1
|
Overcoming the intestinal barrier: A look into targeting approaches for improved oral drug delivery systems. J Control Release 2020; 322:486-508. [DOI: 10.1016/j.jconrel.2020.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|
2
|
Kigen G, Edwards G. Enhancement of saquinavir absorption and accumulation through the formation of solid drug nanoparticles. BMC Pharmacol Toxicol 2018; 19:79. [PMID: 30509316 PMCID: PMC6278041 DOI: 10.1186/s40360-018-0275-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/26/2018] [Indexed: 12/03/2022] Open
Abstract
Background Nanotechnology is now considered a promising drug delivery method for orally administered hydrophobic drugs to their sites of action. The effect of nanodispersion on cellular transport and accumulation of saquinavir (SQV) was investigated. Methods The transport of five solid drug nanoparticle (SDN) SQV formulations along Caco-2 cell monolayers (CCM) was compared to that of standard SQV. The SDNs were prepared using SQV mesylate (20%), Pluronic F127 (10%) plus five other excipients (HPMC, PVP, PVA, Lecithin S75 and Span 80) in different proportions. Cellular accumulation in CEM parental and CEMVBL (P-gp overexpressing) cells was conducted to ascertain the effect of nanodispersion on P-gp mediated efflux of SQV. All SDN formulations were dissolved in water, whereas SQV in DMSO to improve solubility. Quantification was via HPLC. Results From transport results, an SDN sample composed of SQV mesylate/Pluronic F127 plus HPMC (70%) and had a 24% increase in apparent absorption compared to standard SQV, largely driven by a 38% reduction in basolateral to apical permeation. Additionally, the formulation and two others (SQV mesylate/Pluronic F127 alone; and + HPMC (65%)/Lecithin [5%]) accumulated more significantly in CEM cells, suggesting enhanced delivery to these cells. Moreover, accumulation and transport of the three SDNs compared well to that of SQV despite being dissolved in water, suggestive of improved dissolution. The inclusion of PVA resulted in increased efflux. Conclusion The use of HPMC and Pluronic F127 produced SQV SDNs with improved permeation in Caco-2 cells and improved accumulation in CEM cells, but negative effects with PVA.
Collapse
Affiliation(s)
- Gabriel Kigen
- Department of Pharmacology and Toxicology, Moi University School of Medicine, P.O. Box 4606, Eldoret, 30100, Kenya. .,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK.
| | - Geoffrey Edwards
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, L69 3GE, UK
| |
Collapse
|
3
|
Subudhi BB, Sahu PK, Singh VK, Prusty S. Conjugation to Ascorbic Acid Enhances Brain Availability of Losartan Carboxylic Acid and Protects Against Parkinsonism in Rats. AAPS JOURNAL 2018; 20:110. [PMID: 30350232 DOI: 10.1208/s12248-018-0270-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022]
Abstract
Identification of renin-angiotensin system in the interplay of hypertension and neurodegeneration has paved the way for the repurposing of antihypertensive drugs against Parkinsonism. Losartan carboxylic acid (LCA), the potent AT1 blocker metabolite of losartan, suffers from poor bioavailability and brain access. Since ascorbate transporters have earlier shown enough flexibility as carriers, we have conjugated losartan carboxylic acid to ascorbic acid with the aim of achieving higher oral/brain availability. Ester of LCA and ascorbic acid (FED) was developed keeping in view the substrate specificity of ascorbate transporters. Oral/brain bioavailability was assessed using in vivo pharmacokinetic model. Effect on central nervous system (CNS) and protection against Parkinsonism was evaluated using in vivo models. FED enhanced bioavailability of LCA. The higher brain availability of LCA enabled CNS protection as evident from the increase in locomotor activity, improved motor coordination, and protection against drug-induced catatonia. In conclusion, FED offers an approach to repurpose LCA against Parkinsonism. This can encourage further investigation to simultaneously address hypertension and neurodegeneration.
