1
|
Kariminia S, Shamsipur M, Mansouri K. A novel magnetically guided, oxygen propelled CoPt/Au nanosheet motor in conjugation with a multilayer hollow microcapsule for effective drug delivery and light triggered drug release. J Mater Chem B 2023; 12:176-186. [PMID: 38055010 DOI: 10.1039/d3tb01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In recent years, nanomotors have been developed and attracted extensive attention in biomedical applications. In this work, a magnetically-guided oxygen-propelled CoPt/gold nanosheet motor (NSM) was prepared and used as an active self-propelled platform that can load, transfer and control the release of drug carrier to cancer cells. As a drug carrier, the microcapsules were constructed by the layer-by-layer (LbL) coating of chitosan and carboxymethyl cellulose layers, followed by incorporation of gold and magnetite nanoparticles. Doxorubicin (DOX) as an anti-cancer drug was loaded onto the synthesized microcapsules with a loading efficiency of 77%. The prepared NSMs can deliver the DOX loaded magnetic multilayer microcapsule to the target cancer cell based on the catalytic decomposition of H2O2 solution (1% v/v) via guidance from an external magnetic force. The velocity of NSM was determined to be 25.1 μm s-1 in 1% H2O2. Under near-infrared irradiation, and due to the photothermal effect of the gold nanoparticles, the proposed system was found to rapidly release more drugs compared to that of an internal stimulus diffusion process. Moreover, the investigation of cytotoxicity of NSMs and multilayer microcapsules clearly revealed that they have negligible side effects over all the concentrations tested.
Collapse
Affiliation(s)
| | | | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Yang Y, Wang X, Yuan X, Zhu Q, Chen S, Xia D. Glucose-activatable insulin delivery with charge-conversional polyelectrolyte multilayers for diabetes care. Front Bioeng Biotechnol 2022; 10:996763. [PMID: 36246353 PMCID: PMC9557070 DOI: 10.3389/fbioe.2022.996763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
One of the most effective treatments for diabetes is to design a glucose-regulated insulin (INS) delivery system that could adjust the INS release time and rate to reduce diabetes-related complications. Here, mixed multiple layer-by-layer (mmLbL)-INS microspheres were developed for glucose-mediated INS release and an enhanced hypoglycemic effect for diabetes care. To achieve ultrafast glucose-activated INS release, glucose oxidase (GOx) was assembled with a positively charged polymer and modified on INS LbL. The mmLbL-INS microspheres were constructed with one, two, and four layers of the polyelectrolyte LbL assembly at a ratio of 1:1:1. Under hyperglycemia, GOx converts a change in the hyperglycemic environment to a pH stimulus, thus providing sufficient hydrogen ion. The accumulated hydrogen ion starts LbL charge shifting, and anionic polymers are converted to cationic polymers through hydrolytic cleavage of amine-functionalized side chains. The results of in vitro INS release suggested that glucose can modulate the mmLbL-INS microspheres in a pulsatile profile. In vivo studies validated that this formulation enhanced the hypoglycemic effect in STZ-induced diabetic rats within 2 h of subcutaneous administration and facilitated stabilization of blood glucose levels for up to 2 days. This glucose-activatable LbL microsphere system could serve as a powerful tool for constructing a precisely controlled release system.
Collapse
Affiliation(s)
- Yanguang Yang
- Department of Radiotherapy, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xiangqian Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xiaopeng Yuan
- Department of Radiotherapy, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qiwei Zhu
- Department of Radiotherapy, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Shusen Chen
- Department of Radiotherapy, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Donglin Xia
- School of Public Health, Nantong University, Nantong, China
- *Correspondence: Donglin Xia,
| |
Collapse
|
3
|
Verkhovskii R, Ermakov A, Grishin O, Makarkin MA, Kozhevnikov I, Makhortov M, Kozlova A, Salem S, Tuchin V, Bratashov D. The Influence of Magnetic Composite Capsule Structure and Size on Their Trapping Efficiency in the Flow. Molecules 2022; 27:6073. [PMID: 36144805 PMCID: PMC9501256 DOI: 10.3390/molecules27186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
A promising approach to targeted drug delivery is the remote control of magnetically sensitive objects using an external magnetic field source. This method can assist in the accumulation of magnetic carriers in the affected area for local drug delivery, thus providing magnetic nanoparticles for MRI contrast and magnetic hyperthermia, as well as the magnetic separation of objects of interest from the bloodstream and liquid biopsy samples. The possibility of magnetic objects' capture in the flow is determined by the ratio of the magnetic field strength and the force of viscous resistance. Thus, the capturing ability is limited by the objects' magnetic properties, size, and flow rate. Despite the importance of a thorough investigation of this process to prove the concept of magnetically controlled drug delivery, it has not been sufficiently investigated. Here, we studied the efficiency of polyelectrolyte capsules' capture by the external magnetic field source depending on their size, the magnetic nanoparticle payload, and the suspension's flow rate. Additionally, we estimated the possibility of magnetically trapping cells containing magnetic capsules in flow and evaluated cells' membrane integrity after that. These results are required to prove the possibility of the magnetically controlled delivery of the encapsulated medicine to the affected area with its subsequent retention, as well as the capability to capture magnetically labeled cells in flow.
