1
|
Zhong J, He G, Ma X, Ye J, Tao ZY, Li Z, Zhang F, Feng P, Wang Y, Lan X, Su YX. Triterpene-Based Prodrug for Self-Boosted Drug Release and Targeted Oral Squamous Cell Carcinoma Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41960-41972. [PMID: 39082953 DOI: 10.1021/acsami.4c10175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Chemotherapy is one of the main treatments for oral squamous cell carcinoma (OSCC), especially as a combined modality approach with and after surgery or radiotherapy. Limited therapeutic efficiency and serious side effects greatly restrict the clinical performance of chemotherapeutic drugs. The development of smart nanomedicines has provided new research directions, to some extent. However, the involvement of complex carrier compositions inevitably brings biosafety concerns and greatly limits the "bench-to-bed" translation of most nanomedicines reported. In this study, a carrier-free self-assembled prodrug was fabricated by two triterpenes (glycyrrhetinic acid, GA and ginsenoside Rh2, Rh2) isolated from medicinal plants, licorice, and ginseng, for the targeted and highly effective treatment of OSCC. Reactive oxygen species (ROS) self-supplied molecule TK-GA2 was synthesized with ROS-responsive thioketal linker and prodrug was prepared by a rapid-solvent-exchange method with TK-GA2 and Rh2. After administration, oral tumor cells transported large amounts of prodrugs with glucose ligands competitively. Endogenous ROS in oral tumor cells then promoted the release of GA and Rh2. GA further evoked the generation of a large number of ROS to help self-boosted drug release and increase oxidative stress, synergistically causing tumor cell apoptosis with Rh2. Overall, this carrier-free triterpene-based prodrug might provide a preeminent opinion on the design of effective chemotherapeutics with low systemic toxicity against OSCC.
Collapse
Affiliation(s)
- Jie Zhong
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Guantong He
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xu Ma
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jinhai Ye
- Department of Oral and Maxillofacial Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhuo-Ying Tao
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongxian Li
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuxue Zhang
- Department of Chemistry, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Peijian Feng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Xinmiao Lan
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yu-Xiong Su
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Akshat R, Bharti A, Padmanabhan P. Atomistic molecular dynamics simulation and COSMO-SAC approach for enhanced 1,3-propanediol extraction with imidazolium-based ionic liquids. J Mol Model 2024; 30:164. [PMID: 38733431 DOI: 10.1007/s00894-024-05964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
CONTEXT 1,3-Propanediol (1,3-PDO) is a key chemical in various industries, including pharmaceuticals and material sciences, and is projected to see significant market growth. However, the current challenges in its downstream processing, particularly in terms of cost and efficiency, highlight the need for innovative solutions. Our study delves into using ionic liquids (ILs) as a potential alternative, aiming to address these critical separation challenges more sustainably and efficiently. In this study, we utilized molecular dynamics (MD) simulations and the COSMO-SAC to examine 1,3-propanediol (1,3-PDO) extraction using four imidazolium-based ionic liquids with 1-butyl-3-methylimidazolium [Bmim] cation and with different anions bis(pentafluoroethanesulfonyl)imide [NPF2]-, bis(trifluoromethylsulfonyl)imide [NTF2]-, thiocyanate [SCN]-, and trifluoromethanesulfonate [TFO]-. Molecular dynamics simulations, incorporating analysis of radial distribution functions (RDF) and spatial distribution functions (SDF), revealed that [Bmim][SCN] and [Bmim][TFO] exhibit enhanced interactions with 1,3-PDO. Notably, [Bmim][SCN] formed the most hydrogen bonds, averaging 1.639 per molecule, due to its coordinating [SCN]- anion. This was in contrast to the fewer hydrogen bonds formed by non-coordinating anions in [Bmim][NPF2] and [Bmim][NTF2]. In ternary systems, [Bmim][SCN] and [Bmim][TFO] demonstrated superior selectivity for 1,3-PDO extraction compared to the other ionic liquids, with selectivity values around 29. These findings, supported by COSMO-SAC predictive modeling, highlight the potential of [Bmim][SCN] as a promising candidate for 1,3-PDO extraction, emphasizing the importance of anion selection in optimizing ionic liquid properties for this application. METHODS In our study, we employed MD simulations, incorporating the OPLS-AA force field, and COSMO-SAC to investigate the extraction of 1,3-PDO using imidazolium-based ionic liquids: [Bmim][NTF2], [Bmim][NPF2], [Bmim][SCN], and [Bmim][TFO]. The MD simulations were conducted using LAMMPS software, focusing on elucidating the RDF, SDF, and hydrogen bonding. Analysis of the distribution coefficient (β) and selectivity (S) for the ternary mixture was also conducted. These aspects of the simulation were analyzed using TRAVIS and VMD software. Additionally, the COSMO-SAC model was employed to determine the activity coefficients of 1,3-PDO in the ionic liquids, with molecular optimization conducted using Gaussian16 and sigma profile calculations performed using COSMO-SAC.
