1
|
Zhang J, Fang H, Dai Y, Li Y, Li L, Zuo S, Liu T, Sun Y, Shi X, He Z, Sun J, Sun B. Cholesterol sulfate-mediated ion-pairing facilitates the self-nanoassembly of hydrophilic cationic mitoxantrone. J Colloid Interface Sci 2024; 669:731-739. [PMID: 38735255 DOI: 10.1016/j.jcis.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
HYPOTHESIS Hydrophilic cationic drugs such as mitoxantrone hydrochloride (MTO) pose a significant delivery challenge to the development of nanodrug systems. Herein, we report the use of a hydrophobic ion-pairing strategy to enhance the nano-assembly of MTO. EXPERIMENTS We employed biocompatible sodium cholesteryl sulfate (SCS) as a modification module to form stable ion pairs with MTO, which balanced the intermolecular forces and facilitated nano-assembly. PEGylated MTO-SCS nanoassemblies (pMS NAs) were prepared via nanoprecipitation. We systematically evaluated the effect of the ratio of the drug module (MTO) to the modification module (SCS) on the nanoassemblies. FINDINGS The increased lipophilicity of MTO-SCS ion pair could significantly improve the encapsulation efficiency (∼97 %) and cellular uptake efficiency of MTO. The pMS NAs showed prolonged blood circulation, maintained the same level of tumor antiproliferative activity, and exhibited reduced toxicity compared with the free MTO solution. It is noteworthy that the stability, cellular uptake, cytotoxicity, and in vivo pharmacokinetic behavior of the pMS NAs increased in proportion to the molar ratio of SCS to MTO. This study presents a self-assembly strategy mediated by ion pairing to overcome the challenges commonly associated with the poor assembly ability of hydrophilic cationic drugs.
Collapse
Affiliation(s)
- Jingxuan Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongkai Fang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuebin Dai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiyi Zuo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Bhardwaj R, Mishra P. Multiresponsive Nanoscale Self-Assembly of Azurin-Elastin-like Polypeptide Fusion Protein for Enhanced Prostate Cancer Therapy. Biomacromolecules 2024; 25:508-521. [PMID: 38047916 DOI: 10.1021/acs.biomac.3c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A fusion protein composed of a bacterial protein, azurin, having antineoplastic properties and a thermally responsive structural cationic elastin-like protein (ELP), is designed, cloned, expressed, and purified. A simple method of inverse transition cycle (ITC) is employed to purify the fusion protein azurin-ELP diblock copolymer (d-bc). The molecular weight of the azurin-ELP fusion protein is ∼32 kDa. Further, its self-assembly properties are investigated. Interestingly, the engineered azurin-ELP d-bc in response to increasing temperature shows a dual-step phase separation into biofunctional nanostructures. Around the physiological temperature, azurin-ELP d-bc forms stable coacervates, which is dependent on the concentration and time of incubation. These coacervates are formed below the lower critical solubility temperature (LCST) of the ELP block at physiological temperature. Above LCST, i.e., 50-55°C, micelles of size ranging from 25 to 30 nm are formed. The cytotoxicity of azurin-ELP d-bc depends on the size of the coacervates formed and their cellular uptake at physiological temperature. Further, MTT assay of azurin-ELP d-bc in the cross-linked micelles prepared ex situ shows > six times higher killing of LNCaP cells than the unimeric form of azurin-ELP at 5 μM concentration. The flow cytometric results of these micelles at 20 μM concentration show ∼97% LNCaP cells in the apoptotic phase. Thus, azurin-ELP cross-linked micelles have enhanced potential for anticancer therapy due to their higher avidity.
Collapse
Affiliation(s)
- Ritu Bhardwaj
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
3
|
Ghasemian M, Kazeminava F, Naseri A, Mohebzadeh S, Abbaszadeh M, Kafil HS, Ahmadian Z. Recent progress in tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed Pharmacother 2023; 166:115328. [PMID: 37591125 DOI: 10.1016/j.biopha.2023.115328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023] Open
Abstract
Significant advancements have been noticed in cancer therapy for decades. Despite this, there are still many critical challenges ahead, including multidrug resistance, drug instability, and side effects. To overcome obstacles of these problems, various types of materials in biomedical research have been explored. Chief among them, the applications of natural compounds have grown rapidly due to their superb biological activities. Natural compounds, especially polyphenolic compounds, play a positive and great role in cancer therapy. Tannic acid (TA), one of the most famous polyphenols, has attracted widespread attention in the field of cancer treatment with unique structural, physicochemical, pharmaceutical, anticancer, antiviral, antioxidant and other strong biological features. This review concentrated on the basic structure along with the important role of TA in tuning oncological signal pathways firstly, and then focused on the use of TA in chemotherapy and preparation of delivery systems including nanoparticles and hydrogels for cancer therapy. Besides, the application of TA/Fe3+ complex coating in photothermal therapy, chemodynamic therapy, combined therapy and theranostics is discussed.
