccharide (CSO), was added to the siRNA-PLGA micelles at different nitrogen to phosphate (N/P) ratios to form stable, spherical siRNA-PLGA/CSO micelles with sizes of 150-180 nm. The siRNA-PLGA/CSO micelles were produced via ionic complexation between negatively charged siRNA and positively charged CSO on the outer shell of the micelles. The siRNA-PLGA/CSO micelles exhibited superior cellular uptake and STAT3 gene silencing efficiency in SKOV3 ovarian cancer cells when compared with siRNA/CSO complexes at the same N/P ratios with no significant differences with lipofectamine 2000. Furthermore, the siRNA-PLGA/CSO micelles showed that the efficiencies of cellular uptake and STAT3 gene silencing gradually increased with increasing N/P ratios. The siRNA-PLGA/CSO micelles also inhibited the growth of SKOV3 cells, as well as, promoted apoptosis of the cells. These results indicate that siRNA-PLGA/CSO micelles can be utilized as a novel and efficient siRNA carrier to treat a variety of diseases.
Collapse
Affiliation(s)
- Yunchun Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Caihong Zheng
- Women's Hospital, Medicine of School, Zhejiang University, Hangzhou 310006, China.
| | - Li Zhang
- The Second Hospital, Medicine of School, Zhejiang University, Hangzhou 310058, China
| | - Yue Chen
- Women's Hospital, Medicine of School, Zhejiang University, Hangzhou 310006, China
| | - Yiqing Ye
- Women's Hospital, Medicine of School, Zhejiang University, Hangzhou 310006, China
| | - Mengdan Zhao
- Women's Hospital, Medicine of School, Zhejiang University, Hangzhou 310006, China
| |
Collapse
|