1
|
Lin Q, Jing Y, Yan C, Chen X, Zhang Q, Lin X, Xu Y, Chen B. Design and Application of pH-Responsive Liposomes for Site-Specific Delivery of Cytotoxin from Cobra Venom. Int J Nanomedicine 2024; 19:5381-5395. [PMID: 38859950 PMCID: PMC11164093 DOI: 10.2147/ijn.s461728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024] Open
Abstract
Background Current immunotherapies with unexpected severe side effects and treatment resistance have not resulted in the desired outcomes for patients with melanoma, and there is a need to discover more effective medications. Cytotoxin (CTX) from Cobra Venom has been established to have favorable cytolytic activity and antitumor efficacy and is regarded as a promising novel anticancer agent. However, amphiphilic CTX with excellent anionic phosphatidylserine lipid-binding ability may also damage normal cells. Methods We developed pH-responsive liposomes with a high CTX load (CTX@PSL) for targeted acidic-stimuli release of drugs in the tumor microenvironment. The morphology, size, zeta potential, drug-release kinetics, and preservation stability were characterized. Cell uptake, apoptosis-promoting effects, and cytotoxicity were assessed using MTT assay and flow cytometry. Finally, the tissue distribution and antitumor effects of CTX@PSL were systematically assessed using an in vivo imaging system. Results CTX@PSL exhibited high drug entrapment efficiency, drug loading, stability, and a rapid release profile under acidic conditions. These nanoparticles, irregularly spherical in shape and small in size, can effectively accumulate at tumor sites (six times higher than free CTX) and are rapidly internalized into cancer cells (2.5-fold higher cell uptake efficiency). CTX@PSL displayed significantly stronger cytotoxicity (IC50 0.25 μg/mL) and increased apoptosis in than the other formulations (apoptosis rate 71.78±1.70%). CTX@PSL showed considerably better tumor inhibition efficacy than free CTX or conventional liposomes (tumor inhibition rate 79.78±5.93%). Conclusion Our results suggest that CTX@PSL improves tumor-site accumulation and intracellular uptake for sustained and targeted CTX release. By combining the advantages of CTX and stimuli-responsive nanotechnology, the novel CTX@PSL nanoformulation is a promising therapeutic candidate for cancer treatment.
Collapse
Affiliation(s)
- Qing Lin
- Department of Pharmacy, Affiliated Fuzhou First Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Yafei Jing
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Cailing Yan
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Xinyi Chen
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Qiong Zhang
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
| | - Xinhua Lin
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yunlu Xu
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Center of Translational Hematology, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Bing Chen
- School of Pharmacy, Fujian Medical University, Fujian, People’s Republic of China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
2
|
Debas M, Freire RVM, Salentinig S. Supramolecular design of CO 2-responsive lipid nanomaterials. J Colloid Interface Sci 2023; 637:513-521. [PMID: 36724665 DOI: 10.1016/j.jcis.2023.01.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
HYPOTHESIS Stimuli-responsive materials can innovate in various fields, including food and pharmaceutical sciences. Their response to a specific stimulus can be utilized to release loaded bioactive molecules or sense their presence. The biocompatibility and abundance of CO2 in the environment make it an exciting stimulus for such applications. We hypothesize the formation of CO2-responsive self-assemblies of oleyl-amidine in water. Their integration into glycerol-monooleate-based (GMO) dispersions is further thought to form CO2-switchable liquid crystalline nanoparticles. The switch from an non-charged acetamidine surfactant to its cationic amidinium form triggers curvature changes that ultimately induces phase transitions. EXPERIMENTS The CO2-switchable lipid (E)-N,N-dimethyl-N-((Z)-octadec-9-en1-yl)acetimidamide (OAm) is synthesized and formulated into emulsions and dispersed liquid crystals with GMO. The supramolecular structure and its response to CO2 are characterized using small angle X-ray scattering, dynamic light scattering, ζ-potential measurements and cryogenic transmission electron microscopy. FINDINGS Depending on the composition, OAm is discovered to self-assemble into a variety of CO2-responsive lyotropic liquid crystalline structures that can be dispersed in excess water. CO2-triggered colloidal transformations from unstructured OAm-in-water emulsions to direct micelles; dispersed inverse hexagonal phase to direct rod-like micelles, and sponge phase to vesicles are discovered. These structural changes are driven by the reaction of OAm's amidine headgroup with CO2. The results provide a fundamental understanding of CO2-triggered functional nanomaterials and may guide their future design into delivery platforms and biosensors.
Collapse
Affiliation(s)
- Meron Debas
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Rafael V M Freire
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Stefan Salentinig
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
3
|
Hausig-Punke F, Richter F, Hoernke M, Brendel JC, Traeger A. Tracking the Endosomal Escape: A Closer Look at Calcein and Related Reporters. Macromol Biosci 2022; 22:e2200167. [PMID: 35933579 DOI: 10.1002/mabi.202200167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/19/2022] [Indexed: 11/11/2022]
Abstract
Crossing the cellular membrane and delivering active pharmaceuticals or biologicals into the cytosol of cells is an essential step in the development of nanomedicines. One of the most important intracellular processes regarding the cellular uptake of biologicals is the endolysosomal pathway. Sophisticated nanocarriers have been developed overcoming a major hurdle, the endosomal entrapment, and delivering their cargo to the required site of action. In parallel, in vitro assays have been established analyzing the performance of these nanocarriers. Among them, the release of the membrane-impermeable dye calcein has become a popular and straightforward method. It is accessible for most researchers worldwide, allows for rapid conclusions about the release potential, and enables the study of release mechanisms. This review is intended to provide an overview and guidance for scientists applying the calcein release assay. It comprises a survey of several applications in the study of endosomal escape, considerations of potential pitfalls, challenges and limitations of the assay, and a brief summary of complementary methods. Based on this review, we hope to encourage further research groups to take advantage of the calcein release assay for their own purposes and help to create a database for more efficient cross-correlations between nanocarriers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Franziska Hausig-Punke
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Maria Hoernke
- Chemistry and Pharmacy, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 9, 79104, Freiburg i.Br., Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
4
|
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front Bioeng Biotechnol 2021; 9:705886. [PMID: 34568298 PMCID: PMC8459376 DOI: 10.3389/fbioe.2021.705886] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Liposomes are essentially a subtype of nanoparticles comprising a hydrophobic tail and a hydrophilic head constituting a phospholipid membrane. The spherical or multilayered spherical structures of liposomes are highly rich in lipid contents with numerous criteria for their classification, including structural features, structural parameters, and size, synthesis methods, preparation, and drug loading. Despite various liposomal applications, such as drug, vaccine/gene delivery, biosensors fabrication, diagnosis, and food products applications, their use encounters many limitations due to physico-chemical instability as their stability is vigorously affected by the constituting ingredients wherein cholesterol performs a vital role in the stability of the liposomal membrane. It has well established that cholesterol exerts its impact by controlling fluidity, permeability, membrane strength, elasticity and stiffness, transition temperature (Tm), drug retention, phospholipid packing, and plasma stability. Although the undetermined optimum amount of cholesterol for preparing a stable and controlled release vehicle has been the downside, but researchers are still focused on cholesterol as a promising material for the stability of liposomes necessitating explanation for the stability promotion of liposomes. Herein, the prior art pertaining to the liposomal appliances, especially for drug delivery in cancer therapy, and their stability emphasizing the roles of cholesterol.
