1
|
Katsiotis CS, Tikhomirov E, Leliopoulos C, Strømme M, Welch K. Development of a simple paste for 3D printing of drug formulations containing a mesoporous material loaded with a poorly water-soluble drug. Eur J Pharm Biopharm 2024; 198:114270. [PMID: 38537908 DOI: 10.1016/j.ejpb.2024.114270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Poorly soluble drugs represent a substantial portion of emerging drug candidates, posing significant challenges for pharmaceutical formulators. One promising method to enhance the drug's dissolution rate and, consequently, bioavailability involves transforming them into an amorphous state within mesoporous materials. These materials can then be seamlessly integrated into personalized drug formulations using Additive Manufacturing (AM) techniques, most commonly via Fused Deposition Modeling. Another innovative approach within the realm of AM for mesoporous material-based formulations is semi-solid extrusion (SSE). This study showcases the feasibility of a straightforward yet groundbreaking hybrid 3D printing system employing SSE to incorporate drug-loaded mesoporous magnesium carbonate (MMC) into two different drug formulations, each designed for distinct administration routes. MMC was loaded with the poorly water-soluble drug ibuprofen via a solvent evaporation method and mixed with PEG 400 as a binder and lubricant, facilitating subsequent SSE. The formulation is non-aqueous, unlike most pastes which are used for SSE, and thus is beneficial for the incorporation of poorly water-soluble drugs. The 3D printing process yielded tablets for oral administration and suppositories for rectal administration, which were then analyzed for their dissolution behavior in biorelevant media. These investigations revealed enhancements in the dissolution kinetics of the amorphous drug-loaded MMC formulations. Furthermore, an impressive drug loading of 15.3 % w/w of the total formulation was achieved, marking the highest reported loading for SSE formulations incorporating mesoporous materials to stabilize drugs in their amorphous state by a wide margin. This simple formulation containing PEG 400 also showed advantages over other aqueous formulations for SSE in that the formulations did not exhibit weight loss or changes in size or form during the curing process post-printing. These results underscore the substantial potential of this innovative hybrid 3D printing system for the development of drug dosage forms, particularly for improving the release profile of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Christos S Katsiotis
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala SE-751 03, Sweden.
| | - Evgenii Tikhomirov
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala SE-751 03, Sweden.
| | - Christos Leliopoulos
- Division of Macromolecular Chemistry, Department of Chemistry, Uppsala University, Box 538, SE-751 21, Sweden.
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala SE-751 03, Sweden.
| | - Ken Welch
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Box 35, Uppsala SE-751 03, Sweden.
| |
Collapse
|
2
|
Faber T, McConville JT, Lamprecht A. Focused ion beam-scanning electron microscopy provides novel insights of drug delivery phenomena. J Control Release 2024; 366:312-327. [PMID: 38161031 DOI: 10.1016/j.jconrel.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Scanning electron microscopy (SEM) has long been a standard tool for morphological analyses, providing sub micrometer resolution of pharmaceutical formulations. However, analysis of internal morphologies of such formulations can often be biased due to the introduction of artifacts that originate from sample preparation. A recent advancement in SEM, is the focused ion beam scanning electron microscopy (FIB-SEM). This technique uses a focused ion beam (FIB) to remove material with nanometer precision, to provide virtually sample-independent access to sub-surface structures. The FIB can be combined with SEM imaging capabilities within the same instrumentation. As a powerful analytical tool, electron microscopy and FIB-milling are performed sequentially to produce high-resolution 3D models of structural peculiarities of diverse drug delivery systems or their behavior in a biological environment, i.e. intracellular or -tissue distribution. This review paper briefly describes the technical background of the method, outlines a wide array of potential uses within the drug delivery field, and focuses on intracellular transport where high-resolution images are an essential tool for mechanistical insights.
Collapse
Affiliation(s)
- Thilo Faber
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Jason T McConville
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Université de Franche-Comté, INSERM UMR1098 Right, Besançon, France.
| |
Collapse
|
3
|
Yu Z, Xiong Y, Fan M, Li J, Liang K. Metronidazole and Ketoprofen-Loaded Mesoporous Magnesium Carbonate for Rapid Treatment of Acute Periodontitis In Vitro. ACS OMEGA 2023; 8:25441-25452. [PMID: 37483201 PMCID: PMC10357566 DOI: 10.1021/acsomega.3c02968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
In the clinical pharmacological treatment of acute periodontitis, local periodontal administration is expected to be preferable to systemic administration. However, the action of the active medicine component is hindered and diminished by the limitation of drug solubility, which does not provide timely relief of the enormous pain being suffered by patients. This study aimed to develop a mesoporous magnesium carbonate (MMC) medicine loading system consisting of MMC, metronidazole (MET), and ketoprofen (KET), which was noted as MET-KET@MMC. A solvent evaporation process was utilized to load MET and KET in MMC. Scanning electron microscopy, nitrogen sorption, thermogravimetric analysis, and X-ray diffraction were performed on the MET-KET@MMC. The rapid drug release properties were also investigated through the drug release curve. The rapid antiseptic property against Porphyromonas gingivalis (P. gingivalis) and the rapid anti-inflammatory property (within 1 min) were analyzed in vitro. The cytotoxicity of MET-KET@MMC was tested in direct contact with human gingival cells and human oral keratinocytes. Crystallizations of MET and KET were completely suppressed in MMC. As compared to crystalline MET and KET, MMC induced higher apparent solubility and rapid drug release, resulting in 8.76 times and 3.43 times higher release percentages of the drugs, respectively. Over 70.11% of MET and 85.97% of KET were released from MMC within 1 min, resisting bacteria and reducing inflammation. MET-KET@MMC nanoparticles enhanced the solubility of drugs and possess rapid antimicrobial and anti-inflammatory properties. The MET-KET@MMC is a promising candidate for the pharmacotherapy of acute periodontitis with drugs, highlighting a significant clinical potential of MMC-based immediate drug release systems.
Collapse
Affiliation(s)
- Zhaohan Yu
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Xiong
- Orthopedic
Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Menglin Fan
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Katsiotis CS, Strømme M, Welch K. Processability of mesoporous materials in fused deposition modeling for drug delivery of a model thermolabile drug. Int J Pharm X 2022; 5:100149. [PMID: 36593988 PMCID: PMC9804103 DOI: 10.1016/j.ijpx.2022.100149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The incorporation of drug-loaded mesoporous materials in dosage forms prepared with fused deposition modeling (FDM) has shown the potential to solve challenges relating to additive manufacturing techniques, such as the stability of poorly-soluble drugs in the amorphous state. However, the addition of these non-melting mesoporous materials significantly affects the mechanical properties of the filament used in FDM, which in turn affects the printability of the feedstock material. Therefore, in this study a full-factorial experimental design was utilized to investigate different processing parameters of the hot melt extrusion process, their effect on various mechanical properties and the potential correlation with the filaments' printability. The thermolabile, poorly-soluble drug ibuprofen was utilized as a model drug to assess the potential of two mesoporous materials, Mesoporous Magnesium Carbonate (MMC) and a silica-based material (MCM-41), to thermally protect the loaded drug. Factorial and principal components analysis displayed a correlation between non-printable MCM-41 filaments and their mechanical properties where printable filaments had a maximum stress >7.5 MPa and a Young's modulus >83 MPa. For MMC samples there was no clear correlation, which was in large part attributed to the filaments' inconsistencies and imperfections. Finally, both mesoporous materials displayed a thermal protective feature, as the decomposition due to the thermal degradation of a significant portion of the thermolabile drug was shifted to higher temperatures post-loading. This highlights the potential capability of such a system to be implemented for thermosensitive drugs in FDM applications.