Collapse
Affiliation(s)
- Raj Akshat
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi, Jharkhand, 835215, India
| | - Anand Bharti
- Department of Chemical Engineering, Birla Institute of Technology, Ranchi, Jharkhand, 835215, India.
| | - Padmini Padmanabhan
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
3
|
Wang LY, Liu J, Bao KS, Zhu ZY. The structure modification with glucosamine of glycyrrhetinic acid extracted from Glycyrrhiza uralensis Fisch offal and mechanism of action based on network pharmacology and molecular docking against type II diabetes. Fitoterapia 2023; 171:105714. [PMID: 39492413 DOI: 10.1016/j.fitote.2023.105714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
In order to improve the solubility and hypoglycemic activity of glycyrrhetinic acid (GA), the active mechanism of action of new compounds was explored. A novel 2-(N-3-acetylglycyrrhetinoyl)-N-glucopyranosyl-2-acetamide (compound 9) was synthesized by adding glucosamine (GlcN) to the C-30 carboxyl group of GA, and the hypoglycemic activity mechanism of compound 9 was explored by network pharmacology and molecular docking. The results showed that the solubility of compound 9 was better than GA, and the α-glucosidase inhibitory effect of compound 9 (IC50 = 0.160 mmol/L) was better than GA (IC50 = 0.381 mmol/L). The HepG2 insulin resistance (HepG2-IR) model found that glucose consumption in insulin-resistant cells can increase with the help of GA and compound 9. Network pharmacology screened 268 targets of compound 9 and disease. The core genes in the protein interaction network are epidermal growth factor receptor (EGFR), phosphokinase (SRC), MAPK1, MMP2, mmp9, etc., which are involved in prostate cancer, blood lipid and atherosclerosis, peroxisome proliferation activation receptor (PPAR) signaling pathway, Th17 cell differentiation and other pathways.