Collapse
Affiliation(s)
- Motaleb Ghasemian
- Department of Medicinal Chemistry, School of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Naseri
- Department of Applied Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Soheila Mohebzadeh
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahmoud Abbaszadeh
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
4
|
Tailoring surface properties of liposomes for dexamethasone intraocular administration. J Control Release 2023; 354:323-336. [PMID: 36641118 DOI: 10.1016/j.jconrel.2023.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/31/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Diseases of the posterior eye segment are often characterized by intraocular inflammation, which causes, in the long term, severe impairment of eye functions and, ultimately, vision loss. Aimed at enhancing the delivery of anti-inflammatory drugs to the posterior eye segment upon intravitreal administration, we developed liposomes with an engineered surface to control their diffusivity in the vitreous and retina association. Hydrogenated soybean phosphatidylcholine (HSPC)/cholesterol liposomes were coated with (agmatinyl)6-maltotriosyl-acetamido-N-(octadec-9-en-1-yl)hexanamide (Agm6-M-Oleate), a synthetic non-peptidic cell penetration enhancer (CPE), and/or 5% of mPEG2kDa-DSPE. The zeta potential of liposomes increased, and the mobility in bovine vitreous and colloidal stability decreased with the Agm6-M-Oleate coating concentration. Oppositely, mPEG2kDa-DSPE decreased the zeta potential of liposomes and restored both the diffusivity and the stability in vitreous. Liposomes with 5 mol% Agm6-M-Oleate coating were well tolerated by ARPE-19 retina cells either with or without mPEG2kDa-DSPE, while 10 mol% Agm6-M-Oleate showed cytotoxicity. Agm6-M-Oleate promoted the association of liposomes to ARPE-19 cells with respect to plain liposomes, while mPEG2kDa-DSPE slightly reduced the cell interaction. Dexamethasone hemisuccinate (DH) was remotely loaded into liposomes with a loading capacity of ∼10 wt/wt%. Interestingly, mPEG2kDa-DSPE coating reduced the rate of DH release and enhanced the disposition of Agm6-M-Oleate coated liposomes in the ARPE-19 cell cytosol resulting in a more efficient anti-inflammatory effect. Finally, mPEG2kDa-DSPE enhanced the association of DH-loaded Agm6-M-Oleate coated liposomes to explanted rat retina, which reflected in higher viability of inner and outer nuclear layer cells.
Collapse
|
5
|
Sonzogni A, Cabrera G, Lupi G, Gugliotta L, Gonzalez V, Marcipar I, Minari R. Film Forming Nanogels for Needle-free Transdermal Vaccination. Macromol Biosci 2022; 22:e2100515. [PMID: 35388617 DOI: 10.1002/mabi.202100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/21/2022] [Indexed: 11/06/2022]
Abstract
Transcutaneous immunization (TCI) provides a valuable alternative approach to conventional vaccination because of the high accessibility and the exceptional immunological characteristics of the skin, but its application is limited by the low permeability of the stratum corneum. Although nanogels (NGs) have proven to enhance skin penetration of macromolecules with minimum damage, their use in TCI remains almost unexplored. In this context, this article evaluates the performance of novel film forming NGs (FF-NGs) as TCI. This TCI platform consists of NGs with multilobular morphology that positively combines the properties of crosslinked poly(N-vinylcaprolactam), like thermoresponsiveness and the ability to load and release a cargo, with the film forming capacity of low Tg lobes. FF-NGs and formed films were characterized at different levels. Formed films show to be able to uniformly load an antigenic protein and release it with a profile depending on the temperature and on their FF-NGs content. In-vivo studies have demonstrated that FF-NGs promote the penetration of not only an antigenic protein but also an adjuvant until the immunocompetent area of skin, generating an adjuvant-dependent specific immune response. Finally, this study provides a successful proof of concept that FF-NGs could be a powerful tool for transcutaneous release of complex formulations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ana Sonzogni
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Santa Fe, Argentina
| | - Gabriel Cabrera
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Giuliana Lupi
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Luis Gugliotta
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Santa Fe, Argentina.,Facultad de Ingeniería Química (Universidad Nacional del Litoral), Santa Fe, Argentina
| | - Verónica Gonzalez
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Santa Fe, Argentina.,Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Iván Marcipar
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Roque Minari