Collapse
|
5
|
Bioavailability of Celecoxib Formulated with Mesoporous Magnesium Carbonate-An In Vivo Evaluation. Molecules 2022; 27:molecules27196188. [PMID: 36234733 PMCID: PMC9570901 DOI: 10.3390/molecules27196188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
An attractive approach to increase the aqueous apparent solubility of poorly soluble drugs is to formulate them in their amorphous state. In the present study, celecoxib, a poorly soluble drug, was successfully loaded into mesoporous magnesium carbonate (MMC) in its amorphous state via a solvent evaporation method. Crystallization of celecoxib was suppressed, and no reaction with the carrier was detected. The MMC formulation was evaluated in vitro and in vivo in terms of oral bioavailability. Celebra®, a commercially available formulation, was used as a reference. The two celecoxib formulations were orally administrated in male rats (average of n = 6 animals per group), and blood samples for plasma were taken from all animals at different time points after administration. There was no statistical difference (p > 0.05) in AUCinf between the two formulations. The results showed that MMC may be a promising drug delivery excipient for increasing the bioavailability of compounds with solubility-limited absorption.
Collapse
|
6
|
Review of contemporary research on inorganic CO2 utilization via CO2 conversion into metal carbonate-based materials. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Zhang C, Wang A, Guo L, Yi J, Luo J. A Moisture-Assisted Rechargeable Mg-CO 2 Battery. Angew Chem Int Ed Engl 2022; 61:e202200181. [PMID: 35170161 DOI: 10.1002/anie.202200181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/07/2022]
Abstract
New sustainable energy conversion and storage technologies are required to address the energy crisis and CO2 emission. Among various metal-CO2 batteries that utilize CO2 and offer high energy density, rechargeable Mg-CO2 batteries based on earth-abundant and safe magnesium (Mg) metal have been limited due to the lack of a compatible electrolyte, operation atmosphere, and unambiguous reaction process. Herein, the first rechargeable nonaqueous Mg-CO2 batteries have been proposed with moisture assistance in a CO2 atmosphere. These display more than 250 h cycle life and maintain the discharge voltage over 1 V at 200 mA g-1 . Combining with the experimental observations and theoretical calculations, the reaction in the moisture-assisted Mg-CO2 battery is revealed to be 2 Mg+3 CO2 +6 H2 O↔2 MgCO3 ⋅3 H2 O+C. It is anticipated that the moisture-assisted rechargeable Mg-CO2 batteries would stimulate the development of multivalent metal-CO2 batteries and extend CO2 fixation and utilization for carbon neutrality.
Collapse
Affiliation(s)
- Chenyue Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China
| | - Aoxuan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China
| | - Longyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China
| | - Jin Yi
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiayan Luo
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineer and Technology, Tianjin University, Tianjin, 300072, China.,Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
8
|
Wehl L, von Schirnding C, Bayer MC, Zhuzhgova O, Engelke H, Bein T. Mesoporous Biodegradable Magnesium Phosphate-Citrate Nanocarriers Amplify Methotrexate Anticancer Activity in HeLa Cells. Bioconjug Chem 2022; 33:566-575. [PMID: 35291759 DOI: 10.1021/acs.bioconjchem.1c00565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We present the synthesis of amorphous, mesoporous, colloidal magnesium phosphate-citrate nanoparticles (MPCs) from biogenic precursors, resulting in a biocompatible and biodegradable nanocarrier that amplifies the action of the anticancer drug methotrexate (MTX). Synthesis conditions were gradually tuned to investigate the influence of the chelating agent citric acid on the colloidal stability and the mesoporosity of the obtained nanoparticles. With optimized synthesis conditions, a large BET surface area of 560 m2/g was achieved. We demonstrate the potential of these biocompatible and biodegradable mesoporous MPCs as a drug delivery system. Lipid-coated MPCs were used to load the fluorescent dye calcein and the chemotherapeutic agent MTX into the mesopores. In vitro experiments show very low premature release of the cargo but efficient stimuli-responsive release in an environment of pH 5.5, in which MPCs degrade. Lipid-coated MPCs are taken up by cancer cells and are nontoxic up to concentrations of 100 μg/mL. When loaded with MTX serving as a representative model drug for in vitro studies, MPCs induced efficient cell death with an IC50 value of 1.1 μg/mL. Compared to free MTX, its delivery with MPCs enhances its efficiency by an order of magnitude. In summary, we have developed a biodegradable nanomaterial synthesized from biocompatible precursors that are neither toxic by themselves nor in the form of nanoparticles. With these features, MPCs may be applied as drug delivery systems and have the potential to reduce the side effects of current chemotherapies.
Collapse
Affiliation(s)
- Lisa Wehl
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Constantin von Schirnding
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Marie C Bayer
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Olga Zhuzhgova
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Hanna Engelke
- Department of Pharmaceutical Chemistry, University of Graz, Humboldtstrasse 46, 8010 Graz, Austria
| | - Thomas Bein
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
9
|
Zhang C, Wang A, Guo L, Yi J, Luo J. A Moisture‐Assisted Rechargeable Mg−CO
2
Battery. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenyue Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
| | - Aoxuan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
| | - Longyuan Guo
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
| | - Jin Yi
- Institute for Sustainable Energy/College of Sciences Shanghai University Shanghai 200444 China
| | - Jiayan Luo
- Key Laboratory for Green Chemical Technology of Ministry of Education School of Chemical Engineer and Technology Tianjin University Tianjin 300072 China
- Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| |
Collapse
|
10
|
Koch N, Jennotte O, Ziemons E, Boussard G, Lechanteur A, Evrard B. Influence of API physico-chemical properties on amorphization capacity of several mesoporous silica loading methods. Int J Pharm 2021; 613:121372. [PMID: 34906649 DOI: 10.1016/j.ijpharm.2021.121372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
The objective of this work was to evaluate the impact of physico-chemical properties of pharmaceutical drugs on the optimal mesoporous silica loading methods. Indeed, a good combination between drug and loading process has to be studied to promote the deepest penetration of the drug inside the mesopores, allowing high drug amorphization. Six molecules, namely lidocaine and its hydrochloride, ibuprofen, ketoprofen, artemether and miconazole, with different physico-chemical properties (the ionized character, the acid-base character, the HBDA number, the solubility in sc-CO2 and the behavior under subcritical CO2) were used to produce drug-silica formulations. Different impregnation processes (physical mixing, melting, wetting, sc-CO2 and subcritical CO2 impregnations) have been compared for each drug, in terms of drug recovery and crystallinity. Formulations showed drug percentage close to 100% except for supercritical soluble drug formulations impregnated by using sc-CO2. However, the basic drug character provided less or no drug loss during impregnation. Processing insoluble sc-CO2 molecule under supercritical conditions led to less crystallinity than the correspondent physical mixture suggesting an interesting repulsive effect that forces the drug penetration within the mesopores. Besides, it has been also highlighted that the HBDA number is not sufficient to predict the final drug loading. Melting methods have high interest considering the drugs tested and subcritical CO2 could increase the loading, especially for drugs with high molten viscosity. This study showed that a plethora of loading methods can be used to provide high drug loaded MS formulations with a wide choice of equipment.
Collapse
Affiliation(s)
- N Koch
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium.
| | - O Jennotte
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - E Ziemons
- University of Liège, Laboratory of Pharmaceutical Analytical Chemistry Laboratory, Vibra-Santé Hub, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - G Boussard
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - A Lechanteur
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| | - B Evrard
- University of Liège, Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Avenue Hippocrate, B36 (+2) 4000 Liège, Belgium
| |
Collapse
|
11
|
Mahmood S, Almurisi SH, AL-Japairai K, Hilles AR, Alelwani W, Bannunah AM, Alshammari F, Alheibshy F. Ibuprofen-Loaded Chitosan-Lipid Nanoconjugate Hydrogel with Gum Arabic: Green Synthesis, Characterisation, In Vitro Kinetics Mechanistic Release Study and PGE2 Production Test. Gels 2021; 7:gels7040254. [PMID: 34940313 PMCID: PMC8701348 DOI: 10.3390/gels7040254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Ibuprofen is a well-known non-steroidal anti-inflammatory (NSAID) medicine that is often used to treat inflammation in general. When given orally, it produces gastrointestinal issues which lead to lower patient compliance. Ibuprofen transdermal administration improves both patient compliance and the efficacy of the drug. Nanoconjugation hydrogels were proposed as a controlled transdermal delivery tool for ibuprofen. Six formulations were prepared using different compositions including chitosan, lipids, gum arabic, and polyvinyl alcohol, through ionic interaction, maturation, and freeze–thaw methods. The formulations were characterised by size, drug conjugation efficiency, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Further analysis of optimised hydrogels was performed, including X-ray diffraction (XRD), rheology, gel fraction and swelling ability, in vitro drug release, and in vitro macrophage prostaglandin E2 (PGE2) production testing. The effects of ibuprofen’s electrostatic interaction with a lipid or polymer on the physicochemical and dissolution characterisation of ibuprofen hydrogels were evaluated. The results showed that the S3 (with lipid conjugation) hydrogel provided higher conjugation efficiency and prolonged drug release compared with the S6 hydrogel.