Collapse
Affiliation(s)
- Liu-Ya Wang
- State Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jie Liu
- State Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Kai-Sheng Bao
- State Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Yuan Zhu
- State Key Laboratory of Food Quality and Health of Tianjin, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China; College of Food Science and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
4
|
Enhancement of the Bioavailability and Anti-Inflammatory Activity of Glycyrrhetinic Acid via Novel Soluplus®—A Glycyrrhetinic Acid Solid Dispersion. Pharmaceutics 2022; 14:pharmaceutics14091797. [PMID: 36145545 PMCID: PMC9504515 DOI: 10.3390/pharmaceutics14091797] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Glycyrrhetinic acid (GA) is an anti-inflammatory drug with potential for development. However, the poor solubility of GA in water leads to extremely low bioavailability, which limits its clinical applications. Solid dispersions have become some of the most effective strategies for improving the solubility of poorly soluble drugs. Soluplus®, a non-cytotoxic amphiphilic solubilizer, significantly improves the solubility of BCS II drugs and improves the bioavailability of insoluble drugs. l-arginine (L-Arg) can be used as a small molecular weight excipient to assist in improving the solubility of insoluble drugs. In this study, we developed a new formulation for oral administration by reacting GA and L-Arg to form salts by co-solvent evaporation and then adding the polymer-solvent Soluplus® with an amphiphilic chemical structure to prepare a solid dispersion GA-SD. The chemical and physical properties of GA-SD were characterized by DLS, TEM, XRD, FT-IR and TG. The anti-inflammatory activity of GA-SD was verified by LPS stimulation of RAW 267.5 cells simulating a cellular inflammation model, TPA-induced ear edema model in mice, and ethanol-induced gastric ulcer model. The results showed that the amide bond and salt formation of GA-SD greatly improved GA solubility. GA-SD effectively improved the anti-inflammatory effect of free GA in vivo and in vitro, and GA-SD had no significant effect on liver and kidney function, no significant tissue toxicity, and good biosafety. In conclusion, GA-SD with L-Arg and Soluplus® is an effective method to improve the solubility and bioavailability of GA. As a safe and effective solid dispersion, it is a promising anti-inflammatory oral formulation and provides some references for other oral drug candidates with low bioavailability.
Collapse
|
5
|
Cheng H, Jia X, Yuan D, Li H, Wang L, Fu T, Qiao H, Chen J, Wang Z, Cui X, Cheng J, Li J. Excipient-free nanodispersions dominated by amphiphilic glycosides for bioavailability enhancement of hydrophobic aglycones, a case of glycyrrhetinic acid with diammonium glycyrrhizinate. Int J Pharm 2022; 620:121770. [PMID: 35483618 DOI: 10.1016/j.ijpharm.2022.121770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Natural aglycones, a major ingredient accompanied by glycosides in plants, have played an important role in the treatment of various diseases. However, their bioavailability is limited by their poor water solubility. In contrast to previous efforts that required the use of new exotic materials which may raise concerns about biocompatibility, we report the first case of excipient-free nanodispersions in which an insoluble glycyrrhetinic acid (GA) assembled with its amphiphilic parent drug diammonium glycyrrhizinate (DG) into water-dispersible nanodispersions (130.8 nm for particle size and 91.74% for encapsulation efficiency). This strategy largely increased GA's water apparent solubility by hundreds of times to 549.0 μg/mL with a high cumulative dissolution percentage in vitro greater than 80% in 5 min. The study on the formation mechanism showed that the OH, C-O and C=O group stretching peaks shifted in the FTIR spectra of GA-DG nanodispersions, while the COOH peak (δ COOH 12.19 ppm) disappeared in the 1H NMR spectrum of GA-DG nanodispersions, indicating that carboxyl groups on GA may interact with the hydroxyl groups of DG in solution. Molecular dynamics simulations suggested that both hydrophobic interactions and hydrogen-bond interactions contribute to the coassembly of GA and DG molecules in aqueous solution. Oral pharmacokinetic studies in rats demonstrated that such nanodispersions have a significant increase in Cmax and AUC0-t of 2.45- and 3.45-fold compared with those for GA, respectively. Therefore, this strategy, employing amphiphilic glycosides as excipients to prepare nanodispersions, not using new materials, paves the way for the further application of hydrophobic aglycone drugs.