Collapse
Affiliation(s)
- Bharat Bhusan Subudhi
- Drug Development and Analysis Lab., School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Ghatikia, Kalinganagar, Bhubaneswar, Odisha, 751029, India.
| | - Pratap Kumar Sahu
- Drug Development and Analysis Lab., School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Ghatikia, Kalinganagar, Bhubaneswar, Odisha, 751029, India
| | | | - Shaktiketan Prusty
- Drug Development and Analysis Lab., School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Ghatikia, Kalinganagar, Bhubaneswar, Odisha, 751029, India.
| |
Collapse
|
4
|
Subbaiah MAM, Meanwell NA, Kadow JF, Subramani L, Annadurai M, Ramar T, Desai SD, Sinha S, Subramanian M, Mandlekar S, Sridhar S, Padmanabhan S, Bhutani P, Arla R, Jenkins SM, Krystal MR, Wang C, Sarabu R. Coupling of an Acyl Migration Prodrug Strategy with Bio-activation To Improve Oral Delivery of the HIV-1 Protease Inhibitor Atazanavir. J Med Chem 2018; 61:4176-4188. [PMID: 29693401 DOI: 10.1021/acs.jmedchem.8b00277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HIV-1 protease inhibitors (PIs), which include atazanavir (ATV, 1), remain important medicines to treat HIV-1 infection. However, they are characterized by poor oral bioavailability and a need for boosting with a pharmacokinetic enhancer, which results in additional drug-drug interactions that are sometimes difficult to manage. We investigated a chemo-activated, acyl migration-based prodrug design approach to improve the pharmacokinetic profile of 1 but failed to obtain improved oral bioavailability over dosing the parent drug in rats. This strategy was refined by conjugating the amine with a promoiety designed to undergo bio-activation, as a means of modulating the subsequent chemo-activation. This culminated in a lead prodrug that (1) yielded substantially better oral drug delivery of 1 when compared to the parent itself, the simple acyl migration-based prodrug, and the corresponding simple l-Val prodrug, (2) acted as a depot which resulted in a sustained release of the parent drug in vivo, and (3) offered the benefit of mitigating the pH-dependent absorption associated with 1, thereby potentially reducing the risk of decreased bioavailability with concurrent use of stomach-acid-reducing drugs.
Collapse
|
5
|
Subbaiah MAM, Meanwell NA, Kadow JF. Design strategies in the prodrugs of HIV-1 protease inhibitors to improve the pharmaceutical properties. Eur J Med Chem 2017; 139:865-883. [PMID: 28865281 DOI: 10.1016/j.ejmech.2017.07.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 11/26/2022]
Abstract
Combination antiretroviral therapy (cART) is currently the most effective treatment for HIV-1 infection. HIV-1 protease inhibitors (PIs) are an important component of some regimens of cART. However, PIs are known for sub-optimal ADME properties, resulting in poor oral bioavailability. This often necessitates high drug doses, combination with pharmacokinetic enhancers and/or special formulations in order to effectively deliver PIs, which may lead to a high pill burden and reduced patient compliance. As a remedy, improving the ADME properties of existing drugs via prodrug and other approaches has been pursued in addition to the development of next generation PIs with improved pharmacokinetic, resistance and side effect profiles. Phosphate prodrugs have been explored to address the solubility-limiting absorption and high excipient load. Prodrug design to target carrier-mediated drug delivery has also been explored. Amino acid prodrugs have been shown to improve permeability by engaging active transport mechanisms, reduce efflux and mitigate first pass metabolism while acyl migration prodrugs have been shown to improve solubility. Prodrug design efforts have led to the identification of one marketed agent, fosamprenavir, and clinical studies with two other prodrugs. Several of the reported approaches lack detailed in vivo characterization and hence the potential preclinical or clinical benefits of these approaches are yet to be fully determined.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Prodrug Group, Department of Medicinal Chemistry, Biocon Bristol-Myers Squibb R&D Centre, Biocon Park, Bommasandra Phase IV, Jigani Link Road, Bangalore 560009, India.