Collapse
Affiliation(s)
- Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan 25200, Malaysia;
| | - Khater AL-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia;
| | - Ayah Rebhi Hilles
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia;
| | - Walla Alelwani
- Department of Biochemistry, Collage of Science, University of Jeddah, Jeddah 21577, Saudi Arabia;
| | - Azzah M. Bannunah
- Department of Basic Sciences, Common First Year Deanship, Umm Al-Qura University, Makkah 24230, Saudi Arabia;
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia; (F.A.); (F.A.)
| | - Fawaz Alheibshy
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia; (F.A.); (F.A.)
- Department of Pharmaceutics, College of Pharmacy, Aden University, Aden 6075, Yemen
| |
Collapse
|
12
|
Świątek E, Ossowicz-Rupniewska P, Janus E, Nowak A, Sobolewski P, Duchnik W, Kucharski Ł, Klimowicz A. Novel Naproxen Salts with Increased Skin Permeability. Pharmaceutics 2021; 13:2110. [PMID: 34959392 PMCID: PMC8704648 DOI: 10.3390/pharmaceutics13122110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
The paper presents the synthesis, full identification, and characterization of new salts-L-proline alkyl ester naproxenates [ProOR][NAP], where R was a chain from ethyl to butyl (including isopropyl). All obtained compounds were characterized by Nuclear Magnetic Resonance (NMR), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffractometry (XRD), and in vitro dissolution studies. The specific rotation, phase transition temperatures (melting point), and thermal stability were also determined. In addition, their lipophilicity, permeability, and accumulation in pigskin were determined. Finally, toxicity against mouse L929 fibroblast cells was tested. The obtained naproxen derivatives showed improved solubility and higher absorption of drug molecules by biological membranes. Their lipophilicity was lower and increased with the increase in the alkyl chain of the ester. The derivative with isopropyl ester had the best permeability through pigskin. The use of L-proline isopropyl ester naproxenate increased the permeation of naproxen through the skin almost four-fold. It was also shown that the increase in permeability is not associated with additional risk: all compounds had a similar effect on cell viability as the parent naproxen.
Collapse
Affiliation(s)
- Ewelina Świątek
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, PL-71065 Szczecin, Poland; (E.Ś.); (E.J.)
| | - Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, PL-71065 Szczecin, Poland; (E.Ś.); (E.J.)
| | - Ewa Janus
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, PL-71065 Szczecin, Poland; (E.Ś.); (E.J.)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, PL-70111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, PL-70311 Szczecin, Poland;
| | - Wiktoria Duchnik
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, PL-70111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, PL-70111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, PL-70111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| |
Collapse
|
13
|
Catalytic Activity of High-Surface-Area Amorphous MgO Obtained from Upsalite. Catalysts 2021. [DOI: 10.3390/catal11111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The first aim of the research was to synthesize a pure Upsalite, which is an amorphous form of MgCO3, by modifying a procedure described in the literature, so that it would be the precursor of a high-surface, amorphous magnesium oxide. The results indicate that within the studied reaction conditions, the type of alcohol used as the reactant has the most pronounced effect on the yield of reaction. From the two alcohols that led to the highest yield of Upsalite, methanol gave a substantially larger surface area (794 vs. 191 m2 g−1). The optimized synthesis conditions of Upsalite were used to obtain MgO via thermolysis, whose activity in the transfer hydrogenation reaction (THR) from ethanol, 2-propanol and 2-pentanol to various carbonyl compounds was determined. The optimal conditions for the thermolysis were as follows: vacuum, T = 673 K as the final temperature, and a heating rate of 2 deg min−1. The high-surface, amorphous magnesia (SBET = 488 m2 g−1) was found to be a very selective catalyst to 4-t-butylcyclohexanone in THR, which led to a diastereoselectivity of over 94% to the E-isomer of 4-t-butylcyclohexanol for more than 3 h, with conversions of up to 97% with either 2-propanol or 2-pentanol as the hydrogen donor. In the case of acrolein and 2-n-propylacrolein being used as the hydrogen acceptors, the unsaturated alcohol (UOL) was the main product of the reaction, with higher UOL yields noted for ethanol than 2-propanol.
Collapse
|
14
|
Increasing the Transport of Celecoxib over a Simulated Intestine Cell Membrane Model Using Mesoporous Magnesium Carbonate. Molecules 2021; 26:molecules26216353. [PMID: 34770762 PMCID: PMC8588146 DOI: 10.3390/molecules26216353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/03/2022] Open
Abstract
In the current work, mesoporous magnesium carbonate (MMC) was used to suppress crystallization of the poorly soluble drug celecoxib (CXB). This resulted in both a higher dissolution rate and supersaturation of the substance in vitro as well as an increased transfer of CXB over a Caco-2 cell membrane mimicking the membrane in the small intestine. The CXB flux over the cell membrane showed a linear behavior over the explored time period. These results indicate that MMC may be helpful in increasing the bioavailability and obtaining a continuous release of CXB, and similar substances, in vivo. Neusilin US2 was used as a reference material and showed a more rapid initial release with subsequent crystallization of the incorporated CXB in the release media. The presented results form the foundation of future development of MMC as a potential carrier for poorly soluble drugs.
Collapse
|
15
|
3D-Printed Mesoporous Carrier System for Delivery of Poorly Soluble Drugs. Pharmaceutics 2021; 13:pharmaceutics13071096. [PMID: 34371787 PMCID: PMC8308994 DOI: 10.3390/pharmaceutics13071096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022] Open
Abstract
Fused deposition modelling (FDM) is the most extensively employed 3D-printing technique used in pharmaceutical applications, and offers fast and facile formulation development of personalized dosage forms. In the present study, mesoporous materials were incorporated into a thermoplastic filament produced via hot-melt extrusion and used to produce oral dosage forms via FDM. Mesoporous materials are known to be highly effective for the amorphization and stabilization of poorly soluble drugs, and were therefore studied in order to determine their ability to enhance the drug-release properties in 3D-printed tablets. Celecoxib was selected as the model poorly soluble drug, and was loaded into mesoporous silica (MCM-41) or mesoporous magnesium carbonate. In vitro drug release tests showed that the printed tablets produced up to 3.6 and 1.5 times higher drug concentrations, and up to 4.4 and 1.9 times higher release percentages, compared to the crystalline drug or the corresponding plain drug-loaded mesoporous materials, respectively. This novel approach utilizing drug-loaded mesoporous materials in a printed tablet via FDM shows great promise in achieving personalized oral dosage forms for poorly soluble drugs.
Collapse
|
16
|
Garbera K, Ciura K, Sawicki W. A Novel Approach to Optimize Hot Melt Impregnation in Terms of Amorphization Efficiency. Int J Mol Sci 2020; 21:E4032. [PMID: 32512914 PMCID: PMC7312772 DOI: 10.3390/ijms21114032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, an innovative methodology to optimize amorphization during the hot melt impregnation (HMI) process was proposed. The novelty of this report revolves around the use of thermal analysis in combination with design of experiments (DoEs) to reduce residual crystallinity during the HMI process. As a model formulation, a mixture of ibuprofen (IBU) and Neusilin was used. The main aim of the study was to identify the critical process parameters of HMI and determine their optimal values to assure a robust impregnation process and possibly the highest possible amorphization rate of IBU. In order to realize this, a DoE approach was proposed based on a face-centered composite design involving three factors. The IBU/Neusilin ratio, the feeding rate, and the screw speed were considered as variables, while the residual crystallinity level of IBU, determined using differential scanning calorimetry (DSC), was measured as the response. Additionally, the stability of IBU under HMI was analyzed using high-performance liquid chromatography to estimate the extent of potential degradation. In order to verify the correctness of the DoE model, tested extrudates were manufactured by HMI and the obtained extrudates were thoroughly examined using scanning electron micrography, X-ray powder diffraction, and DSC.