- Group of Polymers and Polymerization Reactors, INTEC (Universidad Nacional del Litoral-CONICET), Santa Fe, Argentina.,Facultad de Ingeniería Química (Universidad Nacional del Litoral), Santa Fe, Argentina
| |
Collapse
|
6
|
Development and characterization of azadirachta indica gum-poly(2-hydroxyethyl methacrylate) crosslinked co-polymeric hydrogels for drug delivery applications. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Davis HC, Posey ND, Tew GN. Protein Binding and Release by Polymeric Cell-Penetrating Peptide Mimics. Biomacromolecules 2021; 23:57-66. [PMID: 34879198 DOI: 10.1021/acs.biomac.1c00929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There is significant potential in exploiting antibody specificity to develop new therapeutic treatments. However, intracellular protein delivery is a paramount challenge because of the difficulty in transporting large, polar molecules across cell membranes. Cell-penetrating peptide mimics (CPPMs) are synthetic polymers that are versatile materials for intracellular delivery of biological molecules, including nucleic acids and proteins, with superior performance compared to their natural counterparts and commercially available peptide-based reagents. Studies have demonstrated that noncovalent complexation with these synthetic carriers is necessary for the delivery of proteins, but the fundamental interactions dominating CPPM-protein complexation are not well understood. Beyond these interactions, the mechanism of release for many noncovalent carriers is not well established. Herein, interactions expected to be critical in CPPM-protein binding and unbinding were explored, including hydrogen bonding, electrostatics, and hydrophobic interactions. Despite the guanidinium-rich functionality of these polymeric carriers, hydrogen bonding was shown not to be a dominant interaction in CPPM-protein binding. Fluorescence quenching assays were used to decouple the effect of electrostatic and hydrophobic interactions between amphiphilic CPPMs and proteins. Furthermore, by conducting competition assays with other proteins, unbinding of protein cargoes from CPPM-protein complexes was demonstrated and provided insight into mechanisms of protein release. This work offers understanding toward the role of carrier and cargo binding and unbinding in intracellular outcomes. In turn, an improved fundamental understanding of noncovalent polymer-protein complexation will enable more effective methods for intracellular protein delivery.
Collapse
Affiliation(s)
- Hazel C Davis
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Nicholas D Posey
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
8
|
Saadati A, Hasanzadeh M, Seidi F. Biomedical application of hyperbranched polymers: Recent Advances and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116308] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
9
|
Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr Polym 2021; 266:118119. [PMID: 34044935 DOI: 10.1016/j.carbpol.2021.118119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Nowadays nanoparticles are increasingly investigated for the targeted and controlled delivery of therapeutics, as suggested by the high number of research articles (2400 in 2000 vs 8500 in 2020). Among them, almost 2% investigated nanogels in 2020. Nanogels or nanohydrogels (NGs) are nanoparticles formed by a swollen three-dimensional network of synthetic polymers or natural macromolecules such as polysaccharides. NGs represent a highly versatile nanocarrier, able to deliver a number of therapeutics. Currently, NGs are undergoing clinical trials for the delivery of anti-cancer vaccines. Herein, the strategies to load low molecular weight drugs, (poly)peptides and genetic material into polysaccharide NGs as well as to formulate NGs-based vaccines are summarized, with a focus on the microfluidics approach.
Collapse
|
10
|
Serbezeanu D, Macsim AM, Carja ID, Hamciuc C, Pislaru M, Vlad-Bubulac T. Liquid crystalline hyperbranched polyesters with phosphorus functional groups. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320960532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liquid crystalline hyperbranched poly(aryl ester)s (A2B3) were prepared by polycondensation reaction of 2-(6-oxido-6H-dibenz<c,e><1,2>oxaphosphorin-6-yl)1,4-naphthalene diol with 1,3,5-benzenetricarbonyl trichloride, taken in two different molar ratios. The chemical structure of the newly synthesized hyperbranched polymers was confirmed by FTIR, 1H NMR, 13C NMR spectroscopy. The polymers exhibited high thermal stability with initial decomposition temperature above 410–435°C and char yield at 700°C higher than 40%. Combined differential scanning calorimetry, polarized optical microscopy and wide-angle X-ray diffraction measurements were carried out to closely examine their thermal behavior and phase transitions.