Collapse
Affiliation(s)
- Hongqing Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Xiaoshun Jia
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Dandan Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Huaning Li
- Medical Department, Weifang Medical College, Weifang 261042, PR China
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Tingming Fu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Hongzhi Qiao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China
| | - Jing Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zengwu Wang
- Medical Department, Weifang Medical College, Weifang 261042, PR China
| | - Xiaobing Cui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jianming Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Province Engineering Research Center of Classical Prescription, Nanjing 210023, PR China.
| | - Junsong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System (DDS), Nanjing 210023, PR China.
| |
Collapse
|
6
|
Morikane D, Zang L, Nishimura N. Evaluation of the Percutaneous Absorption of Drug Molecules in Zebrafish. Molecules 2020; 25:molecules25173974. [PMID: 32878194 PMCID: PMC7504801 DOI: 10.3390/molecules25173974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 11/16/2022] Open
Abstract
In recent decades, zebrafish (Danio rerio) has become a widely used vertebrate animal model for studying development and human diseases. However, studies on skin medication using zebrafish are rare. Here, we developed a novel protocol for percutaneous absorption of molecules via the zebrafish tail skin, by applying a liquid solution directly, or using a filter paper imbibed with a chemical solution (coating). Human skin is capable of absorbing felbinac and loxoprofen sodium hydrate (LSH), but not glycyrrhetinic acid (GA) and terbinafine hydrochloride (TH). To evaluate the possibility and the quality of transdermal absorption in zebrafish, we transdermally administered these four drugs to zebrafish. Pharmacokinetics showed that felbinac was present in the blood of zebrafish subjected to all administration methods. Felbinac blood concentrations peaked at 2 h and disappeared 7 h after administration. GA was not detected following transdermal administrations, but was following exposure. LSH was not found in the circulatory system after transdermal administration, but TH was. A dose-response correlation was observed for felbinac blood concentration. These findings suggest that zebrafish are capable of absorbing drug molecules through their skin. However, the present data cannot demonstrate that zebrafish is a practical model to predict human skin absorption. Further systemic studies are needed to observe the correlations in percutaneous absorption between humans and zebrafish.
Collapse
Affiliation(s)
- Daizo Morikane
- DIA Pharmaceutical Co., Ltd., Kashihara, Nara 634-0803, Japan;
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan;
- Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
- Correspondence: ; Tel.: +81-59-231-5405
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan;
- Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| |
Collapse
|
7
|
Mechanism and Improved Dissolution of Glycyrrhetinic Acid Solid Dispersion by Alkalizers. Pharmaceutics 2020; 12:pharmaceutics12010082. [PMID: 31968604 PMCID: PMC7022421 DOI: 10.3390/pharmaceutics12010082] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
The purpose of this study was to increase the dissolution of glycyrrhetinic acid (GA) by preparing ternary solid dispersion (TSD) systems containing alkalizers, and to explore the modulating mechanism of alkalizers in solid dispersion systems. GA TSDs were prepared by hot melt extrusion (HME) with Kollidon® VA64 as the carrier and L-arginine/meglumine as the alkalizers. The in vitro release of the TSD was investigated with a dissolution test, and the dissociation constant (pKa) was used to describe the ionization degree of the drug in different pH buffers. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectra, X-ray photoelectron spectroscopy (XPS), and a molecular model were used for solid-state characterizations and to study the dissolution mechanism of the TSDs. It was evident that the dissolution of GA significantly increased as a result of the TSD compared to the pure drug and binary solid dispersion. SEM, DSC, and XPRD data showed that GA transformed into an amorphous form in TSD. As illustrated by FTIR, Raman, XPS, and molecular docking, high binding energy ion-pair complexes formed between GA and the alkalizers during the process of HME. These can destroy the H-bond between GA molecules. Further, intermolecular H-bonds formed between the alkalizers and Kollidon® VA64, which can increase the wettability of the drug. Our results will significantly improve the solubility and dissolution of GA. In addition, the lower pKa value of TSD indicates that higher ionization is beneficial to the dissolution of the drug. This study should facilitate further developments of TSDs containing alkalizers to improve the dissolution of weakly acidic drugs and gain a richer understanding of the mechanism of dissolution.