Collapse
Affiliation(s)
- Kamil Garbera
- Formulation Department, Tarchomin Pharmaceutical Works “Polfa” S.A., Fleminga 2, 03-176 Warszawa, Poland;
| | - Krzesimir Ciura
- Department of Physical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Wiesław Sawicki
- Department of Physical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
17
|
In Vitro Performance and Chemical Stability of Lipid-Based Formulations Encapsulated in a Mesoporous Magnesium Carbonate Carrier. Pharmaceutics 2020; 12:pharmaceutics12050426. [PMID: 32384752 PMCID: PMC7284621 DOI: 10.3390/pharmaceutics12050426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Lipid-based formulations can circumvent the low aqueous solubility of problematic drug compounds and increase their oral absorption. As these formulations are often physically unstable and costly to manufacture, solidification has been suggested as a way to minimize these issues. This study evaluated the physicochemical stability and in vitro performance of lipid-loaded mesoporous magnesium carbonate (MMC) particles with an average pore size of 20 nm. A medium chain lipid was loaded onto the MMC carrier via physical adsorption. A modified in vitro lipolysis setup was then used to study lipid release and digestion with 1H nuclear magnetic resonance spectroscopy. The lipid loading efficiency with different solidification techniques was also evaluated. The MMC, unlike more commonly used porous silicate carriers, dissolved during the lipolysis assay, providing a rapid release of encapsulated lipids into solution. The digestion of the dispersed lipid-loaded MMC therefore resembled that of a coarse dispersion of the lipid. The stability data demonstrated minor degradation of the lipid within the pores of the MMC particles, but storage for three months did not reveal extensive degradation. To conclude, lipids can be adsorbed onto MMC, creating a solid powder from which the lipid is readily released into the solution during in vitro digestion. The chemical stability of the formulation does however merit further attention.
Collapse
|
18
|
Alvebratt C, Keemink J, Edueng K, Cheung O, Strømme M, Bergström CA. An in vitro dissolution–digestion–permeation assay for the study of advanced drug delivery systems. Eur J Pharm Biopharm 2020; 149:21-29. [DOI: 10.1016/j.ejpb.2020.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022]
|
19
|
Vieira JC, Paz AV, Hennemann BL, Kuhn BL, Bender CR, Meyer AR, Pagliari AB, Villetti MA, Frizzo CP. Effect of large anions in thermal properties and cation-anion interaction strength of dicationic ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Maghsoodi M, Shahi F. Combined Use of Polymers and Porous Materials to Enhance Cinnarizine Dissolution. PHARMACEUTICAL SCIENCES 2019. [DOI: 10.15171/ps.2019.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Loading of poorly water-soluble drugs on the porous materials has attracted great interest as an effective approach for enhancement of dissolution rate of drugs. The Aerosil (Ae) with porous structure is expected to facilitate the dissolution of drugs which is generally associated with precipitation. Thus, the purpose of this investigation was thus to develop a formulation which combines a precipitation inhibitor and a poorly soluble drug loaded Ae. Methods: A poorly water-soluble drug, Cinnarizine (CNZ) was used as a model, and Eudragit L100 (Eu) was used as a precipitation inhibitor. Formulations were produced by solvent evaporation and characterized by FT-IR and differential scanning calorimetry (DSC). Dissolution experiments were carried out in phosphate buffer (pH 6.8) under non-sink conditions. Results: DSC thermograms revealed that no crystalline structure of CNZ was present in CNZ-loaded Ae formulations and no long-range order was arranged upon loading of CNZ into Ae. In dissolution test, the CNZ-loaded Ae physically blended with Eu achieved a remarkedly higher CNZ concentration over the plain CNZ and over the CNZ-Eu co-loaded Ae. The dissolution rate of CNZ from the CNZ-loaded Ae was enhanced with increasing Ae amount and the dissolution was maximum when the ratio of CNZ: Ae was 1:10 CNZ: Ae. In addition, the precipitation inhibition was increased when the amount of Eu was high. Conclusion: The results of this work revealed that the dissolution behaviour of CNZ-loaded Ae is enhanced by physically blending of Eu as a suitable precipitation inhibitor.
Collapse
Affiliation(s)
- Maryam Maghsoodi
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Shahi
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Wang H, Yang H, Zhao L. A Facile Synthesis of Core-Shell SiO 2@Cu-LBMS Nano-Microspheres for Drug Sustained Release Systems. MATERIALS 2019; 12:ma12233978. [PMID: 31801258 PMCID: PMC6926544 DOI: 10.3390/ma12233978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022]
Abstract
A well-dispersed SiO2@Layered hydroxide cupric benzoate (SiO2@Cu-LBMS) with a hierarchical structure have been synthesized by a facile method. The layered hydroxide cupric benzoate with a structure of layered basic metal salt (Cu-LBMS) was directly deposited on the surface of silica spheres without any blinder. The morphology of the SiO2@Cu-LBMS nano-microsphere was observed by SEM, and the reaction conditions was also discussed. In addition, the XRD patterns and FTIR spectra provide consistent evidence to the formation of SiO2@Cu-LBMS nano-microspheres. The release behavior and drug loading capability of SiO2@Cu-LBMS microspheres were also investigated by using ibuprofen, aspirin and salicylic acid as model drugs. The results indicated that the drug loading capability of SiO2@Cu-LBMS nano-microspheres was much larger than layered hydroxide cupric benzoate, and the releasing time was significantly prolonged than layered hydroxide cupric benzoate and their physical mixture.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China; (H.W.); (L.Z.)
| | - Haifeng Yang
- College of Physics and Optoelectronics Technology, Medical Micro-nano Materials Research Center, Baoji University of Arts and Sciences, Baoji 721016, China
- Correspondence:
| | - Lifang Zhao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China; (H.W.); (L.Z.)
| |
Collapse
|
22
|
Safna Hussan KP, Thayyil MS, Poulose A, Ngai KL. Glassy Dynamics and Translational-Rotational Coupling of an Ionically Conducting Pharmaceutical Salt-Sodium Ibuprofen. J Phys Chem B 2019; 123:7764-7770. [PMID: 31424212 DOI: 10.1021/acs.jpcb.9b06478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we study the structural dipolar relaxation and ionic conductivity relaxation in an ionized derived from a nonionized glass former. The latter is the salt form of a well-studied active pharmaceutical ingredient, sodium ibuprofen, and the former is ibuprofen. Quantum mechanical calculations were employed to study the variation in its molecular electrostatic potentials, and its spatial extent on its salt formation with Na+ ions. Measurements have been made using differential scanning calorimetry and broadband dielectric spectroscopy, and the characterization is assisted by density functional theory. The dielectric data contain information on both ionic and dipolar molecular mobility of NaIb and were extracted by representation in terms of the electric modulus and permittivity. A secondary β-conductivity relaxation coexists with the primary α-conductivity relaxation. By use of the coupling model, we show that the β-conductivity relaxation is connected to the α-conductivity relaxation and is the analogue of the relation of the Johari-Goldstein β-relaxation to the structural α-relaxation, shown valid also in ibuprofen. This remarkable result has an impact on the fundamental understanding of the dynamics of ionic conductivity. By representing the data as permittivity, a dipolar β-relaxation was found to have practically the same relaxation times as the β-conductivity relaxation in the glassy state and translational-rotational coupling is valid at a more local secondary relaxation level. However, the α-conductivity relaxation decouples from structural α-relaxation because the structural glass transition temperature is lower than the conductivity counterpart by 29 K. These are novel findings. The study elucidates the effects on the dynamics by the change in the nature of bonding and in size on introducing sodium ions to ibuprofen in the glassy and supercooled liquid states.
