1
|
Kimata R, Yoshihara N, Terukina T, Kanazawa T, Kondo H. Impact of Properties of Hydrated Silicon Dioxide as Core Material on the Characteristics of Drug-containing Particles Prepared by the 2-step Process Melt Granulation Technology, MALCORE ®. AAPS PharmSciTech 2022; 24:28. [PMID: 36577811 DOI: 10.1208/s12249-022-02492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Drug-containing particles (DCPs) are frequently used as cores in the development of solid oral dosage forms. The wet layering technique, which is a typical approach for preparing DCPs, requires the use of solvents and a long manufacturing time. In our previous study, we developed a novel manufacturing technology, MALCORE®, which can solve these problems through melt granulation. However, particle size control methods for DCPs in MALCORE® and the effect of the physical properties of the hydrated silicon dioxide (HSD) used for the core have not been clarified. The aim of this study was to examine the effects of the particle and pore sizes of HSD on the properties of the prepared DCPs. The results showed that the DCPs prepared using MALCORE® could be controlled by the particle size of HSD. The drug-loading efficiency tended to decrease as HSD particle size increased. Additionally, the amount of drug layering in DCPs increased as the pore size of HSD increased, but HSDs with a pore size much larger than the particle size were not able to properly layer the drug. These findings are helpful for applying MALCORE® to a variety of oral drug formulations.
Collapse
Affiliation(s)
- Ryota Kimata
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.,Pharmaceutical Development Department, Sawai Pharmaceutical Co, Miyahara 5-Chome, Yodogawa-Ku, Ltd, 2-30, Japan
| | - Naoki Yoshihara
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.,Pharmaceutical Development Department, Sawai Pharmaceutical Co, Miyahara 5-Chome, Yodogawa-Ku, Ltd, 2-30, Japan
| | - Takayuki Terukina
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Takanori Kanazawa
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
2
|
Quality-by-design in pharmaceutical development: From current perspectives to practical applications. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2021; 71:497-526. [PMID: 36651549 DOI: 10.2478/acph-2021-0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 01/19/2023]
Abstract
Current pharmaceutical research directions tend to follow a systematic approach in the field of applied research and development. The concept of quality-by-design (QbD) has been the focus of the current progress of pharmaceutical sciences. It is based on, but not limited, to risk assessment, design of experiments and other computational methods and process analytical technology. These tools offer a well-organized methodology, both to identify and analyse the hazards that should be handled as critical, and are therefore applicable in the control strategy. Once implemented, the QbD approach will augment the comprehension of experts concerning the developed analytical technique or manufacturing process. The main activities are oriented towards the identification of the quality target product profiles, along with the critical quality attributes, the risk management of these and their analysis through in silico aided methods. This review aims to offer an overview of the current standpoints and general applications of QbD methods in pharmaceutical development.
Collapse
|
3
|
Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, (Tony) Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B 2021; 11:2505-2536. [PMID: 34522596 PMCID: PMC8424289 DOI: 10.1016/j.apsb.2021.05.014] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are popular for enhancing the solubility and bioavailability of poorly water-soluble drugs. Various approaches have been employed to produce ASDs and novel techniques are emerging. This review provides an updated overview of manufacturing techniques for preparing ASDs. As physical stability is a critical quality attribute for ASD, the impact of formulation, equipment, and process variables, together with the downstream processing on physical stability of ASDs have been discussed. Selection strategies are proposed to identify suitable manufacturing methods, which may aid in the development of ASDs with satisfactory physical stability.