Collapse
Affiliation(s)
- Roman Verkhovskii
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Alexey Ermakov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Institute of Molecular Theranostics, I. M. Sechenov First Moscow State Medical University, 8 Trubetskaya Str., 119991 Moscow, Russia
| | - Oleg Grishin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Mikhail A. Makarkin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Ilya Kozhevnikov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Mikhail Makhortov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Anastasiia Kozlova
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| | - Samia Salem
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Department of Physics, Faculty of Science, Benha University, Benha 13511, Egypt
| | - Valery Tuchin
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin’s Ave., 634050 Tomsk, Russia
- Institute of Precision Mechanics and Control, FRC “Saratov Scientific Centre of the Russian Academy of Sciences”, 24 Rabochaya Str., 410028 Saratov, Russia
- Bach Institute of Biochemistry, FRC “Fundamentals of Biotechnology of the Russian Academy of Sciences”, 119071 Moscow, Russia
| | - Daniil Bratashov
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; (A.E.); (O.G.); (M.A.M.); (I.K.); (M.M.); (A.K.); (S.S.); (V.T.); (D.B.)
| |
Collapse
|
4
|
Stimuli-responsive polyelectrolyte multilayer films and microcapsules. Adv Colloid Interface Sci 2022; 310:102773. [DOI: 10.1016/j.cis.2022.102773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/20/2022] [Accepted: 09/05/2022] [Indexed: 12/28/2022]
|
5
|
Vikulina AS, Campbell J. Biopolymer-Based Multilayer Capsules and Beads Made via Templating: Advantages, Hurdles and Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2502. [PMID: 34684943 PMCID: PMC8537085 DOI: 10.3390/nano11102502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
One of the undeniable trends in modern bioengineering and nanotechnology is the use of various biomolecules, primarily of a polymeric nature, for the design and formulation of novel functional materials for controlled and targeted drug delivery, bioimaging and theranostics, tissue engineering, and other bioapplications. Biocompatibility, biodegradability, the possibility of replicating natural cellular microenvironments, and the minimal toxicity typical of biogenic polymers are features that have secured a growing interest in them as the building blocks for biomaterials of the fourth generation. Many recent studies showed the promise of the hard-templating approach for the fabrication of nano- and microparticles utilizing biopolymers. This review covers these studies, bringing together up-to-date knowledge on biopolymer-based multilayer capsules and beads, critically assessing the progress made in this field of research, and outlining the current challenges and perspectives of these architectures. According to the classification of the templates, the review sequentially considers biopolymer structures templated on non-porous particles, porous particles, and crystal drugs. Opportunities for the functionalization of biopolymer-based capsules to tailor them toward specific bioapplications is highlighted in a separate section.
Collapse
Affiliation(s)
- Anna S. Vikulina
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg, 1, 14476 Potsdam, Germany
- Bavarian Polymer Institute, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Dr.-Mack-Straße, 77, 90762 Fürth, Germany
| | - Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
6
|
Symbiotic thermo-chemotherapy for enhanced HepG2 cancer treatment via magneto-drugs encapsulated polymeric nanocarriers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Encapsulation of Low-Molecular-Weight Drugs into Polymer Multilayer Capsules Templated on Vaterite CaCO 3 Crystals. MICROMACHINES 2020; 11:mi11080717. [PMID: 32722123 PMCID: PMC7463826 DOI: 10.3390/mi11080717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
Polyelectrolyte multilayer capsules (PEMCs) templated onto biocompatible and easily degradable vaterite CaCO3 crystals via the layer-by-layer (LbL) polymer deposition process have served as multifunctional and tailor-made vehicles for advanced drug delivery. Since the last two decades, the PEMCs were utilized for effective encapsulation and controlled release of bioactive macromolecules (proteins, nucleic acids, etc.). However, their capacity to host low-molecular-weight (LMW) drugs (<1–2 kDa) has been demonstrated rather recently due to a limited retention ability of multilayers to small molecules. The safe and controlled delivery of LMW drugs plays a vital role for the treatment of cancers and other diseases, and, due to their tunable and inherent properties, PEMCs have shown to be good candidates for smart drug delivery. Herein, we summarize recent progress on the encapsulation of LMW drugs into PEMCs templated onto vaterite CaCO3 crystals. The drug loading and release mechanisms, advantages and limitations of the PEMCs as LMW drug carriers, as well as bio-applications of drug-laden capsules are discussed based upon the recent literature findings.
