1
|
Fernandes E, Lopes CM, Lúcio M. Lipid Biomimetic Models as Simple Yet Complex Tools to Predict Skin Permeation and Drug-Membrane Biophysical Interactions. Pharmaceutics 2024; 16:807. [PMID: 38931927 PMCID: PMC11207520 DOI: 10.3390/pharmaceutics16060807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The barrier function of the skin is primarily determined by its outermost layer, the Stratum Corneum (SC). The SC consists of corneocytes embedded in a lipid matrix composed mainly of ceramides, cholesterol, and free fatty acids in equimolar proportions and is organised in a complex lamellar structure with different periodicities and lateral packings. This matrix provides a diffusion pathway across the SC for bioactive compounds that are administered to the skin. In this regard, and as the skin administration route has grown in popularity, there has been an increase in the use of lipid mixtures that closely resemble the SC lipid matrix, either for a deeper biophysical understanding or for pharmaceutical and cosmetic purposes. This review focuses on a systematic analysis of the main outcomes of using lipid mixtures as SC lipid matrix models for pharmaceutical and cosmetic purposes. Thus, a methodical evaluation of the main outcomes based on the SC structure is performed, as well as the main recent developments in finding suitable new in vitro tools for permeation testing based on lipid models.
Collapse
Affiliation(s)
- Eduarda Fernandes
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
| | - Carla M. Lopes
- FFP-I3ID—Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS—Biomedical and Health Sciences Research Unit, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4200–150 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, MedTech–Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marlene Lúcio
- CF-UM-UP—Centro de Física das Universidades do Minho e Porto, Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal
- CBMA—Centro de Biologia Molecular e Ambiental, Departamento de Biologia, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
2
|
Yarovoy Y, Drutis DM, Hancewicz TM, Garczarek U, Ananthapadmanabhan KP, Misra M. Quantification of Lipid Phase Order of In Vivo Human Skin Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy and Multivariate Curve Resolution Analysis. APPLIED SPECTROSCOPY 2019; 73:182-194. [PMID: 30353745 DOI: 10.1177/0003702818812738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A new analysis methodology utilizing multivariate curve resolution (MCR) has been successfully combined with Fourier transform infrared (FT-IR) measurement of in vivo human skin to resolve lipid phase constituents in the spectra relative to high and low chain ordering. A clinical study was performed to measure lipid order through different depths of stratum corneum of human subjects. Fourier transform IR spectra were collected through the top 10 layers of the skin on four sites on the left and right forearm of 12 individuals. Depth profiling was achieved by tape stripping to remove layers of skin with 10 successive tapes from each site. In vivo ATR FT-IR spectra were collected after removing each tape. Three isolated spectral regions were analyzed, centered around 2850 cm-1, 1460-1480 cm-1, and 730 cm-1, corresponding to stretching, scissoring, and rocking -CH2 vibrational modes, respectively. Both traditional lipid conformation analysis and MCR analysis were performed on the same spectral data. The lipid order ratio, expressed as the fraction of highly ordered orthorhombic (OR) lipids to the total lipids content (orthorhombic + hexagonal [HEX] + liquid crystal [LC]), was assessed as function of depth. Lipid order depth profiles (LODP) show an increase in order with the stratum corneum depth which can be adequately described by an exponential function for the data obtained in this study. The LODP derived from the three vibrational modes show very similar trends, although the absolute order ratios are somewhat different. The variance of the skin LODP across individuals is much greater than between sites within the same individual. The higher arm sites closer to the elbow on the left and right arm show no statistically significant difference and are recommended for use in comparative studies. The scissoring mode shows the highest sensitivity for determination of LODP value.
Collapse
Affiliation(s)
- Yury Yarovoy
- 1 Unilever Research & Development, Trumbull, CT, USA
| | - Dane M Drutis
- 1 Unilever Research & Development, Trumbull, CT, USA
| | | | | | | | - Manoj Misra
- 1 Unilever Research & Development, Trumbull, CT, USA
| |
Collapse
|
3
|
Abstract
Fourier transform infrared (FTIR) spectroscopy has become one of the major techniques of structural characterization of proteins, peptides, and protein-membrane interactions. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or intermolecular interactions. The sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as 13C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, the structural features of membrane pore forming proteins and peptides, and much more. The purpose of this chapter was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, is also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
4
|
Sawama Y, Park K, Yamada T, Sajiki H. New Gateways to the Platinum Group Metal-Catalyzed Direct Deuterium-Labeling Method Utilizing Hydrogen as a Catalyst Activator. Chem Pharm Bull (Tokyo) 2018; 66:21-28. [DOI: 10.1248/cpb.c17-00222] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| | - Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University
| |
Collapse
|
5
|
Stratum corneum modulation by chemical enhancers and lipid nanostructures: implications for transdermal drug delivery. Ther Deliv 2017; 8:701-718. [DOI: 10.4155/tde-2017-0045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Skin is the outermost and largest protective covering of the body. The uppermost layer of the skin, stratum corneum also called the horny layer is composed of keratin-filled cells covered by a lipid matrix which shields the skin from physical and chemical entrants. The lipid lamellar structure comprises of ceramides, cholesterol, fatty acids and proteins. Chemical enhancers that mimic the lamellar chemistry, reversibly fluidize the latter can be utilized for enhancing transport of cargo across the epidermis into the dermis. This review deals with the stratum corneum chemistry, mechanisms to modulate its packing with the aid of chemical enhancers, biophysical techniques for characterization and applications in the design of nature-inspired biocompatible lipid nanostructures for transdermal delivery of drugs and bioactive agents.