Collapse
Affiliation(s)
- Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
- Cipto Mangunkusumo Hospital, The National Referral Hospital, Central Jakarta, Indonesia
- Master’s Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia
| | - Dmitry O. Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology, and Food Safety, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czechia
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- Toxicology and Chemotherapy Unit (G401), German Cancer Research Center, Heidelberg, Germany
| | - Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Czechia
| |
Collapse
|
5
|
Ilangala AB, Lechanteur A, Fillet M, Piel G. Therapeutic peptides for chemotherapy: Trends and challenges for advanced delivery systems. Eur J Pharm Biopharm 2021; 167:140-158. [PMID: 34311093 DOI: 10.1016/j.ejpb.2021.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/26/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023]
Abstract
The past decades witnessed an increasing interest in peptides as clinical therapeutics. Rightfully considered as a potential alternative for small molecule therapy, these remarkable pharmaceuticals can be structurally fine-tuned to impact properties such as high target affinity, selectivity, low immunogenicity along with satisfactory tissue penetration. Although physicochemical and pharmacokinetic challenges have mitigated, to some extent, the clinical applications of therapeutic peptides, their potential impact on modern healthcare remains encouraging. According to recent reports, there are more than 400 peptides under clinical trials and 60 were already approved for clinical use. As the demand for efficient and safer therapy became high, especially for cancers, peptides have shown some exciting developments not only due to their potent antiproliferative action but also when used as adjuvant therapies, either to decrease side effects with tumor-targeted therapy or to enhance the activity of anticancer drugs via transbarrier delivery. The first part of the present review gives an insight into challenges related to peptide product development. Both molecular and formulation approaches intended to optimize peptide's pharmaceutical properties are covered, and some of their current issues are highlighted. The second part offers a comprehensive overview of the emerging applications of therapeutic peptides in chemotherapy from bioconjugates to nanovectorized therapeutics.
Collapse
Affiliation(s)
- Ange B Ilangala
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium; Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium.
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| | - Géraldine Piel
- Laboratory of Pharmaceutical Technology and Biopharmacy, Nanomedicine Development, CIRM, University of Liège, Avenue Hippocrate 15, 4000 Liège, Belgium
| |
Collapse
|
6
|
Ashique S, Sandhu NK, Chawla V, Chawla PA. Targeted Drug Delivery: Trends and Perspectives. Curr Drug Deliv 2021; 18:1435-1455. [PMID: 34151759 DOI: 10.2174/1567201818666210609161301] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/03/2021] [Accepted: 04/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to various limitations in conventional drug delivery system, it is important to focus on the target-specific drug delivery system where we can deliver the drug without any degradation. Among various challenges faced by a formulation scientist, delivering the drug to its right site, in its right dose, is also an important aim. A focused drug transport aims to extend, localize, target and have a safe drug interaction with the diseased tissue. OBJECTIVE The aim of targeted drug delivery is to make the required amount of the drug available at its desired site of action. Drug targeting can be accomplished in a number ways that include enzyme mediation, pH-dependent release, use of special vehicles, receptor targeting among other mechanisms. Intelligently designed targeted drug delivery systems also offer the advantages of a low dose of the drug along with reduced side effects which ultimately improves patient compliance. Incidences of dose dumping and dosage form failure are negligible. A focused drug transport aims to have a safe drug interaction with the diseased tissue. CONCLUSION This review focuses on the available targeting techniques for delivery to the colon, brain and other sites of interest. Overall, the article should make an excellent read for the researchers in this area. Newer drug targets may be identified and exploited for successful drug targeting.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Navjot Kaur Sandhu
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Viney Chawla
- University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India
| | - Pooja A Chawla
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
7
|
Gontsarik M, Yaghmur A, Salentinig S. Dispersed liquid crystals as pH-adjustable antimicrobial peptide nanocarriers. J Colloid Interface Sci 2021; 583:672-682. [DOI: 10.1016/j.jcis.2020.09.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
|
8
|
Sonju JJ, Dahal A, Singh SS, Jois SD. Peptide-functionalized liposomes as therapeutic and diagnostic tools for cancer treatment. J Control Release 2021; 329:624-644. [PMID: 33010333 PMCID: PMC8082750 DOI: 10.1016/j.jconrel.2020.09.055] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
Abstract
Clinically efficacious medication in anticancer therapy has been successfully designed with liposome-based nanomedicine. The liposomal formulation in cancer drug delivery can be facilitated with a functionalized peptide that mediates the specific drug delivery opportunities with increased drug penetrability, specific accumulation in the targeted site, and enhanced therapeutic efficacy. This review aims to focus on recent advances in peptide-functionalized liposomal formulation techniques in cancer diagnosis and treatment regarding recently published literature. It also will highlight different aspects of novel liposomal formulation techniques that incorporate surface functionalization with peptides for better anticancer effect and current challenges in peptide-functionalized liposomal drug formulation.
Collapse
Affiliation(s)
- Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
9
|
Penoy N, Grignard B, Evrard B, Piel G. A supercritical fluid technology for liposome production and comparison with the film hydration method. Int J Pharm 2021; 592:120093. [DOI: 10.1016/j.ijpharm.2020.120093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
|
10
|
An Update on Pharmaceutical Strategies for Oral Delivery of Therapeutic Peptides and Proteins in Adults and Pediatrics. CHILDREN-BASEL 2020; 7:children7120307. [PMID: 33352795 PMCID: PMC7766037 DOI: 10.3390/children7120307] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
While each route of therapeutic drug delivery has its own advantages and limitations, oral delivery is often favored because it offers convenient painless administration, sustained delivery, prolonged shelf life, and often lower manufacturing cost. Its limitations include mucus and epithelial cell barriers in the gastrointestinal (GI) tract that can block access of larger molecules including Therapeutic protein or peptide-based drugs (TPPs), resulting in reduced bioavailability. This review describes these barriers and discusses different strategies used to modify TPPs to enhance their oral bioavailability and/or to increase their absorption. Some seek to stabilize the TTPs to prevent their degradation by proteolytic enzymes in the GI tract by administering them together with protease inhibitors, while others modify TPPs with mucoadhesive polymers like polyethylene glycol (PEG) to allow them to interact with the mucus layer, thereby delaying their clearance. The further barrier provided by the epithelial cell membrane can be overcome by the addition of a cell-penetrating peptide (CPP) and the use of a carrier molecule such as a liposome, microsphere, or nanosphere to transport the TPP-CPP chimera. Enteric coatings have also been used to help TPPs reach the small intestine. Key efficacious TPP formulations that have been approved for clinical use will be discussed.