Collapse
Affiliation(s)
- K P Safna Hussan
- Department of Physics , University of Calicut , Malappuram 673635 , Kerala , India
| | | | - Ashna Poulose
- Department of Physics , University of Calicut , Malappuram 673635 , Kerala , India
| | - K L Ngai
- CNR-IPCF , Largo Bruno Pontecorvo 3 , Pisa I-56127 , Italy
| |
Collapse
|
23
|
Salunkhe N, Jadhav N, More H, Choudhari P. Sericin Inhibits Devitrification of Amorphous Drugs. AAPS PharmSciTech 2019; 20:285. [PMID: 31407105 DOI: 10.1208/s12249-019-1475-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/10/2019] [Indexed: 11/30/2022] Open
Abstract
The purpose of the present investigation was to analyze devitrification of amorphous drugs such as lornoxicam, meloxicam, and felodipine in the presence of sericin. The binary solid dispersions comprising varying mass ratios of drug and sericin were subject to amorphization by spray drying, solvent evaporation, ball milling, and physical mixing. Further, obtained solid dispersions (SDs) were characterized by HPLC, ATR-FTIR, H1NMR, molecular docking, accelerated stability study at 40°C and 75 ± 2% RH (XRD and DSC), and in vitro dissolution studies. The HPLC analysis indicated no decomposition of the drugs during the spray drying process. From ATR-FTIR, NMR, and molecular docking study, it was revealed that H-bonding played a vital role in amorphous drug stabilization. An excellent devitrification inhibition was observed in case of lornoxicam (SDLS3) and meloxicam (SDMS3) SDs prepared by spray drying. On the other hand, spray-dried SD of felodipine (SDFS3) showed traces of microcrystals. The percent crystallinity of SDLS3, SDMS3, and SDFS3 was found to be 7.4%, 8.23%, and 18.31% respectively indicating adequate amorphization. The dissolution performance of SDLS, SDMS, and SDFS after 3 months showed > 85% than SDs prepared by other methods. Thus, sericin significantly inhibited crystallization and was responsible for amorphous state stabilization of pharmaceuticals.
Collapse
|
24
|
Vall M, Ferraz N, Cheung O, Strømme M, Zardán Gómez de la Torre T. Exploring the Use of Amine Modified Mesoporous Magnesium Carbonate for the Delivery of Salicylic Acid in Topical Formulations: In Vitro Cytotoxicity and Drug Release Studies. Molecules 2019; 24:molecules24091820. [PMID: 31083517 PMCID: PMC6539276 DOI: 10.3390/molecules24091820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 01/09/2023] Open
Abstract
Salicylic acid (SA) has for a long time been used to treat various skin disorders due to its anti-inflammatory, bacteriostatic, and antifungal properties. In the present work, mesoporous magnesium carbonate (MMC), a promising drug carrier, was modified with 3-aminopropyl-triethoxysilane to enable loading of SA. The amine modified MMC (aMMC) was successfully loaded with 8 wt.% of SA via a solvent evaporation method. SA was later completely released from the carrier in less than 15 min. Furthermore, the cytotoxicity of the functionalized material was evaluated. aMMC was found to be non-toxic for human dermal fibroblast cells with particle concentration of up to 1000 µg/mL when exposed for 48 h. The presented results form the basis of future development of aMMC as a potential carrier for SA in dermatological applications.
Collapse
Affiliation(s)
- Maria Vall
- Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, SE-751 21 Uppsala, Sweden.
| | - Natalia Ferraz
- Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, SE-751 21 Uppsala, Sweden.
| | - Ocean Cheung
- Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, SE-751 21 Uppsala, Sweden.
| | - Maria Strømme
- Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, SE-751 21 Uppsala, Sweden.
| | | |
Collapse
|
25
|
Wan X, Lu X, Liu J, Pan Y, Xiao H. Impregnation of PEI in Novel Porous MgCO3 for Carbon Dioxide Capture from Flue Gas. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b06153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xia Wan
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| | - Xiaojuan Lu
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| | - Jie Liu
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, P. R. China
| | - Yuanfeng Pan
- Guangxi Key Lab of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
26
|
Joyce P, Dening TJ, Meola TR, Schultz HB, Holm R, Thomas N, Prestidge CA. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv Drug Deliv Rev 2019; 142:102-117. [PMID: 30529138 DOI: 10.1016/j.addr.2018.11.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 01/28/2023]
Abstract
Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a solubilised state during gastrointestinal transit. However, the promising biopharmaceutical benefits of liquid lipid formulations has not translated into widespread commercial success, due to their susceptibility to long term storage and in vivo precipitation issues. One strategy that has emerged to overcome such limitations, is to combine the solubilisation and dissolution enhancing properties of lipids with the stabilising effects of solid carrier materials. The development of intelligent hybrid drug formulations has presented new opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for lipophilic therapeutics. Specific emphasis of this review is placed on the impact of solidification approaches and excipients on the biopharmaceutical performance of self-emulsifying lipids, with findings highlighting the key design considerations that should be implemented when developing hybrid lipid-based formulations.
Collapse
|
27
|
Vall M, Hultberg J, Strømme M, Cheung O. Inorganic carbonate composites as potential high temperature CO2 sorbents with enhanced cycle stability. RSC Adv 2019; 9:20273-20280. [PMID: 35514709 PMCID: PMC9065502 DOI: 10.1039/c9ra02843a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 11/21/2022] Open
Abstract
A calcium magnesium carbonate composite (CMC) material containing highly porous amorphous calcium carbonate (HPACC) and mesoporous magnesium carbonate (MMC) was synthesized. CMCs with varying HPACC : MMC mol ratios and high BET surface area (over 490 m2 g−1) were produced. The CMCs retained the morphology shared by HPACC and MMC. All these materials were built up of aggregated nanometer-sized particles. We tested the CO2 uptake properties of the synthesized materials. The CMCs were calcined at 850 °C to obtain the corresponding calcium magnesium oxide composites (CMOs) that contained CaO : MgO at different mol ratios. CMO with CaO : MgO = 3 : 1 (CMO-3) showed comparable CO2 uptake at 650 °C (0.586 g g−1) to CaO sorbents obtained from pure HPACC (0.658 g g−1) and the commercial CaCO3 (0.562 g g−1). Over 23 adsorption–desorption cycles CMOs also showed a lower CO2 uptake capacity loss (35.7%) than CaO from HPACC (51.3%) and commercial CaCO3 (79.7%). Al was introduced to CMO by the addition of Al(NO3)3 in the synthesis of CMC-3 to give ACMO after calcination. The presence of ∼19 mol% of Al(NO3)3 in ACMO-4 significantly enhanced its stability over 23 cycles (capacity loss of 5.2%) when compared with CMO-3 (calcined CMC-3) without adversely affecting the CO2 uptake. After 100 cycles, ACMO-4 still had a CO2 uptake of 0.219 g g−1. Scanning electron microscope images clearly showed that the presence of Mg and Al in CMO hindered the sintering of CaCO3 at high temperatures and therefore, enhanced the cycle stability of the CMO sorbents. We tested the CO2 uptake properties of CMO and ACMO only under ideal laboratory testing environment, but our results indicated that these materials can be further optimized as good CO2 sorbents for various applications. A Ca/Mg/Al oxide composite was synthesised and showed a high CO2 uptake of 0.537 g g−1 at 650 °C with high uptake even after 100 cycles.![]()
Collapse
Affiliation(s)
- Maria Vall
- Nanotechnology and Functional Materials Division
- Department of Engineering Sciences
- The Ångström Laboratory
- Uppsala University
- SE-751 21 Uppsala
| | - Jonas Hultberg
- Nanotechnology and Functional Materials Division
- Department of Engineering Sciences
- The Ångström Laboratory
- Uppsala University
- SE-751 21 Uppsala
| | - Maria Strømme
- Nanotechnology and Functional Materials Division
- Department of Engineering Sciences
- The Ångström Laboratory
- Uppsala University
- SE-751 21 Uppsala
| | - Ocean Cheung
- Nanotechnology and Functional Materials Division
- Department of Engineering Sciences
- The Ångström Laboratory
- Uppsala University
- SE-751 21 Uppsala
| |
Collapse
|
28
|
Combination of Roll Grinding and High-Pressure Homogenization Can Prepare Stable Bicelles for Drug Delivery. NANOMATERIALS 2018; 8:nano8120998. [PMID: 30513913 PMCID: PMC6316440 DOI: 10.3390/nano8120998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/21/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]
Abstract
To improve the solubility of the drug nifedipine (NI), NI-encapsulated lipid-based nanoparticles (NI-LNs) have been prepared from neutral hydrogenated soybean phosphatidylcholine and negatively charged dipalmitoylphosphatidylglycerol at a molar ratio of 5/1 using by roll grinding and high-pressure homogenization. The NI-LNs exhibited high entrapment efficiency, long-term stability, and enhanced NI bioavailability. To better understand their structures, cryo transmission electron microscopy and atomic force microscopy were performed in the present study. Imaging from both instruments revealed that the NI-LNs were bicelles. Structures prepared with a different drug (phenytoin) or with phospholipids (dimyristoylphosphatidylcholine, dipalmitoylphosphatidylcholine, and distearoylphosphatidylcholine) were also bicelles. Long-term storage, freeze-drying, and high-pressure homogenization did not affect the structures; however, different lipid ratios, or the presence of cholesterol, did result in liposomes (5/0) or micelles (0/5) with different physicochemical properties and stabilities. Considering the result of long-term stability, standard NI-LN bicelles (5/1) showed the most long-term stabilities, providing a useful preparation method for stable bicelles for drug delivery.