Collapse
|
6
|
Thermal behavior and functional group interaction of lipids extracted from the stratum corneum. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Yamada T, Park K, Yasukawa N, Morita K, Monguchi Y, Sawama Y, Sajiki H. Mild and Direct Multiple Deuterium-Labeling of Saturated Fatty Acids. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tsuyoshi Yamada
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Kwihwan Park
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Naoki Yasukawa
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Kosuke Morita
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Yasunari Monguchi
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Yoshinari Sawama
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry; Gifu Pharmaceutical University; 1-25-4 Daigaku-nishi Gifu 501-1196 Japan
| |
Collapse
|
8
|
Ramos AP, Lafleur M. Chain Length of Free Fatty Acids Influences the Phase Behavior of Stratum Corneum Model Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11621-11629. [PMID: 26442576 DOI: 10.1021/acs.langmuir.5b03271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The skin, the largest organ of the human body, forms a flexible interface between our internal and external environment that protects our organism from exogenous compounds as well as excessive water loss. The stratum corneum (SC), the outermost layer of mammal epidermis, is mainly responsible for the skin impermeability. The SC is formed by corneocytes embedded in a lipid matrix, which is mostly constituted of ceramides (Cer), free fatty acids (FFA), and cholesterol (Chol), organized in two coexisting crystalline lamellar phases. This arrangement of lipids is crucial to skin barrier function. The aim of this paper is to determine the impact of FFA chain length on the phase behavior of SC model lipid membranes using solid-state deuterium NMR and IR spectroscopy. We studied ternary mixtures of N-lignoceroyl-d-erythro-sphingosine (Cer24), cholesterol, and palmitic (FFA16) or lignoceric (FFA24) acid in an equimolar ratio. This proportion replicates the lipid composition found in the SC lipid matrix. Our studies revealed that the phase behavior of Cer24/FFA/Chol ternary mixtures is strongly affected by the length of the FFA. We found the formation of phase-separated crystalline lipid domains when using palmitic acid whereas the use of lignoceric acid results in a more homogeneous mixture. In addition, it was observed that mixtures with lignoceric acid form a gel phase, a very unusual feature for SC model mixtures.
Collapse
Affiliation(s)
- Adrian Paz Ramos
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, QC Canada H3C 3J7
| | - Michel Lafleur
- Department of Chemistry, Center for Self-Assembled Chemical Structures (CSACS), Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, QC Canada H3C 3J7
| |
Collapse
|
9
|
Mendelsohn R, Rabie E, Walters RM, Flach CR. Fatty Acid Chain Length Dependence of Phase Separation Kinetics in Stratum Corneum Models by IR Spectroscopy. J Phys Chem B 2015; 119:9740-50. [DOI: 10.1021/acs.jpcb.5b03045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Richard Mendelsohn
- Department
of Chemistry, Newark College, Rutgers University, Newark, New Jersey 07102, United States
| | - Emann Rabie
- Department
of Chemistry, Newark College, Rutgers University, Newark, New Jersey 07102, United States
| | - Russel M. Walters
- Johnson
and Johnson
Consumer Companies, Inc., 199 Grandview
Road, Skillman, New Jersey 08558, United States
| | - Carol R. Flach
- Department
of Chemistry, Newark College, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
10
|
Mendelsohn R, Selevany I, Moore DJ, Mack Correa MC, Mao G, Walters RM, Flach CR. Kinetic Evidence Suggests Spinodal Phase Separation in Stratum Corneum Models by IR Spectroscopy. J Phys Chem B 2014; 118:4378-87. [DOI: 10.1021/jp501003c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Richard Mendelsohn
- Department
of Chemistry, Newark College, Rutgers University, Newark, New Jersey 07102, United States
| | - Ibrahim Selevany
- Department
of Chemistry, Newark College, Rutgers University, Newark, New Jersey 07102, United States
| | - David J. Moore
- Department
of Chemistry, Newark College, Rutgers University, Newark, New Jersey 07102, United States
| | - M. Catherine Mack Correa
- Johnson & Johnson Consumer Companies, Inc., 199 Grandview Road, Skillman, New Jersey 08558, United States
| | - Guangru Mao
- Johnson & Johnson Consumer Companies, Inc., 199 Grandview Road, Skillman, New Jersey 08558, United States
| | - Russel M. Walters
- Johnson & Johnson Consumer Companies, Inc., 199 Grandview Road, Skillman, New Jersey 08558, United States
| | - Carol R. Flach
- Department
of Chemistry, Newark College, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
11
|
The effect of the chain length distribution of free fatty acids on the mixing properties of stratum corneum model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1851-61. [PMID: 24565794 DOI: 10.1016/j.bbamem.2014.02.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/05/2014] [Accepted: 02/13/2014] [Indexed: 02/07/2023]
Abstract