Collapse
|
11
|
Abri Aghdam M, Bagheri R, Mosafer J, Baradaran B, Hashemzaei M, Baghbanzadeh A, de la Guardia M, Mokhtarzadeh A. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315:1-22. [DOI: 10.1016/j.jconrel.2019.09.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
|
12
|
Yu Q, Zhang B, Zhou Y, Ge Q, Chang J, Chen Y, Zhang K, Peng D, Chen W. Co-delivery of gambogenic acid and VEGF-siRNA with anionic liposome and polyethylenimine complexes to HepG2 cells. J Liposome Res 2019; 29:322-331. [PMID: 29745740 DOI: 10.1080/08982104.2018.1473423] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background and objective: The combination of two or more different mechanisms of drugs in the treatment of cancer has become one of the effective methods. The purpose of this study was to successfully prepare a non-viral delivery system that could efficiently co-delivery siRNA and gambogenic acid (GNA) to improve the anti-cancer efficiency in HepG2 cells. Methods: The delivery system was prepared by a two-step method. First, the GNA-anionic liposome took shape by a solvent evaporation method, and then the liposome was bound to the PEI/siRNA complex by electrostatic interaction to form the final carrier system (lipopolyplexes). Agarose gel electrophoresis, MTT, particle size and zeta potential were detected to analyse the lipopolyplexes formation. The transfection efficiency of siRNA was determined by confocal laser scanning microscopy and flow cytometry. Western blotting was used to assess the VEGF protein expression levels of HepG2 cells. The cell apoptosis assay was used to assess the anti-tumour superiority of lipopolyplexes. Results: GNA-PEI/siRNA-liposome (lipopolyplexes) are significantly less cytotoxicity compared to PEI mediated carriers. Simultaneously, the results of flow cytometry and confocal laser scanning microscopy indicated that the lipopolyplexes could successfully carry siRNA into the cytoplasm, and the western-blot result evidence that the delivery system has a potential for VEGF to express down. Also compared with the control group, the results of apoptosis test suggest that the lipopolyplexes can significantly promote cell apoptosis. Conclusion: The delivery system has a potential in the combination of various drugs for cancer therapy in future.
Collapse
Affiliation(s)
- Qiongfang Yu
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Bian Zhang
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Yali Zhou
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Qin Ge
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Jiali Chang
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Yunna Chen
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Kaiqi Zhang
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Daiyin Peng
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| | - Weidong Chen
- The Collage of Pharmacy, Anhui University of Chinese Medicine , Hefei , China.,Anhui Academy of Chinese Medicine , Hefei , Anhui , China.,Institute of Drug Metabolism, Anhui University of Chinese Medicine , Hefei , China
| |
Collapse
|
13
|
Xue Y, Jung BT, Xu T. Redox degradable 3‐helix micelles with tunable sensitivity. Pept Sci (Hoboken) 2019. [DOI: 10.1002/pep2.24117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Xue
- Department of Materials Science and Engineering University of California Berkeley California
| | - Benson T. Jung
- Department of Materials Science and Engineering University of California Berkeley California
| | - Ting Xu
- Department of Materials Science and Engineering University of California Berkeley California
- Department of Chemistry University of California Berkeley California
- Tsinghua‐Berkeley‐Shenzhen Institute University of California Berkeley California
- Materials Science Division Lawrence Berkeley National Laboratory Berkeley California
| |
Collapse
|
14
|
Pereira SGT, Hudoklin S, Kreft ME, Kostevsek N, Stuart MCA, Al-Jamal WT. Intracellular Activation of a Prostate Specific Antigen-Cleavable Doxorubicin Prodrug: A Key Feature Toward Prodrug-Nanomedicine Design. Mol Pharm 2019; 16:1573-1585. [DOI: 10.1021/acs.molpharmaceut.8b01257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sara G. T. Pereira
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, U.K
| | - Samo Hudoklin
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- University of Ljubljana, Faculty of Medicine, Institute of Cell Biology, Ljubljana, Slovenia
| | - Nina Kostevsek
- Department for Nanostructured Materials, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Marc C. A. Stuart
- Electron Microscopy, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Wafa T. Al-Jamal
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Rd, Belfast BT9 7BL, U.K
| |
Collapse
|
15
|
Han SM, Na YG, Lee HS, Son GH, Jeon SH, Bang KH, Kim SJ, Lee HJ, Cho CW. Improvement of cellular uptake of hydrophilic molecule, calcein, formulated by liposome. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0358-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Ahani E, Montazer M, Toliyat T, Mahmoudi Rad M, Harifi T. Preparation of nano cationic liposome as carrier membrane for polyhexamethylene biguanide chloride through various methods utilizing higher antibacterial activities with low cell toxicity. J Microencapsul 2017; 34:121-131. [PMID: 28609225 DOI: 10.1080/02652048.2017.1296500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study suggested successful encapsulation of polyhexamethylene biguanide chloride (PHMB) into nano cationic liposome as a biocompatible antibacterial agent with less cytotoxicity and higher activities. Phosphatidylcholine, cholesterol and stearylamine were used to prepare nano cationic liposome using thin film hydration method along with sonication or homogeniser. Sonication was more effective in PHMB loaded nano cationic liposome preparation with smaller size (34 nm). FTIR, 1H NMR and XRD analyses were used to confirm the encapsulation of PHMB into nano cationic liposome. PHMB inclusion in nano cationic liposome was beneficial for increased antibacterial activity against Staphylococcus aureus and Escherichia coli. PHMB-loaded cationic liposome enables to deliver high concentrations of the antibacterial agent into the infectious cell. The cytotoxicity of PHMB entrapped in positively charged liposome was prominently reduced showing no significant visible detrimental effect on normal primary human skin fibroblast cell lines morphology confirming the effective role of cationic liposome encapsulation. Comparing with PHMB alone, encapsulation of PHMB in nano cationic liposome resulted in significant increase in cell viability from 2.4 to 63%.