Collapse
|
8
|
Zhang A, Jung K, Li A, Liu J, Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101164] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Jiaojiao Y, Sun C, Wei Y, Wang C, Dave B, Cao F, Liandong H. Applying emerging technologies to improve diabetes treatment. Biomed Pharmacother 2018; 108:1225-1236. [PMID: 30372824 DOI: 10.1016/j.biopha.2018.09.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022] Open
Abstract
Insulin, as the most important drug for the treatment of diabetes, can effectively control the blood glucose concentration in humans. Due to its instability, short half-life, easy denaturation and side effects, the administration way of insulin are limited to subcutaneous injection accompany with poor glucose control and low patient compliance. In recent years, emerging insulin delivery systems have been developed in diabetes research. In this review, a variety of stimuli-responsive insulin delivery systems with their response mechanism and regulation principle are described. Further, the introduction of stem cell transplantation and mobile application based delivery technologies are prudent for the diabetes treatment. This article also discusses the advantages and limitations of current strategies, along with the opportunities and challenges for future insulin therapy.
Collapse
Affiliation(s)
- Yu Jiaojiao
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Caifeng Sun
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Yuli Wei
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Chaoying Wang
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | | | - Fei Cao
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Hu Liandong
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| |
Collapse
|
10
|
Ultrafast glucose-responsive, high loading capacity erythrocyte to self-regulate the release of insulin. Acta Biomater 2018; 69:301-312. [PMID: 29421303 DOI: 10.1016/j.actbio.2018.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Insulin (INS) delivery system that can mimic normal insulin secretion to maintain the blood glucose level (BGL) in the normal range is an ideal treatment for diabetes. However, most of the existing closed-loop INS delivery systems respond slowly to the changes in BGL, resulting in a time lag between the abnormal BGL and the release of INS, which is not suitable for practical application. In this study, glucose oxidase (GOx)-modified erythrocytes are used as INS carriers (GOx-INS-ER) that can rapidly self-regulate the release of INS upon the changes in BGL. In this system, glucose can be broken down into gluconic acid and hydrogen peroxide by GOx-INS-ER, and the latter will rupture the erythrocyte membrane to release INS within minutes. A pulsatile release of INS can be achieved upon the changes in the glucose concentration. This GOx-INS-ER enables diabetic rats to overcome hyperglycemia within 1 h, and a single injection of this GOx-INS-ER into the STZ-induced diabetic rats can maintain the BGL in the normal range up to 9 days. STATEMENT OF SIGNIFICANCE Diabetes mellitus has been a major public health threatener with global prevalence. Although, glucose-responsive carriers that can release insulin (INS) in a closed loop have been explored greatly in recent years, their sluggish glucose-responsive property and low INS-loading content greatly restrict their practical application [ACS Nano, 2013, 7, 4194]. In this work, we reported INS-loaded erythrocytes featuring ultrafast glucose-responsive property and high INS loading content, which could release INS in a closed loop. These GOX-INS-ERs could respond to the changes in glucose level within several minutes and self-regulate the release of INS for a long time. Single injection of GOX-INS-ER can overcome hyperglycemia in diabetic mice within 1 h and maintain the baseline level of glucose up to 9 days. We think our method may provide a robust way to potentiate diabetes treatment.