| | - Nicholas A Meanwell
- Department of Discovery Chemistry and Molecular Technologies, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, NJ, 08543-4000, USA
| | - John F Kadow
- Department of Medicinal Chemistry, ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA
| |
Collapse
|
6
|
Murakami T. A Minireview: Usefulness of Transporter-Targeted Prodrugs in Enhancing Membrane Permeability. J Pharm Sci 2016; 105:2515-2526. [DOI: 10.1016/j.xphs.2016.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 11/26/2022]
|
7
|
Mandal A, Pal D, Mitra AK. Circumvention of P-gp and MRP2 mediated efflux of lopinavir by a histidine based dipeptide prodrug. Int J Pharm 2016; 512:49-60. [PMID: 27543355 DOI: 10.1016/j.ijpharm.2016.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/28/2016] [Accepted: 08/13/2016] [Indexed: 01/29/2023]
Abstract
PURPOSE This study was aimed to develop a novel Histidine-Leucine-Lopinavir (His-Leu-LPV) dipeptide prodrug and evaluate its potential for circumvention of P-gp and MRP2-mediated efflux of lopinavir (LPV) indicated for HIV-1 infection. METHODS His-Leu-LPV was synthesized following esterification of hydroxyl group of LPV and was identified by (1)H NMR and LCMS/MS techniques. Aqueous solubility, stability and cell cytotoxicity of prodrug was determined. Uptake and permeability studies were carried out using P-gp (MDCK-MDR1) and MRP2 (MDCK-MRP2) transfected cell lines. To further delineate prodrug uptake, prodrug interaction with influx transporters (PepT1 and PHT1) was determined. Enzymatic hydrolysis and reconversion of His-Leu-LPV to LPV was examined using Caco-2 cell homogenates. RESULTS Aqueous solubility generated by the prodrug was markedly higher relative to unmodified LPV. Importantly, His-Leu-LPV displayed significantly lower affinity towards P-gp and MRP2 as evident from higher uptake and transport rates. [3H]-GlySar and [3H]-l-His uptake receded to approximately 30% in the presence of His-Leu-LPV supporting the PepT1/PHT1 mediated uptake process. A steady regeneration of LPV and Leu-LPV in Caco-2 cell homogenates indicated His-Leu-LPV undergoes both esterase and peptidase-mediated hydrolysis. CONCLUSION Histidine based dipeptide prodrug approach can be an alternative strategy to improve LPV absorption across poorly permeable intestinal barrier.
Collapse
Affiliation(s)
- Abhirup Mandal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
8
|
Sheng Y, Yang X, Wang Z, Mitra AK. Stereoisomeric Prodrugs to Improve Corneal Absorption of Prednisolone: Synthesis and In Vitro Evaluation. AAPS PharmSciTech 2016; 17:718-26. [PMID: 26335418 DOI: 10.1208/s12249-015-0400-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/19/2015] [Indexed: 01/31/2023] Open
Abstract
A series of stereoisomeric prodrugs have been designed to examine efficacy in generating higher corneal absorption relative to prednisolone. Prodrugs have been studied and identified with LC/MS/MS and NMR analyses. Prodrugs have been characterized for aqueous solubility, buffer stability, and cytotoxicity. Cellular uptake and permeability studies have been conducted across MDCK-MDR1 cells to determine prodrug affinity towards P-glycoprotein (P-gp) and peptide transporters. Enzyme-mediated degradation of prodrugs has been determined using Statens Seruminstitut rabbit cornea (SIRC) cell homogenates. Prodrugs exhibited higher aqueous solubility relative to prednisolone. Prodrugs circumvented P-gp-mediated cellular efflux and were recognized by peptide transporters. Prodrugs (DP, DDP) produced with D-isomers (D-valine) were significantly stable against both chemical and enzymatic hydrolyses. The order of degradation rate constants observed in chemical and enzymatic hydrolyses were in the same order, i.e., L-valine-L-valine-prednisolone (LLP) > L-valine-D-valine-prednisolone (LDP) > D-valine-L-valine-prednisolone (DLP) > D-valine-D-valine-prednisolone (DDP). Results obtained from this study clearly suggest that stereoisomeric prodrug approach is an effective strategy to overcome P-gp-mediated efflux and improve transcorneal permeability of prednisolone following topical administration.
Collapse
|
9
|
Sheng Y, Yang X, Pal D, Mitra AK. Prodrug approach to improve absorption of prednisolone. Int J Pharm 2015; 487:242-9. [PMID: 25888804 DOI: 10.1016/j.ijpharm.2015.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 01/11/2023]
Abstract
Amino acid and dipeptide prodrugs have been developed to examine their potential in enhancing aqueous solubility and permeability as well as to bypass P-glycoprotein (P-gp) mediated cellular efflux of prednisolone. Prodrugs have been synthesized and identified with LC/MS/MS and NMR. Prodrugs displayed significantly higher aqueous solubility relative to prednisolone. These compounds also exhibited higher stability under acidic conditions relative to basic medium. [14]-Erythromycin uptake remained unaltered in the presence of valine-valine-prednisolone (VVP) indicating lower affinity toward P-gp. Moreover, VVP generated significantly higher transepithelial permeability across MDCK-MDR1 cells compared to prednisolone. Importantly, [3H]-GlySar uptake diminished significantly in the presence of VVP indicating high affinity toward peptide transporters. Moreover, prednisolone was regenerated from VVP due to enzymatic hydrolysis in SIRC cell homogenate. Results obtained from these studies clearly suggest that peptide transporter targeted prodrugs is a viable strategy to improve aqueous solubility and overcome P-gp mediated cellular efflux of prednisolone.