Collapse
|
8
|
The Effect of SBA-15 Surface Modification on the Process of 18β-Glycyrrhetinic Acid Adsorption: Modeling of Experimental Adsorption Isotherm Data. MATERIALS 2019; 12:ma12223671. [PMID: 31703371 PMCID: PMC6888531 DOI: 10.3390/ma12223671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
This study aimed at the adsorption of 18β-glycyrrhetinic acid (18β-GA), a pentacyclic triterpenoid derivative of oleanane type, onto functionalized mesoporous SBA-15 silica and non-porous silica (Aerosil®) as the reference adsorbent. Although 18β-GA possesses various beneficial pharmacological properties including antitumor, anti-inflammatory, and antioxidant activity, it occurs is small amounts in plant materials. Thus, the efficient methods of this bioactive compound enrichment from vegetable raw materials are currently studied. Siliceous adsorbents were functionalized while using various alkoxysilane derivatives, such as (3-aminopropyl)trimethoxysilane (APTMS), [3-(methylamino)propyl]trimethoxysilane (MAPTMS), (N,N-dimethylaminopropyl)trimethoxysilane (DMAPTMS), and [3-(2-aminothylamino)propyl] trimethoxysilane (AEAPTMS). The effect of silica surface modification with agents differing in the structure and the order of amine groups on the adsorption capacity of the adsorbent and adsorption efficiency were thoroughly examined. The equilibrium adsorption data were analyzed while using the Langmuir, Freundlich, Redlich-Peterson, Temkin, Dubinin-Radushkevich, and Dubinin-Astakhov isotherms. Both linear regression and nonlinear fitting analysis were employed in order to find the best-fitted model. The adsorption isotherms of 18β-GA onto silicas functionalized with APTMS, MAPTMS, and AEAPTMS indicate the Langmuir-type adsorption, whereas sorbents modified with DMAPTMS show the constant distribution of the adsorbate between the adsorbent and the solution regardless of silica type. The Dubinin-Astakhov, Dubinin-Radushkevich, and Redlich-Peterson equations described the best the process of 18β-GA adsorption onto SBA-15 and Aerosil® silicas that were functionalized with APTMS, MAPTMS, and AEAPTMS, regardless of the method that was used for the estimation of isotherm parameters. Based on nonlinear fitting analysis (Dubinin-Astakhov model), it can be concluded that SBA-15 sorbent that was modified with APTMS, MAPTMS, and AEAPTMS is characterized by twice the adsorption capacity (202.8–237.3 mg/g) as compared to functionalized non-porous silica (118.2–144.2 mg/g).
Collapse
|
9
|
Liang S, Li M, Yu X, Jin H, Zhang Y, Zhang L, Zhou D, Xiao S. Synthesis and structure-activity relationship studies of water-soluble β-cyclodextrin-glycyrrhetinic acid conjugates as potential anti-influenza virus agents. Eur J Med Chem 2019; 166:328-338. [PMID: 30731401 PMCID: PMC7115653 DOI: 10.1016/j.ejmech.2019.01.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/24/2022]
Abstract
Glycyrrhetinic acid (GA) is a major constituent of the herb Glycyrrhiza glabra, and many of its derivatives demonstrate a broad spectrum of antiviral activities. In the current study, 18 water-soluble β-cyclodextrin (CD)-GA conjugates, in which GA was covalently coupled to the primary face of β-CD using 1,2,3-triazole moiety along with varying lengths of linker, were synthesized via copper-catalyzed azide-alkyl cycloaddition reaction. Benefited from the attached β-CD moiety, all these conjugates showed lower hydrophobicity (AlogP) compared with their parent compound GA. With the exception of per-O-methylated β-CD-GA conjugate (35), all other conjugates showed no significant cytotoxicity to MDCK cells, and these conjugates were then screened against A/WSN/33 (H1N1) virus using the cytopathic effect assay. The preliminary results indicated that six conjugates showed promising antiviral activity, and the C-3 and C-30 of GA could tolerate some modifications. Our findings suggested that GA could be used as a lead compound for the development of potential anti-influenza virus agents.