Collapse
Affiliation(s)
- Elnaz Ahani
- a Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Majid Montazer
- b Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE) , Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology , Tehran , Iran
| | - Tayebeh Toliyat
- c Department of Pharmaceutics, Faculty of Pharmacy , Tehran University of Medical Sciences , Tehran , Iran
| | - Mahnaz Mahmoudi Rad
- d Skin Research Centre, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Tina Harifi
- e Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE) , Amirkabir University of Technology , Tehran , Iran
| |
Collapse
|
17
|
Bochicchio S, Sala M, Spensiero A, Scala MC, Gomez-Monterrey IM, Lamberti G, Barba AA. On the design of tailored liposomes for KRX29 peptide delivery. NEW J CHEM 2017. [DOI: 10.1039/c7nj03115g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high interest in therapeutic peptides, due to the specificity of their mechanisms of action, has stimulated the research of new delivery strategies to overcome bioavailability problems concerning the use of peptides in their naked form. In this study liposomal suitable delivery system was designed and produced.
Collapse
Affiliation(s)
- S. Bochicchio
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | - M. Sala
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | - A. Spensiero
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | - M. C. Scala
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| | | | - G. Lamberti
- Dipartimento di Ingegneria Industriale
- University of Salerno
- Italy
| | - A. A. Barba
- Dipartimento di Farmacia
- University of Salerno
- Fisciano (SA)
- Italy
| |
Collapse
|
18
|
Ahani E, Montazer M, Toliyat T, Mahmoudi Rad M. A novel biocompatible antibacterial product: Nanoliposomes loaded with poly(hexamethylene biguanide chloride). J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516675367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, nanoliposome-loaded poly(hexamethylene biguanide) is introduced as a novel biocompatible antibacterial product with higher activity than microliposomes. Soy lecithin as a clean product was used to prepare various nanoliposomes through sonication, high-pressure homogenizer, and normal homogenizer and also microliposomes through two methods of lipid film hydration and incubation methods. The nanoliposomes were formed under sonication with the size of 50 nm. The prepared liposomes were then loaded with poly(hexamethylene biguanide chloride) and the inclusion percentage was measured. The release profile of liposomes in buffer showed a release of 92% for poly(hexamethylene biguanide) during 24 h. The loaded liposomes were characterized with particle size analyzer, nuclear magnetic resonance, X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The antibacterial properties of different micro and nanoliposomes were investigated against a Gram-negative ( Escherichia coli) and a Gram-positive ( Staphylococcus aureus) bacteria. The poly(hexamethylene biguanide)–loaded nanoliposomes indicated higher antibacterial activities than microliposomes. Nanoliposomes have the potential to entrap lower poly(hexamethylene biguanide) dosages while retaining optimum therapeutic efficacy in the target site having lower cytotoxicity with lower side effects. The cytotoxicity of poly(hexamethylene biguanide) entrapped in liposomes was studied in human dermal fibroblasts and compared with free poly(hexamethylene biguanide) and blank liposomes. The maximum cytotoxicity was observed for free poly(hexamethylene biguanide) that is substantially decreased through loading within liposomes structure. Overall, the encapsulation of poly(hexamethylene biguanide) in liposomes improved the biocompatibility and safety of the product introducing a useful biocompatible antibacterial polymer for treatments of infectious diseases.
Collapse
Affiliation(s)
- Elnaz Ahani
- Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Majid Montazer
- Department of Textile Engineering, Center of Excellence in Textile, Amirkabir University of Technology, Tehran, Iran
| | - Tayebeh Toliyat
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mahmoudi Rad
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Mahlumba P, Choonara YE, Kumar P, du Toit LC, Pillay V. Stimuli-Responsive Polymeric Systems for Controlled Protein and Peptide Delivery: Future Implications for Ocular Delivery. Molecules 2016; 21:E1002. [PMID: 27483234 PMCID: PMC6273787 DOI: 10.3390/molecules21081002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022] Open
Abstract
Therapeutic proteins and peptides have become notable in the drug delivery arena for their compatibility with the human body as well as their high potency. However, their biocompatibility and high potency does not negate the existence of challenges resulting from physicochemical properties of proteins and peptides, including large size, short half-life, capability to provoke immune responses and susceptibility to degradation. Various delivery routes and delivery systems have been utilized to improve bioavailability, patient acceptability and reduce biodegradation. The ocular route remains of great interest, particularly for responsive delivery of macromolecules due to the anatomy and physiology of the eye that makes it a sensitive and complex environment. Research in this field is slowly gaining attention as this could be the breakthrough in ocular drug delivery of macromolecules. This work reviews stimuli-responsive polymeric delivery systems, their use in the delivery of therapeutic proteins and peptides as well as examples of proteins and peptides used in the treatment of ocular disorders. Stimuli reviewed include pH, temperature, enzymes, light, ultrasound and magnetic field. In addition, it discusses the current progress in responsive ocular drug delivery. Furthermore, it explores future prospects in the use of stimuli-responsive polymers for ocular delivery of proteins and peptides. Stimuli-responsive polymers offer great potential in improving the delivery of ocular therapeutics, therefore there is a need to consider them in order to guarantee a local, sustained and ideal delivery of ocular proteins and peptides, evading tissue invasion and systemic side-effects.
Collapse
Affiliation(s)
- Pakama Mahlumba
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Lisa C du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
20
|
Hwang JY, Li Z, Loh XJ. Small molecule therapeutic-loaded liposomes as therapeutic carriers: from development to clinical applications. RSC Adv 2016. [DOI: 10.1039/c6ra09854a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review, various methods and mechanisms for encapsulation of small therapeutic molecules in liposomes for targeted delivery and triggered release, as well as their potential in the clinical uses, are discussed.
Collapse
Affiliation(s)
- Jae Yoon Hwang
- Department of Materials Science and Engineering
- National University of Singapore
- Singapore 117576
- Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE)
- Singapore 117602
- Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE)
- Singapore 117602
- Singapore
- Department of Materials Science and Engineering
- National University of Singapore
| |
Collapse
|
21
|
Hayashi K, Iwai H, Shimanouchi T, Umakoshi H, Iwasaki T, Kato A, Nakamura H. Formation of lens-like vesicles induced via microphase separations on a sorbitan monoester membrane with different headgroups. Colloids Surf B Biointerfaces 2015; 135:235-242. [DOI: 10.1016/j.colsurfb.2015.07.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022]
|
22
|
Tila D, Ghasemi S, Yazdani-Arazi SN, Ghanbarzadeh S. Functional liposomes in the cancer-targeted drug delivery. J Biomater Appl 2015; 30:3-16. [PMID: 25823898 DOI: 10.1177/0885328215578111] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is considered as one of the most severe health problems and is currently the third most common cause of death in the world after heart and infectious diseases. Novel therapies are constantly being discovered, developed and trialed. Many of the current anticancer agents exhibit non-ideal pharmaceutical and pharmacological properties and are distributed non-specifically throughout the body. This results in death of the both normal healthy and malignant cells and substantially leads to accruing a variety of serious toxic side effects. Therefore, the efficient systemic therapy of cancer is almost impossible due to harmful side effects of anticancer agents to the healthy organs and tissues. Furthermore, several problems such as low bioavailability of the drugs, low drug concentrations at the site of action, lack of drug specificity and drug-resistance also cause many restrictions on clinical applications of these drugs in the tumor therapy. Different types of the liposomal formulations have been used in medicine due to their distinctive advantages associated with their structural flexibility in the encapsulation of various agents with different physicochemical properties. They can also mediate delivery of the cargo to the appropriate cell type and subcellular compartment, reducing the effective dosage and possible side effects which are related to high systemic concentrations. Therefore, these novel systems were found very promising and encouraging dosage forms for the treatment of different types of cancer by increasing efficiency and reducing the systemic toxicity due to the specific drug delivery and targeting.