The stratum corneum (SC) plays a fundamental role in the barrier function of the skin. The SC consists of corneocytes embedded in a lipid matrix. The main lipid classes in the lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to examine the effect of the chain length of FFAs on the thermotropic phase behavior and mixing properties of SC lipids. Fourier transform infrared spectroscopy and Raman imaging spectroscopy were used to study the mixing properties using either protonated or deuterated FFAs. We selected SC model lipid mixtures containing only a single CER, CHOL and either a single FFA or a mixture of FFAs mimicking the FFA SC composition. The single CER consists of a sphingoid base with 18 carbon atoms and an acyl chain with a chain length of 24 carbon atoms. When using lignoceric acid (24 carbon atoms) or a mixture of FFAs, the CER and FFAs participated in mixed crystals, but hydration of the mixtures induced a slight phase separation between CER and FFA. The mixed crystalline structures did not phase separate during storage even up to a time period of 3months. When using palmitic acid (16 carbon atoms), a slight phase separation was observed between FFA and CER. This phase separation was clearly enhanced during hydration and storage. In conclusion, the thermotropic phase behavior and the mixing properties of the SC lipid mixtures were shown to strongly depend on the chain length and chain length distribution of FFAs, while hydration enhanced the phase separation.
Collapse
|
12
|
Wertz PW. Current understanding of skin biology pertinent to skin penetration: skin biochemistry. Skin Pharmacol Physiol 2013; 26:217-26. [PMID: 23921108 DOI: 10.1159/000351949] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/08/2013] [Indexed: 11/19/2022]
Abstract
The purpose of this review is to summarize some of the biochemical or chemical findings that have contributed most significantly to our current understanding of the permeability barrier of the skin. This literature survey covers the period from the 1970s up to the present. This seems appropriate since earlier progress was comprehensively covered in a 1978 review by Bob Scheuplein entitled 'Permeability of the skin: a review of major concepts' and in the earlier review by Scheuplein and Blank entitled 'Permeability of the skin'. Both of these review articles are still being cited, and the earlier one has been cited more than 800 times. Overlap with material covered in these earlier publications will be minimized. The overall significance of findings from some of the most recent years may not yet be determined. The emphasis will be placed on the determination of the composition and structures of the epidermal lipids, especially those of the stratum corneum, key enzymes in the biosynthesis of these lipids and some of the physical chemical properties of these lipids as revealed by X-ray diffraction, infrared spectroscopy and other physical methods.
Collapse
Affiliation(s)
- P W Wertz
- Dows Institute, University of Iowa, Iowa City,IA 52242, USA.
| |
Collapse
|
13
|
Engesland A, Skar M, Hansen T, Škalko-basnet N, Flaten GE. New Applications of Phospholipid Vesicle-Based Permeation Assay: Permeation Model Mimicking Skin Barrier. J Pharm Sci 2013; 102:1588-600. [DOI: 10.1002/jps.23509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/28/2013] [Accepted: 02/27/2013] [Indexed: 12/30/2022]
|
14
|
Tatulian SA. Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Methods Mol Biol 2013; 974:177-218. [PMID: 23404277 DOI: 10.1007/978-1-62703-275-9_9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fourier transform infrared (FTIR) spectroscopy is widely used in structural characterization of proteins or peptides. While the method does not have the capability of providing the precise, atomic-resolution molecular structure, it is exquisitely sensitive to conformational changes occurring in proteins upon functional transitions or upon intermolecular interactions. Sensitivity of vibrational frequencies to atomic masses has led to development of "isotope-edited" FTIR spectroscopy, where structural effects in two proteins, one unlabeled and the other labeled with a heavier stable isotope, such as (13)C, are resolved simultaneously based on spectral downshift (separation) of the amide I band of the labeled protein. The same isotope effect is used to identify site-specific conformational changes in proteins by site-directed or segmental isotope labeling. Negligible light scattering in the infrared region provides an opportunity to study intermolecular interactions between large protein complexes, interactions of proteins and peptides with lipid vesicles, or protein-nucleic acid interactions without light scattering problems often encountered in ultraviolet spectroscopy. Attenuated total reflection FTIR (ATR-FTIR) is a surface-sensitive version of infrared spectroscopy that has proved useful in studying membrane proteins and lipids, protein-membrane interactions, mechanisms of interfacial enzymes, and molecular architecture of membrane pore or channel forming proteins and peptides. The purpose of this article was to provide a practical guide to analyze protein structure and protein-membrane interactions by FTIR and ATR-FTIR techniques, including procedures of sample preparation, measurements, and data analysis. Basic background information on FTIR spectroscopy, as well as some relatively new developments in structural and functional characterization of proteins and peptides in lipid membranes, are also presented.
Collapse
Affiliation(s)
- Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|