Collapse
Affiliation(s)
- Ye Sheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Xiaoyan Yang
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
10
|
Caon T, Kratz JM, Kuminek G, Heller M, Konig RA, Micke GA, Koester LS, Simões CMO. Oral saquinavir mesylate solid dispersions: In vitro dissolution, Caco-2 cell model permeability and in vivo absorption studies. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2014.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Patel M, Sheng Y, Mandava NK, Pal D, Mitra AK. Dipeptide prodrug approach to evade efflux pumps and CYP3A4 metabolism of lopinavir. Int J Pharm 2014; 476:99-107. [PMID: 25261710 PMCID: PMC4344907 DOI: 10.1016/j.ijpharm.2014.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 12/13/2022]
Abstract
Oral absorption of lopinavir (LPV) is limited due to P-glycoprotein (P-gp) and multidrug resistance-associated protein2 (MRP2) mediated efflux by intestinal epithelial cells. Moreover, LPV is extensively metabolized by CYP3A4 enzymes. In the present study, dipeptide prodrug approach was employed to circumvent efflux pumps (P-gp and MRP2) and CYP3A4 mediated metabolism of LPV. Valine-isoleucine-LPV (Val-Ile-LPV) was synthesized and identified by LCMS and NMR techniques. The extent of LPV and Val-Ile-LPV interactions with P-gp and MRP2 was studied by uptake and transport studies across MDCK-MDR1 and MDCK-MRP2 cells. To determine the metabolic stability, time and concentration dependent degradation study was performed in liver microsomes. Val-Ile-LPV exhibited significantly higher aqueous solubility relative to LPV. This prodrug generated higher stability under acidic pH. Val-Ile-LPV demonstrated significantly lower affinity toward P-gp and MRP2 relative to LPV. Transepithelial transport of Val-Ile-LPV was significantly higher in the absorptive direction (apical to basolateral) relative to LPV. Importantly, Val-Ile-LPV was recognized as an excellent substrate by peptide transporter. Moreover, Val-Ile-LPV displayed significantly higher metabolic stability relative to LPV. Results obtained from this study suggested that dipeptide prodrug approach is a viable option to elevate systemic levels of LPV following oral administration.
Collapse
Affiliation(s)
- Mitesh Patel
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Ye Sheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Nanda K Mandava
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
12
|
Khurana V, Kwatra D, Pal D, Mitra AK. Molecular expression and functional activity of vitamin C specific transport system (SVCT2) in human breast cancer cells. Int J Pharm 2014; 474:14-24. [PMID: 25102111 DOI: 10.1016/j.ijpharm.2014.07.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/01/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022]
Abstract
The main goal of this study is to investigate the expression of sodium dependent vitamin C transport system (SVCT2). Moreover, this investigation has been carried out to define uptake mechanism and intracellular regulation of ascorbic acid (AA) in human breast cancer cells (MDA-MB231, T47D and ZR-75-1). Uptake of [(14)C] AA was studied in MDA-MB231, T47D and ZR-75-1 cells. Functional parameters of [(14)C] AA uptake were delineated in the presence of different concentrations of unlabeled AA, pH, temperature, metabolic inhibitors, substrates and structural analogs. Molecular identification of SVCT2 was carried out with reverse transcription-polymerase chain reaction (RT-PCR). Uptake of [(14)C] AA was studied and found to be sodium, chloride, temperature, pH and energy dependent in all breast cancer cell lines. [(14)C] AA uptake was found to be saturable, with Km values of 53.85 ± 6.24, 49.69 ± 2.83 and 45.44 ± 3.16 μM and Vmax values of 18.45 ± 0.50, 32.50 ± 0.43 and 33.25 ± 0.53 pmol/min/mg protein, across MDA-MB231, T47D and ZR-75-1, respectively. The process is inhibited by structural analogs (l-AA and d-iso AA) but not by structurally unrelated substrates (glucose and PAHA). Ca(++)/calmodulin and protein kinase pathways appeared to play a crucial role in modulating AA uptake. A 626 bp band corresponding to a vitamin C transporter (SVCT2) based on the primer design was detected by RT-PCR analysis in all breast cancer cell lines. This research article describes AA uptake mechanism, kinetics, and regulation by sodium dependent vitamin C transporter (SVCT2) in MDA-MB231, T47D and ZR-75-1 cells. Also, MDA-MB231, T47D and ZR-75-1 cell lines can be utilized as a valuable in vitro model to investigate absorption and permeability of AA-conjugated chemotherapeutics.