Collapse
Affiliation(s)
- Dena Tila
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Ghasemi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Saeed Ghanbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Tila D, Yazdani-Arazi SN, Ghanbarzadeh S, Arami S, Pourmoazzen Z. pH-sensitive, polymer modified, plasma stable niosomes: promising carriers for anti-cancer drugs. EXCLI JOURNAL 2015; 14:21-32. [PMID: 26417350 PMCID: PMC4553888 DOI: 10.17179/excli2013-609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/07/2014] [Indexed: 12/14/2022]
Abstract
The aim of this study was the design and evaluation of a novel plasma stable, pH-sensitive niosomal formulation of Mitoxantrone by a modified ethanol injection method. Cholesterol hemisuccinate was added instead of cholesterol in order to produce pH-sensitivity property and using PEG-Poly (monomethyl itaconate)-CholC6 (PEG-PMMI-CholC6) copolymer introduced simultaneously pH-sensitivity and plasma stability properties in prepared niosomes. The pH-sensitivity and cytotoxicity of Mitoxantrone niosomes were evaluated in vitro in phosphate buffer with different pHs as well as using human ovarian cancer cell line (OVCAR-3), human breast cancer cell line (MCF-7) and human umbilical vein endothelial cells (HUVEC). Results showed that both cholesterol derivatives bearing formulations had pH-sensitive property and were found to release their contents under mild acidic conditions rapidly. In addition, the PEG-PMMI-CholC6-based niosomes could reserve the pH-sensitivity after incubation in plasma. Both Mitoxantrone-loaded pH-sensitive niosomes showed higher cytotoxicity than the conventional niosomes on OVCAR-3 and MCF-7 cell lines. However, both pH-sensitive niosomes exhibited lower cytotoxic effect on HUVEC cell line. Plasma stable, pH-sensitive niosomes could improve the cytotoxic effect and reduce the side effects of anti-tumor drugs.
Collapse
Affiliation(s)
- Dena Tila
- Tabriz University of Medical Sciences, Tabriz, Iran, Research Center for Pharmaceutical Nanotechnology
| | | | - Saeed Ghanbarzadeh
- Tabriz University of Medical Sciences, Tabriz, Iran, Research Center for Pharmaceutical Nanotechnology ; Tabriz University of Medical Sciences, Tabriz, Iran, Department of Pharmaceutics, Faculty of Pharmacy ; Tabriz University of Medical Sciences, Tabriz, Iran, Student Research Committee, Faculty of Pharmacy
| | - Sanam Arami
- Tabriz University of Medical Sciences, Tabriz, Iran, Research Center for Pharmaceutical Nanotechnology ; Tabriz University of Medical Sciences, Tabriz, Iran, Student Research Committee, Faculty of Pharmacy
| | - Zhaleh Pourmoazzen
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University,Tabriz, Iran
| |
Collapse
|
24
|
Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids Surf B Biointerfaces 2014; 123:345-63. [DOI: 10.1016/j.colsurfb.2014.09.029] [Citation(s) in RCA: 292] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/30/2014] [Accepted: 09/14/2014] [Indexed: 12/18/2022]
|
25
|
Near-infrared light-sensitive liposomes for the enhanced photothermal tumor treatment by the combination with chemotherapy. Pharm Res 2014; 31:554-65. [PMID: 24022681 DOI: 10.1007/s11095-013-1180-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 08/09/2013] [Indexed: 01/15/2023]
Abstract
PURPOSE To develop a near-infrared (NIR) light-sensitive liposome, which contains hollow gold nanospheres (HAuNS) and doxorubicin (DOX), and evaluate their potential utility for enhancing antitumor activity and controlling drug release. METHODS The liposomes (DOX&HAuNS-TSL) were designed based on a thermal sensitive liposome (TSL) formulation, and hydrophobically modified HAuNS were attached onto the membrane of the liposomes. The behavior of DOX release from the liposomes was investigated by the dialysis, diffusion in agarose gel and cellular uptake of the drug. The biodistribution of DOX&HAuNS-TSL was assessed by i.v. injection in tumor-bearing nude mice. Antitumor efficacy was evaluated both histologically using excised tissue and intuitively by measuring the tumor size and weight. RESULTS Rapid and repetitive DOX release from the liposomes (DOX&HAuNS-TSL), could be readily achieved upon NIR laser irradiation. The treatment of tumor cells with DOX&HAuNS-TSL followed by NIR laser irradiation showed significantly greater cytotoxicity than the treatment with DOX&HAuNS-TSL alone, DOX-TSL alone (chemotherapy alone) and HAuNS-TSL plus NIR laser irradiation (Photothermal ablation, PTA, alone). In vivo antitumor study indicated that the combination of simultaneous photothermal and chemotherapeutic effect mediated by DOX&HAuNS-TSL plus NIR laser presented a significantly higher antitumor efficacy than the PTA alone mediated by HAuNS-TSL plus NIR laser irradiation. CONCLUSIONS Our study could be as the valuable reference and direction for the clinical application of PTA in tumor therapy.