Collapse
Affiliation(s)
- Shuobin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Man Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaojuan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yongmin Zhang
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
10
|
Synthesis, Characterization, and Evaluation of Triptolide Cell-Penetrating Peptide Derivative for Transdermal Delivery of Triptolide. Mol Pharm 2018; 15:560-570. [PMID: 29307194 DOI: 10.1021/acs.molpharmaceut.7b00914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triptolide (TP) has been used as one of the most common systemic treatments for various diseases since the 1960s. However, TP displays diverse side effects on various organs, which limits its clinical application. To overcome this issue, numerous C-14-hydroxyl group derivatives of TP have been synthesized. In this research, the C-14-hydroxyl group of TP is modified by a cell-penetrating peptide polyarginine (R7). The derivative TP-disulfide-CR7 (TP-S-S-CR7) containing a disulfide linkage between TP and R7 possesses less toxicity at various concentrations on the immortal human keratinocyte (HaCaT) cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay compared with free TP. Treating HaCaT cells with TP (100 nM) could increase intracellular ROS (reactive oxygen species) and decrease the activity of SOD (superoxide dismutase). Meanwhile, treating HaCaT cells with equimolar concentration of TP-S-S-CR7 did not cause both of the above TP-induced alterations. In addition, TP-S-S-CR7 did not show significant dermal toxicity on guinea pigs and could efficiently overcome the barrier of corneum and then reach epidermis and dermis within 2 h of transdermal administration. In addition, there was a relatively lower concentration of TP in blood indicating less toxicity on organs. Such results suggest that topical therapy using polyarginine is possible by the transdermal delivery of TP.
Collapse
|
11
|
Weng W, Quan P, Liu C, Zhao H, Fang L. Design of a Drug-in-Adhesive Transdermal Patch for Risperidone: Effect of Drug-Additive Interactions on the Crystallization Inhibition and In Vitro / In Vivo Correlation Study. J Pharm Sci 2016; 105:3153-3161. [DOI: 10.1016/j.xphs.2016.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 11/24/2022]
|
12
|
Ding X, Sun Y, Wang Q, Pu T, Li X, Pan Y, Yang Y. Pharmacokinetics and pharmacodynamics of glycyrrhetinic acid with Paeoniflorin after transdermal administration in dysmenorrhea model mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:864-871. [PMID: 27288922 DOI: 10.1016/j.phymed.2016.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 04/15/2016] [Accepted: 05/16/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Glycyrrhetinic acid (GA) and paeoniflorin (PF) are the main active ingredients in Chinese peony- Liquorice Decoction, a widely used Traditional Chinese Medicine. HYPOTHESIS/PURPOSE The aim of this work was to investigate the combinatory analgesic effect of GA and PF after percutaneous administration and to define their pharmacokinetic/pharmacodynamic (PK/PD) characteristics. STUDY DESIGN AND METHODS GA and PF were produced to transdermal patches based on previous research, and the permeation parameters of GA and PF in the patches were investigated with in vitro experiments. Dysmenorrhea model mice were then produced to compare the analgesic effects of the patches with different proportions of GA-PF. In the in vivo assessment, the number of writhes exhibited by the dysmenorrhea mice was recorded at designated time points, and skin, muscle under skin and plasma samples were collected, for assessments of drug distribution, pharmacokinetics parameters and PK/PD characteristics. RESULTS AND CONCLUSION In dysmenorrhea mice, GA-PF and meloxicam (the positive control drug) could relieve pain to equal degrees. Specifically, a single dose of the optimized patches (10%GA-10%PF, wt) exerted a steady analgesic effect for 48h in dysmenorrhea mice, but this effect lagged behind the changes in the plasma concentration. Evaluation with the Bliss Independence criterion revealed that the two ingredients displayed a synergistic effect. Then the PK/PD relationship of GA in this compound preparation was defined with this synergistic effect. The preparation might be suitable for topical spasmolysis and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Xue Ding
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Yuming Sun
- Chemical Analysis and Research Center, Dalian University of Technology, Dalian, China
| | - Qing Wang
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China.