Collapse
|
29
|
Leukel S, Mondeshki M, Tremel W. Hydrogen Bonding in Amorphous Alkaline Earth Carbonates. Inorg Chem 2018; 57:11289-11298. [PMID: 30124292 DOI: 10.1021/acs.inorgchem.8b02170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amorphous intermediates play a crucial role during the crystallization of alkaline earth carbonates. We synthesized amorphous carbonates of magnesium, calcium, strontium, and barium from methanolic solution. The local environment of water and the strength of hydrogen bonding in these hydrated modifications were probed with Fourier transform IR spectroscopy, 1H NMR spectroscopy, and heteronuclear correlation experiments. Temperature-dependent spin-lattice (T1) relaxation experiments provided information about the water motion in the amorphous materials. The Pearson hardness of the respective divalent metal cation predominantly determines the strength of the internal hydrogen-bonding network. Amorphous magnesium carbonate deviates from the remaining carbonates, as it contains additional hydroxide ions, which act as strong hydrogen-bond acceptors. Amorphous calcium carbonate exhibits the weakest hydrogen bonds of all alkaline earth carbonates. Our study provides a coherent picture of the hydrogen bonding situation in these transient species and thereby contributes to a deeper understanding of the crystallization process of carbonates.
Collapse
Affiliation(s)
- Sebastian Leukel
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität , Duesbergweg 10-14 , D-55128 Mainz , Germany.,Graduate School Materials Science in Mainz , Staudingerweg 9 , D-55128 Mainz , Germany
| | - Mihail Mondeshki
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität , Duesbergweg 10-14 , D-55128 Mainz , Germany
| | - Wolfgang Tremel
- Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität , Duesbergweg 10-14 , D-55128 Mainz , Germany
| |
Collapse
|
30
|
Yang J, Alvebratt C, Lu X, Bergström CA, Strømme M, Welch K. Amorphous magnesium carbonate nanoparticles with strong stabilizing capability for amorphous ibuprofen. Int J Pharm 2018; 548:515-521. [DOI: 10.1016/j.ijpharm.2018.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 01/22/2023]
|
31
|
Preparation and characterization of indole-3-butyric acid nanospheres for improving its stability and utilization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:175-181. [DOI: 10.1016/j.msec.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 02/05/2018] [Accepted: 04/04/2018] [Indexed: 11/24/2022]
|
32
|
Sun R, Zhang P, Bajnóczi ÉG, Neagu A, Tai CW, Persson I, Strømme M, Cheung O. Amorphous Calcium Carbonate Constructed from Nanoparticle Aggregates with Unprecedented Surface Area and Mesoporosity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21556-21564. [PMID: 29862822 DOI: 10.1021/acsami.8b03939] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amorphous calcium carbonate (ACC), with the highest reported specific surface area of all current forms of calcium carbonate (over 350 m2 g-1), was synthesized using a surfactant-free, one-pot method. Electron microscopy, helium pycnometry, and nitrogen sorption analysis revealed that this highly mesoporous ACC, with a pore volume of ∼0.86 cm3 g-1 and a pore-size distribution centered at 8-9 nm, is constructed from aggregated ACC nanoparticles with an estimated average diameter of 7.3 nm. The porous ACC remained amorphous and retained its high porosity for over 3 weeks under semi-air-tight storage conditions. Powder X-ray diffraction, large-angle X-ray scattering, infrared spectroscopy, and electron diffraction exposed that the porous ACC did not resemble any of the known CaCO3 structures. The atomic order of porous ACC diminished at interatomic distances over 8 Å. Porous ACC was evaluated as a potential drug carrier of poorly soluble substances in vitro. Itraconazole and celecoxib remained stable in their amorphous forms within the pores of the material. Drug release rates were significantly enhanced for both drugs (up to 65 times the dissolution rates for the crystalline forms), and supersaturation release of celecoxib was also demonstrated. Citric acid was used to enhance the stability of the ACC nanoparticles within the aggregates, which increased the surface area of the material to over 600 m2 g-1. This porous ACC has potential for use in various applications where surface area is important, including adsorption, catalysis, medication, and bone regeneration.
Collapse
Affiliation(s)
- Rui Sun
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Peng Zhang
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , SE-751 21 Uppsala , Sweden
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Éva G Bajnóczi
- Department of Molecular Sciences , Swedish University of Agricultural Sciences , SE-750 07 Uppsala , Sweden
| | - Alexandra Neagu
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Ingmar Persson
- Department of Molecular Sciences , Swedish University of Agricultural Sciences , SE-750 07 Uppsala , Sweden
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences , Uppsala University , SE-751 21 Uppsala , Sweden
| |
Collapse
|
33
|
Badruddoza AZM, Gupta A, Myerson AS, Trout BL, Doyle PS. Low Energy Nanoemulsions as Templates for the Formulation of Hydrophobic Drugs. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201700020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Abu Zayed Md Badruddoza
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Ankur Gupta
- Department of Mechanical and Aerospace Engineering; Princeton University; Princeton NJ 08540 USA
| | - Allan S. Myerson
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Bernhardt L. Trout
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Patrick S. Doyle
- Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| |
Collapse
|
34
|
Letchmanan K, Shen SC, Ng WK, Tan RB. Application of transglycosylated stevia and hesperidin as drug carriers to enhance biopharmaceutical properties of poorly-soluble artemisinin. Colloids Surf B Biointerfaces 2018; 161:83-93. [DOI: 10.1016/j.colsurfb.2017.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/26/2017] [Accepted: 10/06/2017] [Indexed: 12/17/2022]
|
35
|
Ojarinta R, Lerminiaux L, Laitinen R. Spray drying of poorly soluble drugs from aqueous arginine solution. Int J Pharm 2017; 532:289-298. [DOI: 10.1016/j.ijpharm.2017.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022]
|
36
|
Damiati SA, Martini LG, Smith NW, Lawrence MJ, Barlow DJ. Application of machine learning in prediction of hydrotrope-enhanced solubilisation of indomethacin. Int J Pharm 2017; 530:99-106. [DOI: 10.1016/j.ijpharm.2017.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022]
|
37
|
Enhanced release of poorly water-soluble drugs from synergy between mesoporous magnesium carbonate and polymers. Int J Pharm 2017; 525:183-190. [DOI: 10.1016/j.ijpharm.2017.04.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 11/20/2022]
|
38
|
Effects of amine modification of mesoporous magnesium carbonate on controlled drug release. Int J Pharm 2017; 524:141-147. [PMID: 28359819 DOI: 10.1016/j.ijpharm.2017.03.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 12/11/2022]
Abstract
(3-Aminopropyl)triethoxysilane (APTES) was used to modify the surface of mesoporous magnesium carbonate (MMC). The as-synthesized MMC had an average pore diameter of ∼5nm, but amine grafting occurred preferentially on the walls of the largest MMC pores. Analysis of ibuprofen (IBU) loading and release showed that IBU remained stable in the amorphous phase in all the MMC and modified MMC samples. The kinetics of IBU release from the modified MMC were assessed and used to evaluate the effects of the different functional groups. The release rate showed that the release of IBU could be controlled by adjusting the amine surface coverage of MMC and also by changing the surface groups. It was concluded that the interaction between the grafted functional groups in the modified MMC and the OH in the carboxyl groups of IBU was the most important factor for prolonging the release of the drug. These results are expected to lead to investigation of other as yet unexplored applications for MMC, including using it as a plastic additive and for gas separation.