Collapse
|
26
|
Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. J Control Release 2014; 190:352-70. [DOI: 10.1016/j.jconrel.2014.05.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/29/2022]
|
27
|
Ai X, Sun J, Zhong L, Wu C, Niu H, Xu T, Lian H, Han X, Ren G, Ding W, Wang J, Pu X, He Z. Star-Shape Redox-Responsive PEG-Sheddable Copolymer of Disulfide-Linked Polyethylene Glycol-Lysine-di-Tocopherol Succinate for Tumor-Triggering Intracellular Doxorubicin Rapid Release: Head-to-Head Comparison. Macromol Biosci 2014; 14:1415-28. [DOI: 10.1002/mabi.201400149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyu Ai
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Jin Sun
- Department of Biopharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
- Key Laboratory of Drug Delivery Technology and Pharmacokinetics; Tianjin Institute of Pharmaceutical Research; Tianjin P. R. China
| | - Lu Zhong
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Chunnuan Wu
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Handong Niu
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Tao Xu
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - He Lian
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Xiaopeng Han
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Guolian Ren
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Wenya Ding
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Jia Wang
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| | - Xiaohui Pu
- Pharmaceutical College of Henan University; Kaifeng 475004 P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, School of Pharmacy; Shenyang Pharmaceutical University; No. 103 Wenhua Road Shenyang 110016 P. R. China
| |
Collapse
|
28
|
Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug release. Colloids Surf B Biointerfaces 2014; 115:331-9. [DOI: 10.1016/j.colsurfb.2013.12.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 11/28/2013] [Accepted: 12/11/2013] [Indexed: 12/20/2022]
|
29
|
Paliwal SR, Paliwal R, Vyas SP. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv 2014; 22:231-42. [PMID: 24524308 DOI: 10.3109/10717544.2014.882469] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pH-sensitive liposomes have been extensively used as an alternative to conventional liposomes in effective intracellular delivery of therapeutics/antigen/DNA/diagnostics to various compartments of the target cell. Such liposomes are destabilized under acidic conditions of the endocytotic pathway as they usually contain pH-sensitive lipid components. Therefore, the encapsulated content is delivered into the intracellular bio-environment through destabilization or its fusion with the endosomal membrane. The therapeutic efficacy of pH-sensitive liposomes enables them as biomaterial with commercial utility especially in cancer treatment. In addition, targeting ligands including antibodies can be anchored on the surface of pH-sensitive liposomes to target specific cell surface receptors/antigen present on tumor cells. These vesicles have also been widely explored for antigen delivery and serve as immunological adjuvant to enhance the immune response to antigens. The present review deals with recent research updates on application of pH-sensitive liposomes in chemotherapy/diagnostics/antigen/gene delivery etc.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- Department of Pharmaceutics, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya Bilaspur , Chhattisgarh , India
| | | | | |
Collapse
|
30
|
Cheng L, Huang FZ, Cheng LF, Zhu YQ, Hu Q, Li L, Wei L, Chen DW. GE11-modified liposomes for non-small cell lung cancer targeting: preparation, ex vitro and in vivo evaluation. Int J Nanomedicine 2014; 9:921-35. [PMID: 24611009 PMCID: PMC3928463 DOI: 10.2147/ijn.s53310] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a serious threat to human health, and 40%–80% of NSCLCs express high levels of epidermal growth factor receptor (EGFR). GE11 is a novel peptide and exhibits high affinity for EGFR binding. The aim of this study was to construct and evaluate GE11-modified liposomes for targeted drug delivery to EGFR-positive NSCLC. Doxorubicin, a broad-spectrum antitumor agent, was chosen as the payload. GE11 was conjugated to the distal end of DSPE-PEG2000-Mal by an addition reaction with a conjugation efficiency above 90%. Doxorubicin-loaded liposomes containing GE11 (GE11-LP/DOX) at densities ranging from 0% to 15% were prepared by combination of a thin film hydration method and a post insertion method. Irrespective of GE11 density, the physicochemical properties of these targeted liposomes, including particle size, zeta potential, and drug entrapment efficiency, were nearly identical. Interestingly, the cytotoxic effect of the liposomes on A549 tumor cells was closely related to GE11 density, and liposomes with 10% GE11 had the highest tumor cell killing activity and a 2.6-fold lower half maximal inhibitory concentration than that of the nontargeted counterpart (PEG-LP/DOX). Fluorescence microscopy and flow cytometry analysis revealed that GE11 significantly increased cellular uptake of the liposomes, which could be ascribed to specific EGFR-mediated endocytosis. It was found that multiple endocytic pathways were involved in entry of GE11-LP/DOX into cells, but GE11 assisted in cellular internalization mainly via the clathrin-mediated endocytosis pathway. Importantly, the GE11-modified liposomes showed enhanced accumulation and prolonged retention in tumor tissue, as evidenced by a 2.2-fold stronger mean fluorescence intensity in tumor tissue than the unmodified liposomes at 24 hours. In summary, GE11-modified liposomes may be a promising platform for targeted delivery of chemotherapeutic drugs in NSCLC.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Fa-Zhen Huang
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, People's Republic of China ; Department of Pharmacy, Central Hospital of Zaozhuang Minging Group, Zaozhuang, Shandong Province, People's Republic of China
| | - Li-Fang Cheng
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Ya-Qin Zhu
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Qing Hu
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Ling Li
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Lin Wei
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Da-Wei Chen
- Department of Pharmaceutics, College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
31
|
HAYASHI K, UMAKOSHI H, SHIMANOUCHI T. Comparison of the Interfacial Properties of Span 80 Vesicle, W/O Emulsions and Liposomes. SOLVENT EXTRACTION RESEARCH AND DEVELOPMENT-JAPAN 2014. [DOI: 10.15261/serdj.21.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Keita HAYASHI
- Department of Chemical Engineering, Nara National College of Technology
| | | | | |
Collapse
|
32
|
Ghanbarzadeh S, Arami S, Pourmoazzen Z, Khorrami A. Improvement of the antiproliferative effect of rapamycin on tumor cell lines by poly (monomethylitaconate)-based pH-sensitive, plasma stable liposomes. Colloids Surf B Biointerfaces 2013; 115:323-30. [PMID: 24394948 DOI: 10.1016/j.colsurfb.2013.12.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 01/05/2023]
Abstract
pH-responsive polymers produce liposomes with pH-sensitive property which can release their encapsulated drug under mild acidic conditions found inside the cellular endosomes, inflammatory tissues and cancerous cells. The aim of this study was preparing pH-sensitive and plasma stable liposomes in order to enhance the selectivity and antiproliferative effect of Rapamycin. In the present study we used PEG-poly (monomethylitaconate)-CholC6 (PEG-PMMI-CholC6) copolymer and Oleic acid (OA) to induce pH-sensitive property in Rapamycin liposomes. pH-sensitive liposomal formulations bearing copolymer PEG-PMMI-CholC6 and OA were characterized in regard to physicochemical stability, pH-responsiveness and stability in human plasma. The ability of pH-sensitive liposomes in enhancing the cytotoxicity of Rapamycin was evaluated in vitro by using colon cancer cell line (HT-29) and compared with its cytotoxicity on human umbilical vein endothelial cell (HUVEC) line. Both formulations were found to release their contents under mild acidic conditions rapidly. However, unlike OA-based liposomes, the PEG-PMMI-CholC6 bearing liposomes preserved their pH-sensitivity in plasma. Both types of pH-sensitive Rapamycin-loaded liposomes exhibited high physicochemical stability and could deliver antiproliferative agent into HT-29 cells much more efficiently in comparison with conventional liposomes. Conversely, the antiproliferative effect of pH-sensitive liposomes on HUVEC cell line was less than conventional liposomes. This study showed that both OA and PEG-PMMI-CholC6-based vesicles could submit pH-sensitive property, however, only PEG-PMMI-CholC6-based liposomes could preserve pH-sensitive property after incubation in plasma. As a result pH-sensitive PEG-PMMI-CholC6-based liposomal formulation can improve the selectivity, stability and antiproliferative effect of Rapamycin.