Collapse
Key Words
- 3DP, three-dimensional printing
- ASDs, amorphous solid dispersions
- ASES, aerosol solvent extraction system
- Amorphous solid dispersions
- CAP, cellulose acetate phthalate
- CO2, carbon dioxide
- CSG, continuous-spray granulation
- Co-precipitation
- Downstream processing
- Drug delivery
- EPAS, evaporative aqueous solution precipitation
- Eudragit®, polymethacrylates derivatives
- FDM, fused deposition modeling
- GAS, gas antisolvent
- HME, hot-melt extrusion
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methylcellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- HPMCP, hypromellose phthalate
- Manufacturing
- Melting process
- PCA, precipitation with compressed fluid antisolvent
- PGSS, precipitation from gas-saturated solutions
- PLGA, poly(lactic-co-glycolic acid
- PVP, polyvinylpyrrolidone
- PVPVA, polyvinylpyrrolidone/vinyl acetate
- RESS, rapid expansion of a supercritical solution
- SAS, supercritical antisolvent
- SCFs, supercritical fluids
- SEDS, solution-enhanced dispersion by SCF
- SLS, selective laser sintering
- Selection criteria
- Soluplus®, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer
- Solvent evaporation
- Stability
- Tg, glass transition temperature
- USC, ultrasound compaction
- scCO2, supercritical CO2
Collapse
Affiliation(s)
- Sonal V. Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Biplob Mitra
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Uday Jain
- Material Science and Engineering, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Yuchuan Gong
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Anjali Agrawal
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Shyam Karki
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Sumit Kumar
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Forster SP, Dippold E, Chiang T. Twin-Screw Melt Granulation for Oral Solid Pharmaceutical Products. Pharmaceutics 2021; 13:pharmaceutics13050665. [PMID: 34066332 PMCID: PMC8148162 DOI: 10.3390/pharmaceutics13050665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022] Open
Abstract
This article highlights the advantages of pharmaceutical continuous melt granulation by twin-screw extrusion. The different melt granulation process options and excipients are described and compared, and a case is made for expanded use of twin-screw melt granulation since it is a flexible and continuous process. Methods for binder selection are profiled with a focus on rheology and physical stability impacts. For twin-screw melt granulation, the mechanism of granulation and process impact on granule properties are described. Pharmaceutical applications of melt granulation ranging from immediate release of soluble and insoluble APIs, taste-masking, and sustained release formulation are reviewed, demonstrating the range of possibilities afforded by twin-screw melt granulation.
Collapse
|
5
|
Korteby Y, Mahdi Y, Daoud K, Regdon G. A novel insight into fluid bed melt granulation: Temperature mapping for the determination of granule formation with the in-situ and spray-on techniques. Eur J Pharm Sci 2019; 127:351-362. [PMID: 30195648 DOI: 10.1016/j.ejps.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 08/26/2018] [Accepted: 09/04/2018] [Indexed: 11/25/2022]
Abstract
The in-line control of pharmaceutical processes has become a necessary tool for the evaluation and follow-up of pharmaceutical dosage forms. In this study, a novel approach to the evaluation of conditions established in a conical fluid bed granulator during the in-situ and spray-on fluid bed melt granulation (FBMG) techniques was developed. The determination of temperature mappings allowed the characterization of the critical zones during the melt granulation and the prediction of the volume of the wetting zone, hence enabling the identification of the areas of optimal granule growth. Two grades of polyethylene glycol (PEG 2000 and 6000) were used as meltable binders in three binder spraying rates and droplet size fractions for spray-on and three binder particle sizes and contents for in-situ. The results showed the presence of intense heat exchange in the bottom of the bed during the in-situ technique and under the spraying nozzle during the spray-on technique, identified as the wetting zone. Isotherm maps enabled the identification of the transition between the wetting, cooling and consolidation zones for the spray-on and the cooling zone for the in-situ technique. The shape and volume of the wetting zone was highly dependent on binder spraying rate and spraying pressure for spray-on and binder particle size and content for in-situ FBMG. Granule size and size distribution were correlated to the volume of the wetting zone and an optimized wetting volume interval was determined for both spray-on and in-situ techniques for the optimal quality attributes of the granules.
Collapse
Affiliation(s)
- Yasmine Korteby
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Yassine Mahdi
- Laboratory of Transfer Phenomena, Faculty of Mechanical Engineering and Process Engineering, University of Sciences and Technology Houari Boumediene, BP32 Bab Ezzouar, 16111 Algiers, Algeria
| | - Kamel Daoud
- Laboratory of Transfer Phenomena, Faculty of Mechanical Engineering and Process Engineering, University of Sciences and Technology Houari Boumediene, BP32 Bab Ezzouar, 16111 Algiers, Algeria
| | - Géza Regdon
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.