Collapse
Affiliation(s)
- Varun Khurana
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA; INSYS Therapeutics Inc., 444 South Ellis Road, Chandler, AZ 85224, USA
| | - Deep Kwatra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108-2718, USA.
| |
Collapse
|
13
|
Khurana V, Vadlapudi AD, Vadlapatla RK, Pal D, Mitra AK. Functional characterization and molecular identification of vitamin C transporter (SVCT2) in human corneal epithelial (HCEC) and retinal pigment epithelial (D407) cells. Curr Eye Res 2014; 40:457-69. [PMID: 25014399 DOI: 10.3109/02713683.2014.935443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The main goal of this study is to investigate the existence of sodium-dependent vitamin C transport system (SVCT2) and to define time-dependent uptake mechanism and intracellular regulation of ascorbic acid (AA) in human corneal epithelial (HCEC) and human retinal pigment epithelial (D407) cells. METHODS Uptake of [(14)C] AA was studied in HCEC and D407 cells. Functional aspects of [(14)C] AA uptake were studied in the presence of different concentrations of unlabeled AA, pH, temperature, metabolic inhibitors, substrates and structural analogs. Molecular identification of SVCT2 was examined with reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Uptake of [(14)C] AA was observed to be sodium, chloride, temperature, pH and energy-dependent in both cell lines. [(14)C] AA uptake was found to be saturable, with Km values of 46.14 ± 6.03 and 47.26 ± 3.24 μM and Vmax values of 17.34 ± 0.58 and 31.86 ± 0.56 pmol/min/mg protein, across HCEC and D407 cells, respectively. The process is inhibited by structural analogs (L-AA and D-Iso AA) but not by structurally unrelated substrates (glucose and PAHA). Ca(++)/calmodulin and protein kinase pathways play an important role in modulating uptake of AA. A 626 bp band corresponding to a vitamin C transporter (SVCT2) has been identified by RT-PCR analysis in both the cell lines. CONCLUSION This research article reports regarding the ascorbic acid uptake mechanism, kinetics and regulation by sodium dependent vitamin C transporter (SVCT2) in HCEC and D407 cells. Also, SVCT2 can be utilized for targeted delivery in enhancing ocular permeation and bioavailability of highly potent ophthalmic drugs.
Collapse
Affiliation(s)
- Varun Khurana
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City , Kansas City, MO , USA
| | | | | | | | | |
Collapse
|
14
|
Zhang X, Wu W. Ligand-mediated active targeting for enhanced oral absorption. Drug Discov Today 2014; 19:898-904. [DOI: 10.1016/j.drudis.2014.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 01/08/2023]
|
15
|
Li L, Tuo J, Xie Y, Huang M, Huang M, Pi R, Hu H. Preparation, transportation mechanisms and brain-targeting evaluation in vivo of a chemical delivery system exploiting the blood-cerebrospinal fluid barrier. J Drug Target 2014; 22:724-31. [PMID: 24815906 DOI: 10.3109/1061186x.2014.915551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In recent years, specific transportation mechanisms on the blood-brain barrier (BBB) are extensively employed for brain-targeted drug delivery via colloidal nanocarriers. However, in this study, we purposed to exploit the sodium-dependent vitamin C transporter 2 (SVCT2)-mediated transportation on the blood-cerebrospinal fluid barrier to enhance central nervous system penetration of the highly hydrophilic ibuprofen (IBU) by synthesizing a SVCT2-targeted chemical delivery system (CDS), ibuprofen-C6-O-ascorbic acid (IAA). The physicochemical parameters of IAA were determined, and the transporter-mediated transportation mechanism of IAA was explored on a BBB monolayer mode. The overall brain targeting effect of IAA was assayed on mice by measuring the biodistribution of IBU after i.v. administration and calculating the pharmacokinetic parameters and targeting indexes. Results showed that lipophilicity and solubility of IAA was conspicuously improved compared with IBU. At the physiological pH, IAA was stable while in brain homogenates it was easily degraded. Transport studies on the BBB monolayer mode revealed that IAA displayed higher transepithelial permeability than IBU via SVCT2. The biodistribution study in vivo demonstrated that the overall targeting efficiency of IAA was 1.77-fold greater than that of the IBU. In conclusion, the synthetic IAA might be a promising brain-targeted CDS for smuggling small-molecule hydrophilic pharmaceuticals into the brain.