Collapse
Affiliation(s)
- Saeed Ghanbarzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Arami
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zhaleh Pourmoazzen
- Chemistry Department, Science Faculty, Azarbaijan Shahid Madani University, Iran
| | - Arash Khorrami
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
33
|
Liu X, Huang G. Formation strategies, mechanism of intracellular delivery and potential clinical applications of pH-sensitive liposomes. Asian J Pharm Sci 2013. [DOI: 10.1016/j.ajps.2013.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
34
|
Ghanbarzadeh S, Khorrami A, Pourmoazzen Z, Arami S. Plasma stable, pH-sensitive non-ionic surfactant vesicles simultaneously enhance antiproliferative effect and selectivity of Sirolimus. Pharm Dev Technol 2013; 20:279-87. [DOI: 10.3109/10837450.2013.860553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Bruno BJ, Miller GD, Lim CS. Basics and recent advances in peptide and protein drug delivery. Ther Deliv 2013; 4:1443-67. [PMID: 24228993 PMCID: PMC3956587 DOI: 10.4155/tde.13.104] [Citation(s) in RCA: 477] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While the peptide and protein therapeutic market has developed significantly in the past decades, delivery has limited their use. Although oral delivery is preferred, most are currently delivered intravenously or subcutaneously due to degradation and limited absorption in the gastrointestinal tract. Therefore, absorption enhancers, enzyme inhibitors, carrier systems and stability enhancers are being studied to facilitate oral peptide delivery. Additionally, transdermal peptide delivery avoids the issues of the gastrointestinal tract, but also faces absorption limitations. Due to proteases, opsonization and agglutination, free peptides are not systemically stable without modifications. This review discusses oral and transdermal peptide drug delivery, focusing on barriers and solutions to absorption and stability issues. Methods to increase systemic stability and site-specific delivery are also discussed.
Collapse
Affiliation(s)
- Benjamin J Bruno
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| | - Geoffrey D Miller
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| | - Carol S Lim
- Department of Pharmaceutics & Pharmaceutical Chemistry, College of
Pharmacy, University of Utah. 30 South 2000 East, Room 301, Salt Lake City, UT
84112, USA
| |
Collapse
|
36
|
Ma Y, Wang Z, Zhao W, Lu T, Wang R, Mei Q, Chen T. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium. Int J Nanomedicine 2013; 8:2351-60. [PMID: 23847417 PMCID: PMC3700910 DOI: 10.2147/ijn.s42617] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid liposomal encapsulated tobramycin was prepared, and the bactericidal effect occurred more quickly when bacteria were cultured with liposomal encapsulated tobramycin. Conclusion The bactericidal potency of fluid liposomes is dramatically enhanced with respect to fusion ability when the fusogenic lipid, DOPE, is included. Regardless of changes in liposome composition, fluid liposomes-bacterium fusion is universally enhanced by calcium ions. The information obtained in this study will increase our understanding of fluid liposomal action mechanisms, and help in optimizing the new generation of fluid liposomal formulations for the treatment of pulmonary bacterial infections.
Collapse
Affiliation(s)
- Yufan Ma
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
Favretto ME, Cluitmans JCA, Bosman GJCGM, Brock R. Human erythrocytes as drug carriers: loading efficiency and side effects of hypotonic dialysis, chlorpromazine treatment and fusion with liposomes. J Control Release 2013; 170:343-51. [PMID: 23747798 DOI: 10.1016/j.jconrel.2013.05.032] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 02/04/2023]
Abstract
Human red blood cells (RBCs) are emerging as a highly biocompatible microparticulate drug delivery system. So far, drugs have commonly been loaded into freshly isolated RBCs using rather disruptive methods based on hypotonic shock, and assessment of damage was restricted to hemolysis. Here, we investigated loading of RBCs from blood bank units with enzymes of various molecular weights using hypotonic dialysis (HD), pretreatment with chlorpromazine (CPZ) and fusion with liposomes. The latter two techniques have received little attention in RBC loading so far. Along with loading efficiency, all methods were tested for the induction of side effects. Very importantly, next to hemolysis, we also addressed morphological changes and phosphatidyl serine (PS) exposure, which has been recognized as a critical parameter associated with premature RBC removal and induction of transfusion-related pathologies. The efficiency of loading using hypotonic dialysis decreased with the molecular weight of the enzyme. For liposomes and chlorpromazine, loading efficiencies were higher and independent of enzyme molecular weights. While hypotonic dialysis always induced a high degree of hemolysis, irreversible modifications in the morphology of the cells and PS exposure, the side effects that were induced by loading using CPZ and liposomes were limited. In particular, PS exposure, although high immediately after treatment, returned to physiological levels after recovery. Retention and deformability studies using a spleen-mimicking device showed that RBCs treated with CPZ and liposomes behave like physiological RBCs, while HD led to very fragile and poorly deformable RBCs.
Collapse
Affiliation(s)
- M E Favretto
- Department of Biochemistry, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
38
|
Rai Paliwal S, Paliwal R, Vyas SP. pH-sensitive Liposomes in Drug Delivery. SMART MATERIALS FOR DRUG DELIVERY 2013. [DOI: 10.1039/9781849736800-00080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The pH-sensitive liposomes have been extensively studied in recent years as an advantageous alternative to conventional liposomes in effective targeting and accumulation of anticancer drugs in tumors. pH-sensitive liposomes usually contain phosphatidylethanolamine and stabilizing amphiphiles and can destabilize under acidic conditions of the endocytotic pathway. The drug loaded is thought to be delivered into the cytoplasm, probably through destabilization of or fusion with the endosome membrane. This fusogenic property makes the pH-sensitive liposomes more efficient in delivering anticancer drugs than conventional liposomes. The intra-cellular release of drug/gene/diagnostic agents can be achieved without altering their therapeutic efficacy by means of the endosomal escape phenomenon. Cell surface targeting ligands, including antibodies, can be appended on the surface of pH-sensitive liposomes to target specific receptors on tumor cells. This chapter provides an introduction to pH-sensitive liposomes and examples of their therapeutic interest as smart drug-delivery systems.