Collapse
Affiliation(s)
- Diana Serbezeanu
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - Ana-Maria Macsim
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | | | - Corneliu Hamciuc
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | | | | |
Collapse
|
11
|
Kaur J, Kour A, Panda JJ, Harjai K, Chhibber S. Exploring Endolysin-Loaded Alginate-Chitosan Nanoparticles as Future Remedy for Staphylococcal Infections. AAPS PharmSciTech 2020; 21:233. [PMID: 32794119 DOI: 10.1208/s12249-020-01763-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Endolysins are a novel class of antibacterials with proven efficacy in combating various bacterial infections, in vitro and in vivo. LysMR-5, an endolysin derived from phage MR-5, demonstrated high lytic activity in our laboratory against multidrug-resistant S. aureus (MRSA) and S. epidermidis strains. However, endolysin and proteins in general are associated with instability and short in vivo half-life, consequently limiting their usage as pharmaceutical preparation to treat bacterial infections. Nanoencapsulation of endolysins could help to achieve better therapeutic outcome, by protecting the proteins from degradation, providing sustained release, thus could increase their stability, shelf life, and therapeutic efficacy. Hence, in this study, the feasibility of alginate-chitosan nanoparticles (Alg-Chi NPs) to serve as drug delivery platform for LysMR-5 was evaluated. LysMR-5-loaded nanoparticles were prepared by calcium ion-induced pre-gelation of alginate core and its complexation with chitosan. The formation of nanoparticles was confirmed on the basis of DLS, zeta potential, and electron microscopy imaging. The LysMR-5-loaded nanoparticles presented a hydrodynamic diameter of 276.5 ± 42, a PDI of 0.342 ± 0.02, a zeta potential - 25 mV, and an entrapment efficiency of 62 ± 3.1%. The potential ionic interaction between alginate, chitosan, and LysMR-5 was investigated by FT-IR and SEM-EDX analysis. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), nano-sized particles with characteristic morphology were seen. Different antibacterial assays and SDS-PAGE analysis showed no change in endolysin's structural integrity and bioactivity after entrapment. A direct antibacterial effect of blank Alg-Chi Nps, showing enhanced bactericidal activity upon LysMR-5 loading, was observed against S. aureus. At physiological pH (7.2), the release profile of LysMR-5 from Alg-Chi NPs showed a biphasic release and followed a non-Fickian release mechanism. The biocompatible nature as revealed by cytocompatibility and hemocompatibility studies endorsed their use as drug delivery system for in vivo studies. Collectively, these results demonstrate the potential of Alg-Chi NPs as nano-delivery vehicle for endolysin LysMR-5 and other therapeutic proteins for their use in various biomedical applications.
Collapse
|
12
|
Altaani BM, Almaaytah AM, Dadou S, Alkhamis K, Daradka MH, Hananeh W. Oral Delivery of Teriparatide Using a Nanoemulsion System: Design, in Vitro and in Vivo Evaluation. Pharm Res 2020; 37:80. [PMID: 32253527 DOI: 10.1007/s11095-020-02793-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/29/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Investigate the possibility of delivering teriparatide orally using nanoemulsion. METHOD Teriparatide was allowed to interact with chitosan in the presence of HPβCD.The formed polyelectrolyte complex (PEC) was characterized by DSC, FTIR, DLS and for entrapment efficiency. PEC was the incorporated in an oil phase consisting of Oleic Acid, Labrasol and Plurol Oleique to form a nanoemulsion. This preparation was characterized for refractive index, viscosity, pH, conductivity, particle size, and morphology.Bioavailability of the preparation was evaluated using rabbits against SC injection. The efficacy of the formula was tested using ovariectomized rats (an osteoporosis animal model) and mechanical and histological tests were conducted on their bones. The stability of the preparation was evaluated by storing samples at 4o C, 25o C and 40o C for three months. RESULTS PEC testing demonstrate a complex formation with particle size of 208 nm, zeta potential of +17 mV and entrapment efficiency of 49%. For the nanoemulsion, the results demonstrate the formation of a nano-sized dispersed system (108 nm) with a drug loading of 98% and a percent protection of 90% and 71% in SGF and SIF respectively. Bioavailability results showed a sustained release profile was achieved following the oral formulation administration. Efficacy studies showed improvement in the strength, thickness and connectivity of bones. Short-term stability study demostrated that the nanoemulsion is mostly stable at 4o C. CONCLUSION These findings demonstrate the ability of delivering Teriparatide orally using oleic acid based dispersion in combination with chitosan PEC.