Collapse
Affiliation(s)
- Ling Li
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou , China and
| | | | | | | | | | | | | |
Collapse
|
16
|
Patel M, Mandava N, Gokulgandhi M, Pal D, Mitra AK. Amino Acid Prodrugs: An Approach to Improve the Absorption of HIV-1 Protease Inhibitor, Lopinavir. Pharmaceuticals (Basel) 2014; 7:433-52. [PMID: 24727459 PMCID: PMC4014701 DOI: 10.3390/ph7040433] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/24/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022] Open
Abstract
Poor systemic concentrations of lopinavir (LPV) following oral administration occur due to high cellular efflux by P-glycoprotein (P-gp) and multidrug resistance-associated proteins (MRPs) and extensive metabolism by CYP3A4 enzymes. In this study, amino acid prodrugs of LPV were designed and investigated for their potential to circumvent efflux processes and first pass effects. Three amino acid prodrugs were synthesized by conjugating isoleucine, tryptophan and methionine to LPV. Prodrug formation was confirmed by the LCMS/MS and NMR technique. Interaction of LPV prodrugs with efflux proteins were carried out in P-gp (MDCK-MDR1) and MRP2 (MDCK-MRP2) transfected cells. Aqueous solubility studies demonstrated that prodrugs generate higher solubility relative to LPV. Prodrugs displayed higher stability under acidic conditions and degraded significantly with rise in pH. Uptake and transport data suggested that prodrugs carry significantly lower affinity towards P-gp and MRP2 relative to LPV. Moreover, prodrugs exhibited higher liver microsomal stability relative to LPV. Hence, amino acid prodrug modification might be a viable approach for enhancing LPV absorption across intestinal epithelial and brain endothelial cells which expresses high levels of P-gp and MRP2.
Collapse
Affiliation(s)
- Mitesh Patel
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Nanda Mandava
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Mitan Gokulgandhi
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
17
|
Patel M, Mandava NK, Pal D, Mitra AK. Amino acid prodrug of quinidine: An approach to circumvent P-glycoprotein mediated cellular efflux. Int J Pharm 2014; 464:196-204. [DOI: 10.1016/j.ijpharm.2014.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 01/07/2023]
|
18
|
Boggavarapu R, Jeckelmann JM, Harder D, Schneider P, Ucurum Z, Hediger M, Fotiadis D. Expression, purification and low-resolution structure of human vitamin C transporter SVCT1 (SLC23A1). PLoS One 2013; 8:e76427. [PMID: 24124560 PMCID: PMC3790709 DOI: 10.1371/journal.pone.0076427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
Expression and purification of human membrane proteins for structural studies represent a great challenge. This is because micro- to milligram amounts of pure isolated protein are required. To this aim, we successfully expressed the human vitamin C transporter-1 (hSVCT1; SLC23A1) in Xenopus laevis oocytes and isolated highly pure protein in microgram amounts. Recombinant hSVCT1 was functional when expressed in oocytes and glycosylated. Structural analysis of purified hSVCT1 by transmission electron microscopy and single particle analysis unveiled its shape, dimensions and low-resolution structure as well as the existence of a major monomeric and minor dimeric population. Chemical crosslinking of isolated oocyte membranes containing expressed hSVCT1 indicated similar oligomeric states of hSVCT1 in lipid bilayers. This work reports the first purification and structural analysis of a human SVCT protein and opens the way for future functional and structural studies using purified hSVCT1.