Collapse
Affiliation(s)
- Shivani Rai Paliwal
- Drug Delivery Research Laboratory Department of Pharmaceutical Sciences, Dr H. S. Gour Vishwavidyalaya (A Central University), Sagar M.P. India, 470003
- Department of Pharmaceutics SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G. India, 495009
| | - Rishi Paliwal
- Drug Delivery Research Laboratory Department of Pharmaceutical Sciences, Dr H. S. Gour Vishwavidyalaya (A Central University), Sagar M.P. India, 470003
| | - Suresh P Vyas
- Drug Delivery Research Laboratory Department of Pharmaceutical Sciences, Dr H. S. Gour Vishwavidyalaya (A Central University), Sagar M.P. India, 470003
| |
Collapse
|
39
|
Expedition of liposomes to intracellular targets in solid tumors after intravenous administration. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2013. [DOI: 10.1007/s40005-013-0064-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. JOURNAL OF DRUG DELIVERY 2013; 2013:705265. [PMID: 23533772 PMCID: PMC3606784 DOI: 10.1155/2013/705265] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/06/2013] [Indexed: 12/30/2022]
Abstract
Liposomes are delivery systems that have been used to formulate a vast variety of therapeutic and imaging agents for the past several decades. They have significant advantages over their free forms in terms of pharmacokinetics, sensitivity for cancer diagnosis and therapeutic efficacy. The multifactorial nature of cancer and the complex physiology of the tumor microenvironment require the development of multifunctional nanocarriers. Multifunctional liposomal nanocarriers should combine long blood circulation to improve pharmacokinetics of the loaded agent and selective distribution to the tumor lesion relative to healthy tissues, remote-controlled or tumor stimuli-sensitive extravasation from blood at the tumor's vicinity, internalization motifs to move from tumor bounds and/or tumor intercellular space to the cytoplasm of cancer cells for effective tumor cell killing. This review will focus on current strategies used for cancer detection and therapy using liposomes with special attention to combination therapies.
Collapse
|
41
|
Xu H, Deng YH, Wang KQ, Chen DW. Preparation and characterization of stable pH-sensitive vesicles composed of α-tocopherol hemisuccinate. AAPS PharmSciTech 2012; 13:1377-85. [PMID: 23054989 DOI: 10.1208/s12249-012-9863-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022] Open
Abstract
The current study aims to develop a stable pH-sensitive drug delivery system. First, cleavable polyethylene glycol-α-tocopherol hemisuccinate (PEG-THS) was synthesized. Conventional pH-sensitive vesicles composed of the Tris salt of α-tocopherol hemisuccinate (THST) were then prepared using the detergent removal technique. The vesicles had a mean particle size of (163.8 ± 5.5) nm and a zeta potential of -74.5 ± 6.4 mV. The THST vesicles were then modified using PEG-THS or uncleavable PEG-cholesterol (PEG-CHOL) (THST/PEG-lipids, 100:6 molar ratio). The mean vesicle particle size and absolute zeta potential decreased with increasing PEG-THS proportion. When the pH was decreased, the vesicle particle size and calcein release rate increased. The THST vesicles were initially Ca(2+)-unstable but exhibited significantly improved stability after modification with PEG-THS, especially at PEG-lipid ratios above 6%. Incubation in an acid serum increased the calcein release rate of conventional THST vesicles to 45 ± 1.98% at 10 min. However, the release rate of the PEG-CHOL vesicles remained low. The calcein release rate of PEG-THS vesicles was between those of conventional and PEG-CHOL-V. Therefore, PEG-THS can protect vesicles in serum and reconstitute their pH sensitivity in acidic conditions. Cleavable PEG-THS can be used in stable pH-sensitive preparations without loss of pH sensitivity. Free calcein and conventional vesicles eliminated from the plasma soon after injection, as well as the half-life (t(1/2)) and area under the curve of PEG-THS-V encapsulating calcein, were dramatically increased. This phenomenon indicates that the use of PEG-lipid derivatives has gained a favorably long circulation effect in mice.
Collapse
|
42
|
Un K, Sakai-Kato K, Oshima Y, Kawanishi T, Okuda H. Intracellular trafficking mechanism, from intracellular uptake to extracellular efflux, for phospholipid/cholesterol liposomes. Biomaterials 2012; 33:8131-41. [DOI: 10.1016/j.biomaterials.2012.07.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/15/2012] [Indexed: 01/27/2023]
|
43
|
Peptides for cancer therapy: a drug-development opportunity and a drug-delivery challenge. Ther Deliv 2012; 3:609-21. [DOI: 10.4155/tde.12.37] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Therapeutic peptides (TPs) are a class of peptide-based agents capable of eliciting a therapeutic response by modulation of targets within or on the surface of cells. TPs are advantageous because they are amenable to rational design, they have high specificity for their targets and can be made to target almost any protein of interest, including proteins for which we have no small-molecule drugs. Owing to this versatility, TPs have a great potential for cancer therapy in an age of personalized medicine, in which we need novel drugs to target the many novel pathways being discovered as tumor drivers. However, in order to utilize TPs as drugs, many obstacles must be overcome. TPs have short half-lives in systemic circulation, are easily degraded by proteases in plasma and target cells, are often cleared by the reticuloendothelial system and can be immunogenic. This article will discuss ways of overcoming many of these hurdles by utilizing macromolecular peptide delivery systems and tumor-targeting agents.
Collapse
|
44
|
Lico C, Santi L, Twyman RM, Pezzotti M, Avesani L. The use of plants for the production of therapeutic human peptides. PLANT CELL REPORTS 2012; 31:439-51. [PMID: 22218674 DOI: 10.1007/s00299-011-1215-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 05/17/2023]
Abstract
Peptides have unique properties that make them useful drug candidates for diverse indications, including allergy, infectious disease and cancer. Some peptides are intrinsically bioactive, while others can be used to induce precise immune responses by defining a minimal immunogenic region. The limitations of peptides, such as metabolic instability, short half-life and low immunogenicity, can be addressed by strategies such as multimerization or fusion to carriers, to improve their pharmacological properties. The remaining major drawback is the cost of production using conventional chemical synthesis, which is also difficult to scale-up. Over the last 15 years, plants have been shown to produce bioactive and immunogenic peptides economically and with the potential for large-scale synthesis. The production of peptides in plants is usually achieved by the genetic fusion of the corresponding nucleotide sequence to that of a carrier protein, followed by stable nuclear or plastid transformation or transient expression using bacterial or viral vectors. Chimeric plant viruses or virus-like particles can also be used to display peptide antigens, allowing the production of polyvalent vaccine candidates. Here we review progress in the field of plant-derived peptides over the last 5 years, addressing new challenges for diverse pathologies.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratorio di Biotecnologie, Unità Tecnica BIORAD, ENEA CR Casaccia, 00123 Rome, Italy
| | | | | | | | | |
Collapse
|