Collapse
|
11
|
Voronin DV, Sindeeva OA, Kurochkin MA, Mayorova O, Fedosov IV, Semyachkina-Glushkovskaya O, Gorin DA, Tuchin VV, Sukhorukov GB. In Vitro and in Vivo Visualization and Trapping of Fluorescent Magnetic Microcapsules in a Bloodstream. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6885-6893. [PMID: 28186726 DOI: 10.1021/acsami.6b15811] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Remote navigation and targeted delivery of biologically active compounds is one of the current challenges in the development of drug delivery systems. Modern methods of micro- and nanofabrication give us new opportunities to produce particles and capsules bearing cargo to deploy and possess magnetic properties to be externally navigated. In this work we explore multilayer composite magnetic microcapsules as targeted delivery systems in vitro and in vivo studies under natural conditions of living organism. Herein, we demonstrate magnetic addressing of fluorescent composite microcapsules with embedded magnetite nanoparticles in blood flow environment. First, the visualization and capture of the capsules at the defined blood flow by the magnetic field are shown in vitro in an artificial glass capillary employing a wide-field fluorescence microscope. Afterward, the capsules are visualized and successfully trapped in vivo into externally exposed rat mesentery microvessels. Histological analysis shows that capsules infiltrate small mesenteric vessels whereas large vessels preserve the blood microcirculation. The effect of the magnetic field on capsule preferential localization in bifurcation areas of vasculature, including capsule retention at the site once external magnet is switched off is discussed. The research outcome demonstrates that microcapsules can be effectively addressed in a blood flow, which makes them a promising delivery system with remote navigation by the magnetic field.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valery V Tuchin
- Interdisciplinary Laboratory of Biophotonics, National Research Tomsk State University , Tomsk 634050, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Precision Mechanics and Control Institute of the Russian Academy of Sciences , Saratov 410028, Russia
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
12
|
He X, Sun Z, He K, Guo S. Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress. Appl Microbiol Biotechnol 2017; 101:2779-2789. [PMID: 28050633 DOI: 10.1007/s00253-016-8070-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Parasporal crystals synthesized by Bacillus thuringiensis (Bt) have been widely used as microbial pesticides because of their toxicity to the larval stages of specific insects. However, parasporal crystals can be damaged by environmental stresses, such as high temperature, ultraviolet radiation, and desiccation. To reduce environmental susceptibility of parasporal crystals and extend the duration of their activity, we developed a new type of protection by making microcapsules of crystals (MCs). The microcapsules were self-assembled by alternate deposition (layer by layer) of low-cost chitosan and sodium alginate (or sodium carboxymethyl cellulose) on the crystal surface. Crystal toxins (Cry1Ac) were released from microcapsules at pH values above 9.0. Bioassay results demonstrated that microencapsulated preparations had larvicidal toxicity equivalent to the non-encapsulated form. Microencapsuled crystals were protected from environmental stresses such as high temperature and desiccation. The results indicate that microcapsule protection can enhance the efficacy of Bt in pest control, especially to Lepidoptera larvae that have a alkaline midgut.
Collapse
Affiliation(s)
- Xiaolin He
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhongqin Sun
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shuyuan Guo
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
13
|
Yang XL, Ju XJ, Mu XT, Wang W, Xie R, Liu Z, Chu LY. Core-Shell Chitosan Microcapsules for Programmed Sequential Drug Release. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10524-34. [PMID: 27052812 DOI: 10.1021/acsami.6b01277] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A novel type of core-shell chitosan microcapsule with programmed sequential drug release is developed by the microfluidic technique for acute gastrosis therapy. The microcapsule is composed of a cross-linked chitosan hydrogel shell and an oily core containing both free drug molecules and drug-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Before exposure to acid stimulus, the resultant microcapsules can keep their structural integrity without leakage of the encapsulated substances. Upon acid-triggering, the microcapsules first achieve burst release due to the acid-induced decomposition of the chitosan shell. The encapsulated free drug molecules and drug-loaded PLGA nanoparticles are rapidly released within 60 s. Next, the drugs loaded in the PLGA nanoparticles are slowly released for several days to achieve sustained release based on the synergistic effect of drug diffusion and PLGA degradation. Such core-shell chitosan microcapsules with programmed sequential drug release are promising for rational drug delivery and controlled-release for the treatment of acute gastritis. In addition, the microcapsule systems with programmed sequential release provide more versatility for controlled release in biomedical applications.