| |
Collapse
|
6
|
Multivariate modeling to evaluate effect of fabricating process on product profile of high shear granulation. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
7
|
Barmpalexis P, Karagianni A, Karasavvaides G, Kachrimanis K. Comparison of multi-linear regression, particle swarm optimization artificial neural networks and genetic programming in the development of mini-tablets. Int J Pharm 2018; 551:166-176. [PMID: 30227239 DOI: 10.1016/j.ijpharm.2018.09.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/30/2022]
Abstract
In the present study, the preparation of pharmaceutical mini-tablets was attempted in the framework of Quality by Design (QbD) context, by comparing traditionally used multi-linear regression (MLR), with artificially-intelligence based regression techniques (such as standard artificial neural networks (ANNs), particle swarm optimization (PSO) ANNs and genetic programming (GP)) during Design of Experiment (DoE) implementation. Specifically, the effect of diluent type and particle size fraction for three commonly used direct compression diluents (lactose, pregelatinized starch and dibasic calcium phosphate dihydrate, DCPD) blended with either hydrophilic or hydrophobic flowing aids was evaluated in terms of: a) powder blend properties (such as bulk (Y1) and tapped (Y2) density, Carr's compressibility index (Y3, CCI), Kawakita's compaction fitting parameters a (Y4) and 1/b (Y5)), and b) mini-tablet's properties (such as relative density (Y6), average weight (Y7) and weight variation (Y8)). Results showed better flowing properties for pregelatinized starch and improved packing properties for lactose and DPCD. MLR analysis showed high goodness of fit for the Y1, Y2, Y4, Y6 and Y8 with RMSE values of Y1 = 0.028, Y2 = 0.032, Y4 = 0.019, Y6 = 0.015 and Y8 = 0.130; while for rest responses, high correlation was observed from both standard ANNs and GP. PSO-ANNs fitting was the only regression technique that was able to adequately fit all responses simultaneously (RMSE values of Y1 = 0.026, Y2 = 0.022, Y3 = 0.025, Y4 = 0.010, Y5 = 0.063, Y6 = 0.013, Y7 = 0.064 and Y8 = 0.104).
Collapse
Affiliation(s)
- Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Anna Karagianni
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Grigorios Karasavvaides
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Kyriakos Kachrimanis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
8
|
Korteby Y, Kristó K, Sovány T, Regdon G. Use of machine learning tool to elucidate and characterize the growth mechanism of an in-situ fluid bed melt granulation. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.03.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Debevec V, Srčič S, Horvat M. Scientific, statistical, practical, and regulatory considerations in design space development. Drug Dev Ind Pharm 2017; 44:349-364. [DOI: 10.1080/03639045.2017.1409755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Veronika Debevec
- Sandoz Development Center, Lek Pharmaceuticals, d.d., Ljubljana, Slovenia
| | - Stanko Srčič
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Horvat
- Sandoz Biopharmaceuticals, Lek Pharmaceuticals, d.d., Mengeš, Slovenia
| |
Collapse
|
10
|
Ming L, Li Z, Wu F, Du R, Feng Y. A two-step approach for fluidized bed granulation in pharmaceutical processing: Assessing different models for design and control. PLoS One 2017; 12:e0180209. [PMID: 28662115 PMCID: PMC5491152 DOI: 10.1371/journal.pone.0180209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/12/2017] [Indexed: 12/14/2022] Open
Abstract
Various modeling techniques were used to understand fluidized bed granulation using a two-step approach. First, Plackett-Burman design (PBD) was used to identify the high-risk factors. Then, Box-Behnken design (BBD) was used to analyze and optimize those high-risk factors. The relationship between the high-risk input variables (inlet air temperature X1, binder solution rate X3, and binder-to-powder ratio X5) and quality attributes (flowability Y1, temperature Y2, moisture content Y3, aggregation index Y4, and compactability Y5) of the process was investigated using response surface model (RSM), partial least squares method (PLS) and artificial neural network of multilayer perceptron (MLP). The morphological study of the granules was also investigated using a scanning electron microscope. The results showed that X1, X3, and X5 significantly affected the properties of granule. The RSM, PLS and MLP models were found to be useful statistical analysis tools for a better mechanistic understanding of granulation. The statistical analysis results showed that the RSM model had a better ability to fit the quality attributes of granules compared to the PLS and MLP models. Understanding the effect of process parameters on granule properties provides the basis for modulating the granulation parameters and optimizing the product performance at the early development stage of pharmaceutical products.
