2
|
Jin Y, Wang H, Yi K, Lv S, Hu H, Li M, Tao Y. Applications of Nanobiomaterials in the Therapy and Imaging of Acute Liver Failure. NANO-MICRO LETTERS 2020; 13:25. [PMID: 34138224 PMCID: PMC8187515 DOI: 10.1007/s40820-020-00550-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/22/2020] [Indexed: 05/02/2023]
Abstract
This review focuses on the therapeutic mechanisms, targeting strategies of various nanomaterials in acute liver failure, and recent advances of diverse nanomaterials for acute liver failure therapy, diagnosis, and imaging. This review provides an outlook on the applications of nanomaterials, especially on the new horizons in acute liver failure therapy, and inspires broader interests across various disciplines. Acute liver failure (ALF), a fatal clinical disease featured with overwhelming hepatocyte necrosis, is a grand challenge in global health. However, a satisfactory therapeutic option for curing ALF is still absent, other than liver transplantation. Nanobiomaterials are currently being developed for the diagnosis and treatment of ALF. The liver can sequester most of nanoparticles from blood circulation, which becomes an intrinsic superiority for nanobiomaterials targeting hepatic diseases. Nanobiomaterials can enhance the bioavailability of free drugs, thereby significantly improving the therapeutic effects in ALF. Nanobiomaterials can also increase the liver accumulation of therapeutic agents and enable more effective targeting of the liver or specific liver cells. In addition, stimuli-responsive, optical, or magnetic nanomaterials exhibit great potential in the therapeutical, diagnostic, and imaging applications in ALF. Therefore, therapeutic agents in combination with nanobiomaterials increase the specificity of ALF therapy, diminish adverse systemic effects, and offer a multifunctional theranostic platform. Nanobiomaterial holds excellent significance and prospects in ALF theranostics. In this review, we summarize the therapeutic mechanisms and targeting strategies of various nanobiomaterials in ALF. We highlight recent developments of diverse nanomedicines for ALF therapy, diagnosis, and imaging. Furthermore, the challenges and future perspectives in the theranostics of ALF are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
4
|
Chen W, Wang T, Pino-Yanes M, Forno E, Liang L, Yan Q, Hu D, Weeks DE, Baccarelli A, Acosta-Perez E, Eng C, Han YY, Boutaoui N, Laprise C, Davies GA, Hopkin JM, Moffatt MF, Cookson WOCM, Canino G, Burchard EG, Celedón JC. An epigenome-wide association study of total serum IgE in Hispanic children. J Allergy Clin Immunol 2017; 140:571-577. [PMID: 28069425 DOI: 10.1016/j.jaci.2016.11.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/26/2016] [Accepted: 11/24/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Total IgE is a therapeutic target in patients with allergic diseases. DNA methylation in white blood cells (WBCs) was associated with total IgE levels in an epigenome-wide association study of white subjects. Whether DNA methylation of eosinophils explains these findings is insufficiently understood. METHODS We tested for association between genome-wide DNA methylation in WBCs and total IgE levels in 2 studies of Hispanic children: the Puerto Rico Genetics of Asthma and Lifestyle Study (PR-GOAL; n = 306) and the Genes-environments and Admixture in Latino Americans (GALA II) study (n = 573). Whole-genome methylation of DNA from WBCs was measured by using the Illumina Infinium HumanMethylation450 BeadChip. Total IgE levels were measured by using the UniCAP 100 system. In PR-GOAL WBC types (ie, neutrophils, eosinophils, basophils, lymphocytes, and monocytes) in peripheral blood were measured by using Coulter Counter techniques. In the GALA II study WBC types were imputed. Multivariable linear regression was used for the analysis of DNA methylation and total IgE levels, which was first conducted separately for each cohort, and then results from the 2 cohorts were combined in a meta-analysis. RESULTS CpG sites in multiple genes, including novel findings and results previously reported in white subjects, were significantly associated with total IgE levels. However, adjustment for WBC types resulted in markedly fewer significant sites. Top findings from this adjusted meta-analysis were in the genes ZFPM1 (P = 1.5 × 10-12), ACOT7 (P = 2.5 × 10-11), and MND1 (P = 1.4 × 10-9). CONCLUSIONS In an epigenome-wide association study adjusted for WBC types (including eosinophils), methylation changes in genes enriched in pathways relevant to asthma and immune responses were associated with total IgE levels among Hispanic children.