Collapse
Affiliation(s)
- Xiu-Lan Yang
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, and Collaborative Innovation Center for Biomaterials Science and Technology, Sichuan University , Chengdu 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, and Collaborative Innovation Center for Biomaterials Science and Technology, Sichuan University , Chengdu 610065, P. R. China
| | - Xiao-Ting Mu
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, and Collaborative Innovation Center for Biomaterials Science and Technology, Sichuan University , Chengdu 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, and Collaborative Innovation Center for Biomaterials Science and Technology, Sichuan University , Chengdu 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, and Collaborative Innovation Center for Biomaterials Science and Technology, Sichuan University , Chengdu 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, and Collaborative Innovation Center for Biomaterials Science and Technology, Sichuan University , Chengdu 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering and ‡State Key Laboratory of Polymer Materials Engineering, and Collaborative Innovation Center for Biomaterials Science and Technology, Sichuan University , Chengdu 610065, P. R. China
| |
Collapse
|
14
|
Timin AS, Muslimov AR, Lepik KV, Saprykina NN, Sergeev VS, Afanasyev BV, Vilesov AD, Sukhorukov GB. Triple-responsive inorganic–organic hybrid microcapsules as a biocompatible smart platform for the delivery of small molecules. J Mater Chem B 2016; 4:7270-7282. [DOI: 10.1039/c6tb02289h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed novel hybrid inorganic/organic capsules with unique physicochemical features enabling multimodal triggering.
Collapse
Affiliation(s)
| | - Albert R. Muslimov
- First I. P. Pavlov State Medical University of St. Petersburg
- Lev Tolstoy str
- 6/8
- Saint-Petersburg
- Russian Federation
| | - Kirill V. Lepik
- First I. P. Pavlov State Medical University of St. Petersburg
- Lev Tolstoy str
- 6/8
- Saint-Petersburg
- Russian Federation
| | - Natalia N. Saprykina
- Institution of Russian Academy of Sciences Institute of Macromolecular Compounds Russian Academy of Sciences (IMC RAS)
- Bolshoy Prosp
- 31
- Saint-Petersburg
- Russian Federation
| | - Vladislav S. Sergeev
- First I. P. Pavlov State Medical University of St. Petersburg
- Lev Tolstoy str
- 6/8
- Saint-Petersburg
- Russian Federation
| | - Boris V. Afanasyev
- First I. P. Pavlov State Medical University of St. Petersburg
- Lev Tolstoy str
- 6/8
- Saint-Petersburg
- Russian Federation
| | - Alexander D. Vilesov
- Institution of Russian Academy of Sciences Institute of Macromolecular Compounds Russian Academy of Sciences (IMC RAS)
- Bolshoy Prosp
- 31
- Saint-Petersburg
- Russian Federation
| | - Gleb B. Sukhorukov
- RASA Center in Tomsk
- Tomsk Polytechnic University
- Tomsk
- Russian Federation
- RASA Center in St. Petersburg
| |
Collapse
|
15
|
Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ. Magnetic nanoparticles and nanocomposites for remote controlled therapies. J Control Release 2015; 219:76-94. [PMID: 26407670 PMCID: PMC4669063 DOI: 10.1016/j.jconrel.2015.09.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
This review highlights the state-of-the-art in the application of magnetic nanoparticles (MNPs) and their composites for remote controlled therapies. Novel macro- to nano-scale systems that utilize remote controlled drug release due to actuation of MNPs by static or alternating magnetic fields and magnetic field guidance of MNPs for drug delivery applications are summarized. Recent advances in controlled energy release for thermal therapy and nanoscale energy therapy are addressed as well. Additionally, studies that utilize MNP-based thermal therapy in combination with other treatments such as chemotherapy or radiation to enhance the efficacy of the conventional treatment are discussed.
Collapse
Affiliation(s)
- Anastasia K Hauser
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Robert J Wydra
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Nathanael A Stocke
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Kimberly W Anderson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
16
|
Bucatariu F, Ghiorghita CA, Dragan ES. Sorption/release of bioactive species in/from cross-linked poly(ethyleneimine)/poly(N-isopropylacrylamide) films constructed onto solid surfaces. HIGH PERFORM POLYM 2015. [DOI: 10.1177/0954008315584174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multilayer thin films are useful materials in the fabrication of controlled drug delivery systems and in controlling drug release processes. Herein, we report the step-by-step deposition of polymer multilayers based on poly(ethyleneimine) (PEI) and poly( N-isopropylacrylamide) (PNIPAAm) mediated by pyromellitic dianhydride (PM), as cross-linker of PEI chains, onto Daisogel silica microparticles. The sorption/release properties of the resulting composite microparticles for indomethacin (IDM), diclofenac sodium salt (DS), and Ponceau SS (PSS) were followed as a function of PM concentration. The sorption properties of the [(PEI-PM)/PNIPAAm] n multilayer films for all anionic species (IDM, DS, and PSS) were influenced by the number of polymer layers and the weight ratio between cross-linker and Daisogel microparticles during the cross-linking steps. It was found that the sorbed amount of anionic compounds increased with the number of polymer layers and with the decrease of PM concentration. The Langmuir and Sips model isotherms fitted well the sorption equilibrium data. The maximum equilibrium sorption capacity ( qm) evaluated by the Langmuir model, at 25°C, was 41 mg IDM g−1 of Daisogel//[(PEI-PM)/PNIPAAm]8.5 and 40 mg PSS g−1 of Daisogel//[(PEI-PM)/PNIPAAm]8.5, for a weight percentage of PM/silica of 0.1% w/w. Cumulative release of IDM was faster and higher than PSS in the first 5 h, while PSS was desorbed with a constant rate for 30 h, supporting a sustained release from Daisogel//[(PEI-PM)/PNIPAAm] n composite microparticles.