Collapse
Affiliation(s)
- Liangshan Ming
- Engineering Research Center of Modern Preparation of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Wu
- Engineering Research Center of Modern Preparation of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruofei Du
- Engineering Research Center of Modern Preparation of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (RF Du); , (Yi F)
| | - Yi Feng
- Engineering Research Center of Modern Preparation of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (RF Du); , (Yi F)
| |
Collapse
|
11
|
Vasconcelos T, Marques S, das Neves J, Sarmento B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv Drug Deliv Rev 2016; 100:85-101. [PMID: 26826438 DOI: 10.1016/j.addr.2016.01.012] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Amorphous products and particularly amorphous solid dispersions are currently one of the most exciting areas in the pharmaceutical field. This approach presents huge potential and advantageous features concerning the overall improvement of drug bioavailability. Currently, different manufacturing processes are being developed to produce amorphous solid dispersions with suitable robustness and reproducibility, ranging from solvent evaporation to melting processes. In the present paper, laboratorial and industrial scale processes were reviewed, and guidelines for a rationale selection of manufacturing processes were proposed. This would ensure an adequate development (laboratorial scale) and production according to the good manufacturing practices (GMP) (industrial scale) of amorphous solid dispersions, with further implications on the process validations and drug development pipeline.
Collapse
Affiliation(s)
- Teófilo Vasconcelos
- BIAL-Portela & Cª, S.A., Avenida da Siderugia Nacional, 4745-457 Trofa, Portugal; Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Sara Marques
- CIBIO/InBIO-UP-Research Centre in Biodiversity and Genetic Resources, University of Porto, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal
| | - José das Neves
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Bruno Sarmento
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
12
|
Aleksić I, Đuriš J, Ibrić S, Parojčić J. An investigation into the usefulness of different empirical modeling techniques for better control of spray-on fluidized bed melt granulation. Int J Pharm 2015; 496:627-35. [DOI: 10.1016/j.ijpharm.2015.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/01/2015] [Accepted: 11/02/2015] [Indexed: 01/25/2023]
|
13
|
Becker K, Salar-Behzadi S, Zimmer A. Solvent-free melting techniques for the preparation of lipid-based solid oral formulations. Pharm Res 2015; 32:1519-45. [PMID: 25788447 PMCID: PMC4381087 DOI: 10.1007/s11095-015-1661-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/19/2015] [Indexed: 01/08/2023]
Abstract
Lipid excipients are applied for numerous purposes such as taste masking, controlled release, improvement of swallowability and moisture protection. Several melting techniques have evolved in the last decades. Common examples are melt coating, melt granulation and melt extrusion. The required equipment ranges from ordinary glass beakers for lab scale up to large machines such as fluid bed coaters, spray dryers or extruders. This allows for upscaling to pilot or production scale. Solvent free melt processing provides a cost-effective, time-saving and eco-friendly method for the food and pharmaceutical industries. This review intends to give a critical overview of the published literature on experiences, formulations and challenges and to show possibilities for future developments in this promising field. Moreover, it should serve as a guide for selecting the best excipients and manufacturing techniques for the development of a product with specific properties using solvent free melt processing.
Collapse
Affiliation(s)
- Karin Becker
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University Graz, Member of BioTechMed, Universitätplatz 1, 8010 Graz, Austria
| | | | - Andreas Zimmer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, Karl-Franzens-University Graz, Member of BioTechMed, Universitätplatz 1, 8010 Graz, Austria
| |
Collapse
|
14
|
Shanmugam S. Granulation techniques and technologies: recent progresses. ACTA ACUST UNITED AC 2015; 5:55-63. [PMID: 25901297 PMCID: PMC4401168 DOI: 10.15171/bi.2015.04] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/10/2014] [Accepted: 12/27/2014] [Indexed: 02/04/2023]
Abstract
![]()
Granulation, the process of particle enlargement by agglomeration technique, is one of the most significant unit operations in the production of pharmaceutical dosage forms, mostly tablets and capsules. Granulation process transforms fine powders into free-flowing, dust-free granules that are easy to compress. Nevertheless, granulation poses numerous challenges due to high quality requirement of the formed granules in terms of content uniformity and physicochemical properties such as granule size, bulk density, porosity, hardness, moisture, compressibility, etc. together with physical and chemical stability of the drug. Granulation process can be divided into two types: wet granulation that utilize a liquid in the process and dry granulation that requires no liquid. The type of process selection requires thorough knowledge of physicochemical properties of the drug, excipients, required flow and release properties, to name a few. Among currently available technologies, spray drying, roller compaction, high shear mixing, and fluid bed granulation are worth of note. Like any other scientific field, pharmaceutical granulation technology also continues to change, and arrival of novel and innovative technologies are inevitable. This review focuses on the recent progress in the granulation techniques and technologies such as pneumatic dry granulation, reverse wet granulation, steam granulation, moisture-activated dry granulation, thermal adhesion granulation, freeze granulation, and foamed binder or foam granulation. This review gives an overview of these with a short description about each development along with its significance and limitations.
Collapse
|