| | - Tingting Pu
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Xiaohui Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yaqing Pan
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Yang Yang
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
13
|
Sadowska-Bartosz I, Pączka A, Mołoń M, Bartosz G. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2013; 13:820-30. [PMID: 24028688 DOI: 10.1111/1567-1364.12091] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/30/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is used as a cryoprotectant for the preservation of cells, including yeast, and as a solvent for chemical compounds. We report that DMSO induces oxidative stress in the yeast. Saccharomyces cerevisiae wt strain EG-103 and its mutants Δsod1, Δsod2, and Δsod1 Δsod2 were used. Yeast were subjected to the action of 1-14% DMSO for 1 h at 28 °C. DMSO induced a concentration-dependent inhibition of yeast growth, the effect being more pronounced for mutants devoid of SOD (especially Δsod1 Δsod2). Cell viability was compromised. DMSO-concentration-dependent activity loss of succinate dehydrogenase, a FeS enzyme sensitive to oxidative stress, was observed. DMSO enhanced formation of reactive oxygen species, estimated with dihydroethidine in a concentration-dependent manner, the effect being again more pronounced in mutants devoid of superoxide dismutases. The content of cellular glutathione was increased with increasing DMSO concentrations, which may represent a compensatory response. Membrane fluidity, estimated by fluorescence polarization of DPH, was decreased by DMSO. These results demonstrate that DMSO, although generally considered to be antioxidant, induces oxidative stress in yeast cells.
Collapse
|
14
|
Dong S, Furutani Y, Kimura S, Zhu Y, Kawabata K, Furutani M, Nishikawa T, Tanaka T, Masaki T, Matsuoka R, Kiyama R. Brefeldin A is an estrogenic, Erk1/2-activating component in the extract of Agaricus blazei mycelia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:128-136. [PMID: 23215459 DOI: 10.1021/jf304546a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We purified an Erk1/2-activating component in Agaricus blazei and identified it as brefeldin A (BFA). The extract of A. blazei mycelia (ABE) previously showed an estrogenic gene-expression profile and positive effects in patients with cardiovascular symptoms. Here, we demonstrate that BFA has estrogenic activity in reporter gene assays and stimulates an estrogen-receptor pathway revealed by activation of Erk1/2, although BFA had no growth-stimulating activity in breast cancer MCF-7 cells. The presence of estrogenic activity without any explicit growth-stimulating effect is unique to BFA, and such components are termed here "silent estrogens". To test this hypothesis, we examined the target-gene transcription and signaling pathways induced by BFA. Furthermore, BFA was found in the mycelium but not fruiting body of A. blazei, suggesting the potential use of ABE for therapeutics and its supplementary use in traditional medicines and functional foods.