Collapse
Affiliation(s)
- Florin Bucatariu
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | | | | |
Collapse
|
17
|
Sato K, Takahashi M, Ito M, Abe E, Anzai JI. Glucose-induced decomposition of layer-by-layer films composed of phenylboronic acid-bearing poly(allylamine) and poly(vinyl alcohol) under physiological conditions. J Mater Chem B 2015; 3:7796-7802. [DOI: 10.1039/c5tb01006c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phenylboronic acid-bearing poly(allylamine)/poly(vinyl alcohol) layer-by-layer films coupled with glucose oxidase decomposed in the presence of glucose under physiological conditions.
Collapse
Affiliation(s)
- Katsuhiko Sato
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Aoba-ku
- Japan
| | - Mao Takahashi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Aoba-ku
- Japan
| | - Megumi Ito
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Aoba-ku
- Japan
| | - Eiichi Abe
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Aoba-ku
- Japan
| | - Jun-Ichi Anzai
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Aoba-ku
- Japan
| |
Collapse
|
18
|
Bucatariu F, Ghiorghita CA, Dragan ES. Sorption and release of drugs in/from cross-linked poly(ethyleneimine) multilayer films deposited onto silica microparticles. Colloids Surf B Biointerfaces 2014; 126:224-31. [PMID: 25576806 DOI: 10.1016/j.colsurfb.2014.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/29/2014] [Accepted: 12/15/2014] [Indexed: 01/06/2023]
Abstract
Multilayer thin films are useful materials in fabrication of controlled drug delivery systems and in controlling drug release processes. Herein, we report the fabrication of single polycation multilayers based on branched poly(ethylene imine) (PEI) mediated by dianhydrides (DA), as cross-linker and source of carboxylic groups, deposited onto Daisogel silica microparticles, and their sorption/release properties for some anionic drugs as a function of the cross-linker concentration. Pyromellitic dianhydride (PM) and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTCDA) were used as DA reagents. The monotonous increase of the (PEI-DA)n multilayers was demonstrated by Fourier transform infrared spectroscopy, point of zero charge (pzc), and X-ray photoelectron spectroscopy. The sorption properties of the PEI multilayer films for two drugs (diclofenac sodium, DS, and indomethacin, IDM) and a model dye (Ponceau SS, PSS) were influenced by the number of PEI layers and the weight ratio between cross-linker and silica microparticles during the cross-linking steps. It was found that the adsorbed amount of drugs increased with the number of PEI layers and with the decrease of DA concentration. The Langmuir, Sips, and Dubinin-Radushkevich model isotherms were applied to fit the sorption equilibrium data of IDM onto the Daisogel//(PEI-DA)n composites. The maximum equilibrium sorption capacity, qm, evaluated by the Langmuir model, at 25 °C, was 37.05 mg IDM/g of Daisogel//(PEI-BTCDA)8.5, and 39.99 mg IDM/g of Daisogel//(PEI-PM)8.5, for a weight percentage of DA/silica of 0.1% w/w. Cumulative release of DS was almost 100% within 180 min, while IDM was desorbed at a level of 35%, in 320 min, supporting a sustained release was gained with the cross-linked PEI films. The stability of the (PEI-DA)n multilayers during the successive sorption/desorption cycles of PSS was demonstrated.
Collapse
Affiliation(s)
- Florin Bucatariu
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| | | | - Ecaterina Stela Dragan
- "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania.
| |
Collapse
|