Collapse
Affiliation(s)
- Bashar M Altaani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Ammar M Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
- Currently Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Suha Dadou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Khouloud Alkhamis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mousa H Daradka
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Wael Hananeh
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
13
|
Chauhan SS, Shetty AB, Hatami E, Chowdhury P, Yallapu MM. Pectin-Tannic Acid Nano-Complexes Promote the Delivery and Bioactivity of Drugs in Pancreatic Cancer Cells. Pharmaceutics 2020; 12:E285. [PMID: 32235765 PMCID: PMC7151099 DOI: 10.3390/pharmaceutics12030285] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Pancreatic cancer (PanCa) is a lethal disease. Conventional chemotherapies for PanCa offer severe systemic toxicities. Thus, the development of a successful nanomedicine-based therapeutic regimen with augmented therapeutic efficacy is highly sought. Naturally occurring pectin and modified pectin-based drug delivery systems exhibit remarkable self-targeting ability via galactose residues to various cancer cells. Herein, we developed and used an innovative approach of highly stable nanocomplexes based on modified pectin and tannic acid (MPT-NCs). The nanocomplex formation was enabled by strong intermolecular interactions between pectin and tannic acid under very mild conditions. These nanocomplexes were characterized by particle size and morphology (DLS, TEM, and SEM), FT-IR spectroscopy, and zeta potential measurements. Additionally, MPT-NCs were capable of encapsulating anticancer drugs (5-fluorouracil, gemcitabine, and irinotecan) through tannic acid binding. The in vitro bioactivity of these drug MPT-NCs were evaluated in pancreatic cancer adenocarcinoma (PDAC) cell lines (HPAF-II and PANC-1). A dose-dependent internalization of nanocomplexes was evident from microscopy and flow cytometry analysis. Both proliferation and colony formation assays indicated the anticancer potential of pectin drug nanocomplexes against PDAC cells compared to that of free drug treatments. Together, the pectin-based nanocomplexes could be a reliable and efficient drug delivery strategy for cancer therapy.
Collapse
Affiliation(s)
- Sumeet S Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Advait B Shetty
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Elham Hatami
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pallabita Chowdhury
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
14
|
Jafari M, Abolmaali SS, Najafi H, Tamaddon AM. Hyperbranched polyglycerol nanostructures for anti-biofouling, multifunctional drug delivery, bioimaging and theranostic applications. Int J Pharm 2020; 576:118959. [DOI: 10.1016/j.ijpharm.2019.118959] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
|
15
|
Liu B, Ianosi-Irimie M, Thayumanavan S. Reversible Click Chemistry for Ultrafast and Quantitative Formation of Protein-Polymer Nanoassembly and Intracellular Protein Delivery. ACS NANO 2019; 13:9408-9420. [PMID: 31335116 PMCID: PMC6713578 DOI: 10.1021/acsnano.9b04198] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Construction of polymer-protein nanoassemblies is a challenge as reactions between macromolecules, especially those involving proteins, are inherently inefficient due to the sparse reactive functional groups and low concentration requirements. We address this challenge using an ultrafast and reversible click reaction, which forms the basis for a covalent self-assembly strategy between side-chain functionalized polymers and surface-modified proteins. The linkers in the assembly have been programmed to release the incarcerated proteins in its native form, only when subjected to the presence of a specific trigger. The generality and the versatility of the approach have been demonstrated by showing that this strategy can be used for proteins of different sizes and isoelectric points. Moreover, simple modifications in the linker chemistry offers the ability to trigger these assemblies with various chemical inputs. Efficient formation of nanoassemblies based on polymer-protein conjugates has implications in a variety of areas at the interface of chemistry with materials and biology, such as in the generation of active surfaces and in delivery of biologics. As a demonstration of utility in the latter, we have shown that these conjugates can be used to transport functional proteins across cellular membranes.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Corresponding Author:
| |
Collapse
|
16
|
Posey ND, Tew GN. Associative and Dissociative Processes in Non-Covalent Polymer-Mediated Intracellular Protein Delivery. Chem Asian J 2018; 13:3351-3365. [DOI: 10.1002/asia.201800849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Nicholas D. Posey
- Department of Polymer Science and Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
| | - Gregory N. Tew
- Department of Polymer Science and Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
- Department of Veterinary and Animal Sciences; University of Massachusetts Amherst; Amherst MA 01003 USA
- Molecular and Cellular Biology Program; University of Massachusetts Amherst; Amherst MA 01003 USA
| |
Collapse
|
17
|
Bhat SI, Ahmadi Y, Ahmad S. Recent Advances in Structural Modifications of Hyperbranched Polymers and Their Applications. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01969] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shahidul Islam Bhat
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Younes Ahmadi
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
18
|
Makwana H, Mastrotto F, Magnusson JP, Sleep D, Hay J, Nicholls KJ, Allen S, Alexander C. Engineered Polymer–Transferrin Conjugates as Self-Assembling Targeted Drug Delivery Systems. Biomacromolecules 2017; 18:1532-1543. [DOI: 10.1021/acs.biomac.7b00101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiteshri Makwana
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Francesca Mastrotto
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Johannes P. Magnusson
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Darrell Sleep