Collapse
Affiliation(s)
- Rajendra Boggavarapu
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Philipp Schneider
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Matthias Hediger
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Enhanced systemic exposure of saquinavir via the concomitant use of curcumin-loaded solid dispersion in rats. Eur J Pharm Sci 2013; 49:800-4. [DOI: 10.1016/j.ejps.2013.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/22/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022]
|
20
|
Predicting human exposure of active drug after oral prodrug administration, using a joined in vitro/in silico–in vivo extrapolation and physiologically-based pharmacokinetic modeling approach. J Pharmacol Toxicol Methods 2013; 67:203-13. [DOI: 10.1016/j.vascn.2012.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/14/2012] [Accepted: 12/16/2012] [Indexed: 11/18/2022]
|
21
|
Bürzle M, Suzuki Y, Ackermann D, Miyazaki H, Maeda N, Clémençon B, Burrier R, Hediger MA. The sodium-dependent ascorbic acid transporter family SLC23. Mol Aspects Med 2013; 34:436-54. [PMID: 23506882 DOI: 10.1016/j.mam.2012.12.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/16/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Marc Bürzle
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Cao F, Gao Y, Wang M, Fang L, Ping Q. Propylene glycol-linked amino acid/dipeptide diester prodrugs of oleanolic acid for PepT1-mediated transport: synthesis, intestinal permeability, and pharmacokinetics. Mol Pharm 2013; 10:1378-87. [PMID: 23339520 DOI: 10.1021/mp300647m] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In our previous studies, ethylene glycol-linked amino acid diester prodrugs of oleanolic acid (OA), a Biopharmaceutics Classification System (BCS) class IV drug, designed to target peptide transporter 1 (PepT1) have been synthesized and evaluated. Unlike ethylene glycol, propylene glycol is of very low toxicity in vivo. In this study, propylene glycol was used as a linker to further compare the effect of the type of linker on the stability, permeability, affinity, and bioavailability of the prodrugs of OA. Seven diester prodrugs with amino acid/dipeptide promoieties containing L-Val ester (7a), L-Phe ester (7b), L-Ile ester (7c), D-Val-L-Val ester (9a), L-Val-L-Val ester (9b), L-Ala-L-Val ester (9c), and L-Ala-L-Ile ester (9d) were designed and successfully synthesized. In situ rat single-pass intestinal perfusion (SPIP) model was performed to screen the effective permeability (P(eff)) of the prodrugs. P(eff) of 7a, 7b, 7c, 9a, 9b, 9c, and 9d (6.7-fold, 2.4-fold, 1.24-fold, 1.22-fold, 4.15-fold, 2.2-fold, and 1.4-fold, respectively) in 2-(N-morpholino)ethanesulfonic acid buffer (MES) with pH 6.0 showed significant increase compared to that of OA (p < 0.01). In hydroxyethyl piperazine ethanesulfonic acid buffer (HEPES) of pH 7.4, except for 7c, 9a, and 9d, P(eff) of the other prodrugs containing 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (1.7-fold) exhibited significantly higher values than that of OA (p < 0.01). In inhibition studies with glycyl-sarcosine (Gly-Sar, a typical substrate of PepT1), P(eff) of 7a (5.2-fold), 7b (2.0-fold), 9b (3.1-fold), and 9c (2.3-fold) had significantly reduced values (p < 0.01). Compared to the apparent permeability coefficient (P(app)) of OA with Caco-2 cell monolayer, significant enhancement of the P(app) of 7a (5.27-fold), 9b (3.31-fold), 9a (2.26-fold), 7b (2.10-fold), 7c (2.03-fold), 9c (1.87-fold), and 9d (1.39-fold) was also observed (p < 0.01). Inhibition studies with Gly-Sar (1 mM) showed that P(app) of 7a, 9b, and 9c significantly reduced by 1.3-fold, 1.6-fold, and 1.4-fold (p < 0.01), respectively. These results may be attributed to PepT1-mediated transport and their differential affinity toward PepT1. According to the permeability and affinity, 7a and 9b were selected in the pharmacokinetic studies in rats. Compared with group OA, C(max) for group 7a and 9b was enhanced to 3.04-fold (p < 0.01) and 2.62-fold (p < 0.01), respectively. AUC(0→24) was improved to 3.55-fold (p < 0.01) and 3.39-fold (p < 0.01), respectively. Compared to the ethylene glycol-linked amino acid diester prodrugs of OA in our previous work, results from this study revealed that part of the propylene glycol-linked amino acid/dipeptide diester prodrugs showed better stability, permeability, affinity, and bioavailability. In conclusion, propylene glycol-linked amino acid/dipeptide diester prodrugs of OA may be suitable for PepT1-targeted prodrugs of OA to improve the oral bioavailability of OA.