Collapse
|
39
|
Lai J, Lin W, Scholes P, Li M. Investigating the Effects of Loading Factors on the In Vitro Pharmaceutical Performance of Mesoporous Materials as Drug Carriers for Ibuprofen. MATERIALS 2017; 10:ma10020150. [PMID: 28772509 PMCID: PMC5459193 DOI: 10.3390/ma10020150] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 11/16/2022]
Abstract
The aim of the study was to investigate the effects of the loading factors, i.e., the initial drug loading concentration and the ratio of the drug to carriers, on the in vitro pharmaceutical performance of drug-loaded mesoporous systems. Ibuprofen (IBU) was used as a model drug, and two non-ordered mesoporous materials of commercial silica Syloid® 244FP (S244FP) and Neusilin® US2 (NS2) were selected in the study. The IBU-loaded mesoporous samples were prepared by a solvent immersion method with a rotary evaporation drying technique and characterized by polarized light microscopy (PLM), Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Dissolution experiments were performed in simulated gastric media at 37 °C under non-sink conditions. The concentration of IBU in solution was determined by HPLC. The study showed that the dissolution rate of IBU can be improved significantly using the mesoporous S224FP carriers due to the conversion of crystalline IBU into the amorphous form. Both of the loading factors affected the IBU dissolution kinetics. Due to the molecular interaction between the IBU and NS2 carriers, the loading factors had little effects on the drug release kinetics with incomplete drug desorption recovery and insignificant dissolution enhancement. Care and extensive evaluation must therefore be taken when mesoporous materials are chosen as carrier delivery systems.
Collapse
Affiliation(s)
- Junmin Lai
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| | - Wu Lin
- Quotient Clinical, Mere Way, Ruddington, Nottingham NG11 6JS, UK.
| | - Peter Scholes
- Quotient Clinical, Mere Way, Ruddington, Nottingham NG11 6JS, UK.
| | - Mingzhong Li
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| |
Collapse
|
40
|
Soininen AJ, Appavou MS, Frykstrand S, Welch K, Khaneft M, Kriele A, Bellissent-Funel MC, Strømme M, Wuttke J. Dynamics of water confined in mesoporous magnesium carbonate. J Chem Phys 2016; 145:234503. [DOI: 10.1063/1.4971285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Antti J. Soininen
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Sara Frykstrand
- Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, 75121 Uppsala, Sweden
| | - Ken Welch
- Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, 75121 Uppsala, Sweden
| | - Marina Khaneft
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Armin Kriele
- German Engineering Materials Science Centre (GEMS) at MLZ, Helmholtz-Zentrum Geesthacht GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | | | - Maria Strømme
- Division for Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, 75121 Uppsala, Sweden
| | - Joachim Wuttke
- Jülich Centre for Neutron Science at MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| |
Collapse
|
41
|
Welch K, Latifzada MA, Frykstrand S, Strømme M. Investigation of the Antibacterial Effect of Mesoporous Magnesium Carbonate. ACS OMEGA 2016; 1:907-914. [PMID: 30023495 PMCID: PMC6044671 DOI: 10.1021/acsomega.6b00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/21/2016] [Indexed: 06/01/2023]
Abstract
Mesoporous magnesium carbonate (MMC) was first presented in 2013, and this material is currently under consideration for use in a number of biotechnological applications including topical formulations. This study presents the first evaluation of the antibacterial properties of the material with mesoporous silica and two other magnesium-containing powder materials used as references. All powder materials in this study are sieved to achieve a particle size distribution between 25 and 75 μm. The Gram-positive bacterium Staphylococcus epidermidis is used as the model bacterium due to its prevalence on human skin, its likelihood of developing resistance to antibiotics, for example, from routine exposure to antibiotics secreted in sweat, and because it is found inside affected acne vulgaris pores. Quantification of bacterial viability using a metabolic activity assay with resazurin as the fluorescent indicator shows that MMC exerts a strong antibacterial effect on the bacteria and that alkalinity accounts for the major part of this effect. The results open up for further development of MMC in on-skin applications where bacterial growth inhibition without using antibiotics is deemed favorable.
Collapse
|
42
|
Hellrup J, Mahlin D. Confinement of Amorphous Lactose in Pores Formed Upon Co-Spray Drying With Nanoparticles. J Pharm Sci 2016; 106:322-330. [PMID: 27836110 DOI: 10.1016/j.xphs.2016.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/30/2016] [Indexed: 11/16/2022]
Abstract
This study aims at investigating factors influencing humidity-induced recrystallization of amorphous lactose, produced by co-spray drying with particles of cellulose nanocrystals or sodium montmorillonite. In particular, the focus is on how the nanoparticle shape and surface properties influence the nanometer to micrometer length scale nanofiller arrangement in the nanocomposites and how the arrangements influence the mechanisms involved in the inhibition of the amorphous to crystalline transition. The nanocomposites were produced by co-spray drying. Solid-state transformations were analyzed at 60%-94% relative humidity using X-ray powder diffraction, microcalorimetry, and light microscopy. The recrystallization rate constant for the lactose/cellulose nanocrystals and lactose/sodium montmorillonite nanocomposites was lowered at nanofiller contents higher than 60% and was stable for months at 80% nanofiller. The most likely explanation to these results is spontaneous formations of mesoporous particle networks that the lactose is confined upon co-spray drying at high filler content. Compartmentalization and rigidification of the amorphous lactose proved to be less important mechanisms involved in the stabilization of lactose in the nanocomposites.
Collapse
Affiliation(s)
- Joel Hellrup
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | - Denny Mahlin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Zhang P, Zardán Gómez de la Torre T, Welch K, Bergström C, Strømme M. Supersaturation of poorly soluble drugs induced by mesoporous magnesium carbonate. Eur J Pharm Sci 2016; 93:468-74. [DOI: 10.1016/j.ejps.2016.08.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 11/15/2022]
|
44
|
Preparation and characterization of pelletized solid dispersion of resveratrol with mesoporous silica microparticles to improve dissolution by fluid-bed coating techniques. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Xu K, Xiong X, Zhai Y, Wang L, Li S, Yan J, Wu D, Ma X, Li H. Effect of milling conditions on solid-state amorphization of glipizide, and characterization and stability of solid forms. J Pharm Biomed Anal 2016; 129:367-377. [PMID: 27454088 DOI: 10.1016/j.jpba.2016.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/08/2016] [Accepted: 07/16/2016] [Indexed: 12/21/2022]
Abstract
In this study, the amorphization of glipizide was systematically investigated through high-energy ball milling at different temperatures. The results of solid-state amorphization through milling indicated that glipizide underwent direct crystal-to-glass transformation at 15 and 25°C and crystal-to-glass-to-crystal conversion at 35°C; hence, milling time and temperature had significant effects on the amorphization of glipizide, which should be effectively controlled to obtain totally amorphous glipizide. Solid forms of glipizide were detailedly characterized through analyses of X-ray powder diffraction, morphology, thermal curves, vibrational spectra, and solid-state nuclear magnetic resonance. The physical stability of solid forms was investigated under different levels of relative humidity (RH) at 25°C. Forms I and III are kinetically stable and do not form any new solid-state forms at various RH levels. By contrast, Form II is kinetically unstable, undergoing direct glass-to-crystal transformation when RH levels higher than 32.8%. Therefore, stability investigation indicated that Form II should be stored under relatively dry conditions to prevent rapid crystallization. High temperatures can also induce the solid-state transformation of Form II; the conversion rate increased with increasing temperature.