Collapse
Affiliation(s)
- Sijun Dong
- Biomedical Research Institute, Research and Innovation Promotion Headquarters, National Institute of Advanced Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lallemand B, Ouedraogo M, Wauthoz N, Lamkami T, Mathieu V, Jabin I, Amighi K, Kiss R, Dubois J, Goole J. Synthesis and plasma pharmacokinetics in CD-1 mice of a 18β-glycyrrhetinic acid derivative displaying anti-cancer activity. ACTA ACUST UNITED AC 2012; 65:402-10. [PMID: 23356849 DOI: 10.1111/j.2042-7158.2012.01603.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/21/2012] [Indexed: 01/27/2023]
Abstract
OBJECTIVES The plasma pharmacokinetic profile in CD-1 mice of a novel 18β-glycyrrhetinic acid (GA) derivative, which displays in vitro anti-cancer activity, was assessed. METHODS This study involved an original one-step synthesis of N-(2-{3-[3,5-bis(trifluoromethyl)phenyl]ureido}ethyl)-glycyrrhetinamide, (2) a compound that displays marked anti-proteasome and anti-kinase activity. The bioselectivity profile of 2 on human normal NHDF fibroblasts vs human U373 glioblastoma cells was assessed. Maximal tolerated dose (MTD) profiling of 2 was carried out in CD1 mice, and its serum pharmacokinetics were profiled using an acute intravenous administration of 40 mg/kg body weight. KEY FINDINGS Compound 2 displayed IC(50) in vitro growth inhibitory concentrations of 29 and 8 μm on NHDF fibroblasts and U373 glioblastoma cells, respectively, thus a bioselectivity index of ∼4. The intravenous pharmacokinetic parameters revealed that 2 was rapidly distributed (t(1/2dist) of ∼3 min) but slowly eliminated (t(1/2elim) = ∼77 min). CONCLUSIONS This study describes an original and reliable nanoemulsion of a GA derivative with both anti-proteasome and anti-kinase properties and that should be further tested in vivo using various human xenograft or murine syngeneic tumour models with both single and chronic intravenous administration.
Collapse
Affiliation(s)
- Benjamin Lallemand
- Laboratory of Bioanalytical Chemistry, Toxicology, and Applied Chemistry, Université de Ouagadougou(U.L.B), Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nocca G, D'Antò V, Rivieccio V, Schweikl H, Amato M, Rengo S, Lupi A, Spagnuolo G. Effects of ethanol and dimethyl sulfoxide on solubility and cytotoxicity of the resin monomer triethylene glycol dimethacrylate. J Biomed Mater Res B Appl Biomater 2012; 100:1500-6. [PMID: 22689313 DOI: 10.1002/jbm.b.32718] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/12/2012] [Accepted: 03/21/2012] [Indexed: 12/24/2022]
Abstract
Several in vitro studies have reported contrasting values for triethylene glycol-dimethacrylate (TEGDMA) concentrations shown to induce cytotoxic effects. The aim of this study was to evaluate the effective concentrations of TEGDMA reached under the routine experimental conditions used in biocompatibility in vitro tests and determines changes in cytotoxicity and the associated production of reactive oxygen species (ROS) based on different TEGDMA solutions. TEGDMA was added to cell culture medium either directly or previously dissolved in dimethyl sulfoxide (DMSO) or ethanol (EtOH), both in the presence and absence of cells. Intracellular and extracellular TEGDMA concentrations were determined by high performance liquid chromatography (HPLC). The cytotoxicity effects of TEGDMA preparations were determined in 3T3-fibroblasts by 3-(4,5 dimethyiazol-2-1)-2-5-diphenyl tetrazolium bromide assay. The production of ROS was measured by flow cytometry. In the absence of cells the effective final TEGDMA concentrations obtained in Dulbecco's Modified Eagle Medium were significantly lower than the nominal one. When 2 mmol/L TEGDMA was first solubilized in DMSO or EtOH, a significant decrease in cell viability, and an increase in ROS production-compared to pure TEGDMA-was observed. After 2 h of incubation, TEGDMA previously dissolved in DMSO or ETOH was reduced by 15% and 20%, respectively, whereas otherwise it remained unaffected. Our results demonstrate that the effective concentration of TEGDMA dissolved in culture medium (in the presence or absence of solvents) does not concur with the nominal one. Therefore, the presence of the utilized solvents does not substantially alter the monomer solubility but eases its entrance into the cells thus improving its cytotoxic potency.
Collapse
Affiliation(s)
- Giuseppina Nocca
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Li S, Qiu Y, Zhang S, Gao Y. A Novel Transdermal Fomulation of 18ß-Glycyrrhetic Acid with Lysine for Improving Bioavailability and Efficacy. Skin Pharmacol Physiol 2012; 25:257-68. [DOI: 10.1159/000339652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/16/2012] [Indexed: 11/19/2022]
|