Collapse
Affiliation(s)
- Wei Chen
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | - Ting Wang
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | - Maria Pino-Yanes
- Instituto de Salud Carlos III, CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Erick Forno
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | - Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard School of Public Health, Boston, Mass
| | - Qi Yan
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | - Donglei Hu
- Department of Therapeutic Sciences and Bioengineering, University of California at San Francisco, San Francisco, Calif
| | - Daniel E Weeks
- Departments of Human Genetics and Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pa
| | - Andrea Baccarelli
- Department of Environmental Medicine, Harvard School of Public Health, Boston, Mass
| | - Edna Acosta-Perez
- Behavioral Sciences Research Institute and Department of Pediatrics, University of Puerto Rico, San Juan, Puerto Rico
| | - Celeste Eng
- Department of Therapeutic Sciences and Bioengineering, University of California at San Francisco, San Francisco, Calif
| | - Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | - Nadia Boutaoui
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa
| | | | - Gwyneth A Davies
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Julian M Hopkin
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Miriam F Moffatt
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Glorisa Canino
- Behavioral Sciences Research Institute and Department of Pediatrics, University of Puerto Rico, San Juan, Puerto Rico
| | - Esteban G Burchard
- Department of Therapeutic Sciences and Bioengineering, University of California at San Francisco, San Francisco, Calif
| | - Juan C Celedón
- Division of Pediatric Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pa.
| |
Collapse
|
6
|
Kwon J, Kim J, Park S, Khang G, Kang PM, Lee D. Inflammation-responsive antioxidant nanoparticles based on a polymeric prodrug of vanillin. Biomacromolecules 2013; 14:1618-26. [PMID: 23590189 DOI: 10.1021/bm400256h] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Oxidative stress is induced by accumulation of hydrogen peroxide (H2O2), and therefore, H2O2 could serve as a potential biomarker of various oxidative stress-associated inflammatory diseases. Vanillin is one of the major components of natural vanilla and has potent antioxidant and anti-inflammatory activities. In this work, we developed a novel inflammation-responsive antioxidant polymeric prodrug of vanillin, termed poly(vanillin oxalate) (PVO). In design, PVO incorporates H2O2-reacting peroxalate ester bonds and bioactive vanillin via acid-responsive acetal linkages in its backbone. Therefore, in cells undergoing damages by oxidative stress, PVO readily degrades into three nontoxic components, one of which is antioxidant and anti-inflammatory vanillin. PVO nanoparticles exhibit potent antioxidant activities by scavenging H2O2 and inhibiting the generation of ROS (reactive oxygen species) and also reduce the expression of pro-inflammatory cytokines in activated macrophages in vitro and in vivo. We, therefore, anticipate that PVO nanoparticles have great potential as novel antioxidant therapeutics and drug delivery systems for ROS-associated inflammatory diseases.
Collapse
Affiliation(s)
- Jeongil Kwon
- Department of BIN Fusion Technology, Chonbuk National University, Jeonju, 561-756, Korea
| | | | | | | | | | | |
Collapse
|
7
|
Lim H, Noh J, Kim Y, Kim H, Kim J, Khang G, Lee D. Acid-Degradable Cationic Poly(ketal amidoamine) for Enhanced RNA Interference In Vitro and In Vivo. Biomacromolecules 2013; 14:240-7. [DOI: 10.1021/bm301669e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hyungsuk Lim
- Department
of BIN Fusion Technology and ‡Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Jeonju, 561-756, Korea
| | - Joungyoun Noh
- Department
of BIN Fusion Technology and ‡Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Jeonju, 561-756, Korea
| | - Yerang Kim
- Department
of BIN Fusion Technology and ‡Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Jeonju, 561-756, Korea
| | - Hyungmin Kim
- Department
of BIN Fusion Technology and ‡Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Jeonju, 561-756, Korea
| | - Jihye Kim
- Department
of BIN Fusion Technology and ‡Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Jeonju, 561-756, Korea
| | - Gilson Khang
- Department
of BIN Fusion Technology and ‡Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Jeonju, 561-756, Korea
| | - Dongwon Lee
- Department
of BIN Fusion Technology and ‡Polymer Fusion Research Center, Department of Polymer·Nano Science and Technology, Chonbuk National University, Jeonju, 561-756, Korea
| |
Collapse
|