- Albumedix, Ltd., 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Joanna Hay
- Albumedix, Ltd., 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Karl J Nicholls
- Albumedix, Ltd., 59 Castle Boulevard, Nottingham NG7 1FD, United Kingdom
| | - Stephanie Allen
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Cameron Alexander
- School
of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
19
|
Chai HJ, Kiew LV, Chin Y, Norazit A, Mohd Noor S, Lo YL, Looi CY, Lau YS, Lim TM, Wong WF, Abdullah NA, Abdul Sattar MZ, Johns EJ, Chik Z, Chung LY. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats. Int J Nanomedicine 2017; 12:577-591. [PMID: 28144140 PMCID: PMC5245978 DOI: 10.2147/ijn.s111284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. EXPERIMENTAL APPROACH 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). RESULTS In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. CONCLUSION/IMPLICATIONS The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoke-Lin Lo
- Department of Pharmacy, Faculty of Medicine, University of Malaya
- School of Pharmacy, International Medical University, Kuala Lumpur
| | | | | | - Tuck-Meng Lim
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar
| | - Won-Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur
| | | | | | - Edward J Johns
- Department of Physiology, University College Cork, Cork, Republic of Ireland
| | | | - Lip-Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya
| |
Collapse
|
20
|
Yu J, Zhang J, Xing H, Yang Z, Cai C, Zhang C, Zhao X, Wei M, Yang L, Ding P. Guanidinylated bioresponsive poly(amido amine)s designed for intranuclear gene delivery. Int J Nanomedicine 2016; 11:4011-24. [PMID: 27574429 PMCID: PMC4993266 DOI: 10.2147/ijn.s109406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Guanidinylated poly(amido amine)s with multiple disulfide linkages (Gua-SS-PAAs) were designed and constructed as nonviral gene carriers. The main chains of these novel carriers were synthesized based on monomers containing guanidino groups (guanidine hydrochloride and chlorhexidine), which could avoid complicated side-chain-modification reactions while introducing the guanidino groups. The synthesized Gua-SS-PAAs polymers were characterized by 1H nuclear magnetic resonance, molecular weight, and polydispersity. Furthermore, Gua-SS-PAAs polymers were complexed with pDNA, and the properties of the complexes were determined, including entrapment efficiency, particle size, ζ-potential, atomic force microscopy images, stability, DNA complexation ability, reduction sensitivity, cytotoxicity, and transfection efficiency. The new Gua-SS-PAAs carriers exhibited higher transfection efficiency and lower cytotoxicity compared with two widely used gene delivery carriers, polyethylenimine and lipofectamine 2000. Furthermore, the relationship between the side-chain structure and morphological/biological properties was extrapolated, and the results showed that guanidine in the side chain aids in the improvement of transfection efficiency. In addition, the introduction of guanidino group might confer the new carriers with nuclear localization function compared to carriers without it.
Collapse
Affiliation(s)
- Jiankun Yu
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Jinmin Zhang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Zhen Yang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Cuifang Cai
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Conglu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Xiaoyun Zhao
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, People's Republic of China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University
| |
Collapse
|
21
|
Auricularia auricular polysaccharide-low molecular weight chitosan polyelectrolyte complex nanoparticles: Preparation and characterization. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.10.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
22
|
A novel combined strategy for the physical PEGylation of polypeptides. J Control Release 2016; 226:35-46. [DOI: 10.1016/j.jconrel.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/24/2022]
|
23
|
Lai WF, Shum HC. A stimuli-responsive nanoparticulate system using poly(ethylenimine)-graft-polysorbate for controlled protein release. NANOSCALE 2016; 8:517-528. [PMID: 26676890 DOI: 10.1039/c5nr06641g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Proteins have emerged as an important class of therapeutic agents due to their high specificity in their physiological actions. Over the years, diverse protein carriers have been developed; however, some concerns, such as the relatively low loading efficiency and release sustainability, have limited the efficiency of protein delivery. This study reports the use of hydrogel nanoparticles based on a novel copolymer, poly(ethylenimine)-graft-polysorbate (PEIP), as effective protein carriers. The copolymer is fabricated by grafting poly(ethylenimine) (PEI) with polysorbate 20 using carbonyldiimidazole chemistry. Its cytotoxicity is much lower than that of unmodified PEI in RGC5 and HEK293 cells. In comparison with nanoparticles formed by unmodified PEI, our nanoparticles are not only more efficient in cellular internalization, as indicated by the 5- to 6-fold reduction in the time they take to cause 90% of cells to exhibit intracellular fluorescence, but also give a protein loading efficiency as high as 70-90%. These, together with the salt-responsiveness of the nanoparticles in protein release and the retention of the activity of the loaded protein, suggest that PEIP and its hydrogel nanoparticles warrant further development as protein carriers for therapeutic applications.
Collapse
Affiliation(s)
- Wing-Fu Lai
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China.
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong Special Administrative Region, China. and HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Zeng Z, She Y, Peng Z, Wei J, He X. Enzyme-mediated in situ formation of pH-sensitive nanogels for proteins delivery. RSC Adv 2016. [DOI: 10.1039/c5ra25133h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
pH-Sensitive (PEG-b-P(LGA-g-Tyr)) nanogels were fabricated through the enzyme-mediated crosslinking reaction and used to load FITC-BSA for intracellular protein delivery.