Collapse
Affiliation(s)
- Feng Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | | | | | | | | |
Collapse
|
23
|
Abstract
The eye is a highly protected organ, and designing an effective therapy is often considered a challenging task. The anatomical and physiological barriers result in low ocular bioavailability of drugs. Due to these constraints, less than 5% of the administered dose is absorbed from the conventional ophthalmic dosage forms. Further, physicochemical properties such as lipophilicity, molecular weight and charge modulate the permeability of drug molecules. Vision-threatening diseases such as glaucoma, diabetic macular edema, cataract, wet and dry age-related macular degeneration, proliferative vitreoretinopathy, uveitis, and cytomegalovirus retinitis alter the pathophysiological and molecular mechanisms. Understanding these mechanisms may result in the development of novel treatment modalities. Recently, transporter/receptor targeted prodrug approach has generated significant interest in ocular drug delivery. These transporters and receptors are involved in the transport of essential nutrients, vitamins, and xenobiotics across biological membranes. Several influx transporters (peptides, amino acids, glucose, lactate and nucleosides/nucleobases) and receptors (folate and biotin) have been identified on conjunctiva, cornea, and retina. Structural and functional delineation of these transporters will enable more drugs targeting the posterior segment to be successfully delivered topically. Prodrug derivatization targeting transporters and receptors expressed on ocular tissues has been the subject of intense research. Several prodrugs have been designed to target these transporters and enhance the absorption of poorly permeating parent drug. Moreover, this approach might be used in gene delivery to modify cellular function and membrane receptors. This review provides comprehensive information on ocular drug delivery, with special emphasis on the use of transporters and receptors to improve drug bioavailability.
Collapse
|
24
|
Cao F, Jia J, Yin Z, Gao Y, Sha L, Lai Y, Ping Q, Zhang Y. Ethylene Glycol-Linked Amino Acid Diester Prodrugs of Oleanolic Acid for PepT1-Mediated Transport: Synthesis, Intestinal Permeability and Pharmacokinetics. Mol Pharm 2012; 9:2127-35. [DOI: 10.1021/mp200447r] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Cao
- Department
of Pharmaceutics and §Center of Drug Discovery, School of Pharmacy, State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jinghao Jia
- Department
of Pharmaceutics and §Center of Drug Discovery, School of Pharmacy, State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhi Yin
- Department
of Pharmaceutics and §Center of Drug Discovery, School of Pharmacy, State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yahan Gao
- Department
of Pharmaceutics and §Center of Drug Discovery, School of Pharmacy, State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lei Sha
- Department
of Pharmaceutics and §Center of Drug Discovery, School of Pharmacy, State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yisheng Lai
- Department
of Pharmaceutics and §Center of Drug Discovery, School of Pharmacy, State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qineng Ping
- Department
of Pharmaceutics and §Center of Drug Discovery, School of Pharmacy, State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yihua Zhang
- Department
of Pharmaceutics and §Center of Drug Discovery, School of Pharmacy, State
Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
25
|
Bhattacharyya S, Mehta P. The hepatoprotective potential of Spirulina and vitamin C supplemention in cisplatin toxicity. Food Funct 2011; 3:164-9. [PMID: 22119940 DOI: 10.1039/c1fo10172b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spirulina platensis is a microalgae with potent dietary phyto-antioxidant, anti-inflammatory and anti-carcinogenic properties. We investigated the mechanism of cisplatin induced hepatotoxicity and whether this natural antioxidant provided protection against cisplatin hepatotoxicity. The study was carried out in a mice model where the animals were segregated into different groups according to their treatments, e.g. control group with no treatment, cisplatin treated, cisplatin + Spirulina treated, cisplatin + vitamin C treated and cisplatin + Spirulina + vitamin C treated. The liver marker enzymes were found to be elevated following cisplatin treatment, signifying hepatotoxicity. The supplementation of Spirulina and vitamin C could effectively bring down the levels of these enzymes. Light microscopy also showed that cisplatin treatment induced liver injury and that histopathological abnormalities were prevented by Spirulina and vitamin C supplementation. This protective effect was further substantiated by the estimation of antioxidant levels and extent of lipid peroxidation in the Spirulina, vitamin C and Spirulina + vitamin C supplemented groups as compared to cisplatin alone.
Collapse
|
26
|
Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson–Boltzmann surface area calculations. J Comput Aided Mol Des 2011; 25:959-76. [DOI: 10.1007/s10822-011-9475-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
|