Collapse
Affiliation(s)
- Kailin Xu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xinnuo Xiong
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuanming Zhai
- Analytical &Testing Center, Sichuan University, Chengdu 610064, China
| | - Lili Wang
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shanshan Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jin Yan
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Di Wu
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoli Ma
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hui Li
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
46
|
Abd-Elrahman AA, El Nabarawi MA, Hassan DH, Taha AA. Ketoprofen mesoporous silica nanoparticles SBA-15 hard gelatin capsules: preparation and in vitro/in vivo characterization. Drug Deliv 2016; 23:3387-3398. [PMID: 27167529 DOI: 10.1080/10717544.2016.1186251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
SBA-15 is used to enhance the bioavailability of poorly soluble ketoprofen (KP) through stabilization of its amorphous state. Additionally, the current work provides a complete in vitro and in vivo study on preformulated KP-SBA-15 sample and formulated KP-SBA-15 in hard gelatin capsule. Loading of KP was done by a novel method called immersion-rotavapor method. KP was quantified by extraction and thermal gravimetric analysis (TGA). Characterization of the loaded SBA-15 sample was done by high resolution transmission electron microscopy (HRTEM), small angle X-ray diffraction (SAXRD), nitrogen adsorption/desorption isotherms, differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy and dissolution profiles. The loaded sample was formulated in hard gelatin capsule. The anti-inflammatory and analgesic studies were carried out on 24 adult male albino rats. TGA and extraction results showed 54.4 wt% of drug incorporated. Characterization of KP-SBA-15 sample confirmed the successful encapsulation of KP into the carrier pores in a molecular amorphous state. Additionally, loading of KP did not affect the mesoporous internal structure. During the first 5 min, the dissolution study showed very high release rates; nearly 50% of KP was released. These results were reflected on the in vivo study resulting in 82% inhibition in edema after 1 h and maximum analgesia after 30 min from the administration of the formulated sample. SBA-15 mesoporous silica nanoparticle proved to be a very promising drug delivery carrier that can be used as a facile way to enhance the bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Ahmed A Abd-Elrahman
- a Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Cairo University , Cairo , Egypt and
| | - Mohamed A El Nabarawi
- a Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Cairo University , Cairo , Egypt and
| | - Doaa H Hassan
- b Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Misr University for Science and Technology , Sixth of October City, Giza , Egypt
| | - Amal A Taha
- b Department of Pharmaceutics and Industrial Pharmacy , College of Pharmacy, Misr University for Science and Technology , Sixth of October City, Giza , Egypt
| |
Collapse
|
47
|
Ren F, Su J, Xiong H, Tian Y, Ren G, Jing Q. Characterization of ibuprofen microparticle and improvement of the dissolution. Pharm Dev Technol 2016; 22:63-68. [PMID: 27055726 DOI: 10.3109/10837450.2016.1163386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was to prepare ibuprofen (IBP) microparticles by pH-change method and enhance the dissolution rate in vitro. Tween80 and Cremophor RH40 were selected as stabilizers to change the microparticles morphology. The microparticles were evaluated by dissolution profiles and characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), laser particle size analyzer, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). IBP microparticle prepared with surfactants showed a significant increase in dissolution rate (more than three times within 10 min) and an obvious decrease in mean particle size. The morphology of microparticles was obviously changed. XRD and DSC results revealed that the crystalline state of the untreated IBP and the prepared IBP microparticles were similar. The crystallinity of microparticles produced might be lightly reduced by adding surfactants in preparation process. All results showed that it was useful to prepare high dispersion microparticle by adding surfactants in the preparation process for improving the dissolution.
Collapse
Affiliation(s)
- Fuzheng Ren
- a Laboratory of Pharmaceutical Crystal Engineering and Technology, Department of Pharmaceutical Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai , China
| | - Jianping Su
- a Laboratory of Pharmaceutical Crystal Engineering and Technology, Department of Pharmaceutical Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai , China
| | - Hui Xiong
- a Laboratory of Pharmaceutical Crystal Engineering and Technology, Department of Pharmaceutical Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai , China
| | - Ying Tian
- a Laboratory of Pharmaceutical Crystal Engineering and Technology, Department of Pharmaceutical Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai , China
| | - Guobin Ren
- a Laboratory of Pharmaceutical Crystal Engineering and Technology, Department of Pharmaceutical Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai , China
| | - Qiufang Jing
- a Laboratory of Pharmaceutical Crystal Engineering and Technology, Department of Pharmaceutical Engineering, School of Pharmacy , East China University of Science and Technology , Shanghai , China
| |
Collapse
|
48
|
Knapik J, Wojnarowska Z, Grzybowska K, Jurkiewicz K, Stankiewicz A, Paluch M. Stabilization of the Amorphous Ezetimibe Drug by Confining Its Dimension. Mol Pharm 2016; 13:1308-16. [PMID: 26981876 DOI: 10.1021/acs.molpharmaceut.5b00903] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The purpose of this paper is to investigate the influence of nanoconfinement on the molecular mobility, as well as on the physical stability, of amorphous ezetimibe drug. Two guest/host systems, ezetimibe-Aeroperl 300 and ezetimibe-Neusilin US2, were prepared and studied using various experimental techniques, such as X-ray diffraction (XRD), differential scanning calorimetry (DSC), and broadband dielectric spectroscopy (BDS). Our investigation has shown that the molecular mobility of the examined anticholesterol agent incorporated into nanopore matrices strongly depends on the pore size of the host system. Moreover, it was found that the amorphous ezetimibe confined in 30 nm pores of Aeroperl 300 has a tendency to recrystallize, while the drug incorporated into the smaller--5 nm--pores of Neusilin US2 is not able to crystallize. It has been shown that this significant stabilization of ezetimibe drug can be achieved by an interplay of three factors: changes in molecular dynamics of the confined amorphous drug, the immobilization effect of pore walls on a part of ezetimibe molecules, and the use of host materials with pores that are smaller than the critical size of the drug crystal nuclei.
Collapse
Affiliation(s)
- J Knapik
- Institute of Physics, University of Silesia , ul. Uniwersytecka 4, 40-007 Katowice, Poland.,SMCEBI , ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Z Wojnarowska
- Institute of Physics, University of Silesia , ul. Uniwersytecka 4, 40-007 Katowice, Poland.,SMCEBI , ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - K Grzybowska
- Institute of Physics, University of Silesia , ul. Uniwersytecka 4, 40-007 Katowice, Poland.,SMCEBI , ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - K Jurkiewicz
- Institute of Physics, University of Silesia , ul. Uniwersytecka 4, 40-007 Katowice, Poland.,SMCEBI , ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - A Stankiewicz
- F1 Pharma sp. z o.o. , ul. Bobrzyńskiego 14, 30-348 Kraków, Poland
| | - M Paluch
- Institute of Physics, University of Silesia , ul. Uniwersytecka 4, 40-007 Katowice, Poland.,SMCEBI , ul. 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| |
Collapse
|
49
|
Zhang P, Zardán Gómez de la Torre T, Forsgren J, Bergström CA, Strømme M. Diffusion-Controlled Drug Release From the Mesoporous Magnesium Carbonate Upsalite ®. J Pharm Sci 2016; 105:657-663. [DOI: 10.1002/jps.24553] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 11/12/2022]
|
50
|
Delmar K, Bianco-Peled H. Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydr Polym 2016; 136:570-80. [DOI: 10.1016/j.carbpol.2015.09.072] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/01/2022]
|