Collapse
Affiliation(s)
- Zhipeng Zeng
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Yingqi She
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Zhiping Peng
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Junchao Wei
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Xiaohui He
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| |
Collapse
|
25
|
Asimakopoulos T, Staikos G. Complexation of bovine serum albumin with cationic polyelectrolytes at pH 7.40 – Formation of soluble complexes. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Xu W, Jin W, Zhang C, Liang H, Shah BR, Li B. Environment induced self-aggregation behavior of κ-carrageenan/lysozyme complex. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2015.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
27
|
Nizam El-Din HM, Khafaga MR, El-Naggar AWM. Physico-Chemical and Drug Release Properties of Poly(Vinyl Alcohol)/Gum Arabic/TiO2Nanocomposite Hydrogels Formed by Gamma Radiation. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2015. [DOI: 10.1080/10601325.2015.1067040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Self-assemblied nanocomplexes based on biomimetic amphiphilic chitosan derivatives for protein delivery. Carbohydr Polym 2015; 121:115-21. [PMID: 25659679 DOI: 10.1016/j.carbpol.2014.12.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 10/24/2022]
Abstract
A bio-inspired nanocarrier was developed for protein delivery based on biodegradable amphiphilic chitosan derivative (DCA-PCCs) with hydrophilic cell membrane mimic phosphorylcholine (PC) and hydrophobic deoxycholic acid (DCA) moieties, which was synthesized via the combination of Atherton-Todd reaction and carbodiimide coupling reaction. Using bovine serum albumin (BSA) as model protein, it was found that DCA-PCCs with suitable degree of substitution of PC and DCA moieties can load proteins by forming nanocomplexes via a solvent evaporation method. The physicochemical characteristics of BSA/DCA-PCCs nanocomplexes were investigated by Zetasizer, atomic force microscopy (AFM) and Fourier-transform infrared (FT-IR) spectroscopy. In vitro biological evaluation revealed BSA/DCA-PCCs nanocomplexes as blank DCA-PCCs nanoparticles had excellent cytocompatibility and hemocompatibility mainly due to the presence of cell membrane mimic phosphorylcholine. BSA release results suggested BSA/DCA-PCCs nanocomplexes showed a sustained release behavior following first order exponential decay kinetics. The results indicated DCA-PCCs provided a promising approach for effectively delivering therapeutic proteins.
Collapse
|
29
|
Yang NJ, Hinner MJ. Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol 2015; 1266:29-53. [PMID: 25560066 DOI: 10.1007/978-1-4939-2272-7_3] [Citation(s) in RCA: 480] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability to efficiently access cytosolic proteins is desired in both biological research and medicine. However, targeting intracellular proteins is often challenging, because to reach the cytosol, exogenous molecules must first traverse the cell membrane. This review provides a broad overview of how certain molecules are thought to cross this barrier, and what kinds of approaches are being made to enhance the intracellular delivery of those that are impermeable. We first discuss rules that govern the passive permeability of small molecules across the lipid membrane, and mechanisms of membrane transport that have evolved in nature for certain metabolites, peptides, and proteins. Then, we introduce design strategies that have emerged in the development of small molecules and peptides with improved permeability. Finally, intracellular delivery systems that have been engineered for protein payloads are surveyed. Viewpoints from varying disciplines have been brought together to provide a cohesive overview of how the membrane barrier is being overcome.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA, 02139, USA,
| | | |
Collapse
|
30
|
Abstract
The recent research progress in biological and biomedical applications of hyperbranched polymers has been summarized in this review.
Collapse
Affiliation(s)
- Dali Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Tianyu Zhao
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- 200240 Shanghai
- P. R. China
| | - Wenxin Wang
- Charles Institute of Dermatology
- School of Medicine and Medical Science
- University College Dublin
- Dublin 4
- Ireland
| |
Collapse
|
31
|
Coué G, Engbersen JFJ. Cationic Polymers for Intracellular Delivery of Proteins. CATIONIC POLYMERS IN REGENERATIVE MEDICINE 2014. [DOI: 10.1039/9781782620105-00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many therapeutic proteins exert their pharmaceutical action inside the cytoplasm or onto individual organelles inside the cell. Intracellular protein delivery is considered to be the most direct, fastest and safest approach for curing gene-deficiency diseases, enhancing vaccination and triggering cell transdifferentiation processes, within other curative applications. However, several hurdles have to be overcome. For this purpose the use of polymers, with their ease of modification in physical and chemical properties, is attractive in protein drug carriers. They can protect their therapeutic protein cargo from degradation and enhance their bioavailability at targeted sites. In this chapter, potential and currently used polymers for fabrication of protein delivery systems and their applications for intracellular administration are discussed. Special attention is given to the use of cationic polymers for their ability to promote the cellular uptake of therapeutic proteins.
Collapse
Affiliation(s)
- Grégory Coué
- MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| | - Johan F. J. Engbersen
- MIRA Institute of Biomedical Technology and Technical Medicine, University of Twente P.O. Box 217, 7500 AE Enschede The Netherlands
| |
Collapse
|
32
|
Sahu KK, Minz S, Kaurav M, Pandey RS. Proteins and peptides: The need to improve them as promising therapeutics for ulcerative colitis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 44:642-53. [PMID: 25379956 DOI: 10.3109/21691401.2014.975239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present review briefly describes the nature, type and pathogenesis of ulcerative colitis, and explores the potential use of peptides and proteins in the treatment of inflammatory bowel disease, especially ulcerative colitis. Intestinal absorption and the barrier mechanism of peptide and protein drugs are also discussed, with special emphasis on various strategies which make these drugs better therapeutics having high specificity, potency and molecular targeting ability. However, the limitation of such therapeutics are oral administration, poor pharmacokinetic profile and decreased bioavailability. The recent findings illustrated in this review will be helpful in designing the peptide/protein drugs as a promising treatment of choice for ulcerative colitis.
Collapse
Affiliation(s)
- Kantrol Kumar Sahu
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| | - Sunita Minz
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| | - Monika Kaurav
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| | - Ravi Shankar Pandey
- a Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya , Bilaspur, C.G. , India
| |
Collapse
|
33
|
Salmaso S, Bersani S, Scomparin A, Balasso A, Brazzale C, Barattin M, Caliceti P. A novel soluble supramolecular system for sustained rh-GH delivery. J Control Release 2014; 194:168-77. [DOI: 10.1016/j.jconrel.2014.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
|
34
|
Design and processing of nanogels as delivery systems for peptides and proteins. Ther Deliv 2014; 5:691-708. [DOI: 10.4155/tde.14.38] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanogels, cross-linked networks of >1 μm in size, are attractive drug-delivery systems, as they not only possess the potential advantages of nanoscale formulations, but also the attractive abilities of a hydrogel; high hydrophilicity, high loading capacity and the potential for biocompatibility and controlled release. The focus of this review is to provide an overview of the recent developments within the nanogel field, and how the chemical design of the nanogel polymer has been found to influence the properties of the nanogel system. Novel nanogel systems are discussed with respect to their type of cross-linkage and their suitability as therapeutic delivery systems, as well as their ability to stabilize the protein/peptide drug.
Collapse
|
35
|
Panta P, Kim DY, Kwon JS, Son AR, Lee KW, Kim MS. Protein Drug-Loaded Polymeric Nanoparticles. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbise.2014.710082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Tang R, Kim CS, Solfiell DJ, Rana S, Mout R, Velázquez-Delgado EM, Chompoosor A, Jeong Y, Yan B, Zhu ZJ, Kim C, Hardy JA, Rotello VM. Direct delivery of functional proteins and enzymes to the cytosol using nanoparticle-stabilized nanocapsules. ACS NANO 2013; 7:6667-6673. [PMID: 23815280 PMCID: PMC3757120 DOI: 10.1021/nn402753y] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Intracellular protein delivery is an important tool for both therapeutic and fundamental applications. Effective protein delivery faces two major challenges: efficient cellular uptake and avoiding endosomal sequestration. We report here a general strategy for direct delivery of functional proteins to the cytosol using nanoparticle-stabilized capsules (NPSCs). These NPSCs are formed and stabilized through supramolecular interactions between the nanoparticle, the protein cargo, and the fatty acid capsule interior. The NPSCs are ~130 nm in diameter and feature low toxicity and excellent stability in serum. The effectiveness of these NPSCs as therapeutic protein carriers was demonstrated through the delivery of fully functional caspase-3 to HeLa cells with concomitant apoptosis. Analogous delivery of green fluorescent protein (GFP) confirmed cytosolic delivery as well as intracellular targeting of the delivered protein, demonstrating the utility of the system for both therapeutic and imaging applications.
Collapse
Affiliation(s)
- Rui Tang
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Chang Soo Kim
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - David J. Solfiell
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Subinoy Rana
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Rubul Mout
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Elih M. Velázquez-Delgado
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Apiwat Chompoosor
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Youngdo Jeong
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Bo Yan
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Zheng-Jiang Zhu
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Jeanne A. Hardy
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts-Amherst, 710 North Pleasant Street, Amherst, Massachusetts, 01003, USA
| |
Collapse
|