1
|
Zhang Q, Wang YQ, Li L, Song HL, Wu HT, Zhu BW. Fabrication and characterization of salidroside W/O/W emulsion with sodium alginate. Food Chem X 2024; 22:101260. [PMID: 38450386 PMCID: PMC10915508 DOI: 10.1016/j.fochx.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Salidroside (Sal), the main bioactive substance in Rhodiola rosea, is a promising functional food component with a wide range of pharmacological effects, but its biological activity is challenging to sustain due to its short half-life, low oral bioavailability, and susceptibility to environmental factors. The aim of this study was to investigate the effect of sodium alginate (SA) concentration on the construction of W/O/W emulsion in the protection of Sal. With the escalation of SA concentrations, the range of droplet size distribution was smaller and the droplets were more uniform. When the concentration of SA was 2 %, the average droplet size reached 9.1 ± 0.1 μm, and the encapsulation efficiency of Sal was 77.8 ± 1.8 %. Moreover, the double emulsion with 2 % SA was the most stable for 28 days at 4 °C since the oil droplets were embedded in the network structure of SA.
Collapse
Affiliation(s)
- Qian Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yu-Qiao Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lin Li
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hao-Lin Song
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bei-Wei Zhu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, China
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Sharma S, Garg A, Agrawal R, Chopra H, Pathak D. A Comprehensive Review on Niosomes as a Tool for Advanced Drug Delivery. Pharm Nanotechnol 2024; 12:206-228. [PMID: 37496251 DOI: 10.2174/2211738511666230726154557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Over the past few decades, advancements in nanocarrier-based therapeutic delivery have been significant, and niosomes research has recently received much interest. The self-assembled nonionic surfactant vesicles lead to the production of niosomes. The most recent nanocarriers, niosomes, are self-assembled vesicles made of nonionic surfactants with or without the proper quantities of cholesterol or other amphiphilic molecules. Because of their durability, low cost of components, largescale production, simple maintenance, and high entrapment efficiency, niosomes are being used more frequently. Additionally, they enhance pharmacokinetics, reduce toxicity, enhance the solubility of poorly water-soluble compounds, & increase bioavailability. One of the most crucial features of niosomes is their controlled release and targeted diffusion, which is utilized for treating cancer, infectious diseases, and other problems. In this review article, we have covered all the fundamental information about niosomes, including preparation techniques, niosomes types, factors influencing their formation, niosomes evaluation, applications, and administration routes, along with recent developments.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Devender Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| |
Collapse
|
3
|
Saharawat S, Verma S. A Comprehensive Review on Niosomes as a Strategy in Targeted Drug Delivery: Pharmaceutical, and Herbal Cosmetic Applications. Curr Drug Deliv 2024; 21:1460-1473. [PMID: 38231066 DOI: 10.2174/0115672018269199231121055548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 01/18/2024]
Abstract
Niosomes are newly developed, self-assembling sac-like transporters that deliver medication at a specific site in a focused manner, increasing availability in the body and prolonging healing effects. Niosome discovery has increased drugs' therapeutic effectiveness while also reducing adverse effects. This article aims to concentrate on the increase in the worldwide utilization of niosomal formulation. This overview presents a thorough perspective of niosomal investigation up until now, encompassing categories and production techniques, their significance in pharmaceutical transportation, and cosmetic use. The thorough literature review revealed that extensive attention has been given to developing nanocarriers for drug delivery as they hold immense endeavor to attain targeted delivery to the affected area simultaneously shielding the adjacent healthy tissue. Many reviews and research papers have been published that demonstrate the interest of scientists in niosomes. Phytoconstituents, which possess antioxidant, antibiotic, anti-inflammatory, wound healing, anti-acne, and skin whitening properties, are also encapsulated into niosome. Their flexibility allows for the incorporation of various therapeutic agents, including small molecules, proteins, and peptides making them adaptable for different types of drugs. Niosomes can be modified with ligands, enhancing their targeting capabilities. A flexible drug delivery mechanism provided by non-ionic vesicles, which are self-assembling vesicular nano-carriers created from hydrating non-ionic surfactant, cholesterol, or amphiphilic compounds along comprehensive applications such as transdermal and brain-targeted delivery.
Collapse
Affiliation(s)
- Sakshi Saharawat
- Noida Institute of Engineering and Technology (Pharmacy Institute) Greater Noida, Uttar Pradesh 201306, India
| | - Sushma Verma
- Noida Institute of Engineering and Technology (Pharmacy Institute) Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
4
|
Alemi A, Karamallah MH, Sabaghan M, Hosseini SA, Veisi A, Karamallah SH, Farokhifar M. Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. J Appl Biomater Funct Mater 2024; 22:22808000241235442. [PMID: 38497242 DOI: 10.1177/22808000241235442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Given the numerous adverse effects of lung cancer treatment, more research on non-toxic medications is urgently needed. Curcumin (CUR) and berberine (BBR) combat drug resistance by controlling the expression of multidrug resistant pump (MDR1). Fascinatingly, combining these medications increases the effectiveness of preventing lung cancer. Their low solubility and poor stability, however, restrict their therapeutic efficacy. Because of the improved bioavailability and increased encapsulation effectiveness of water-insoluble medicines, surfactant-based nanovesicles have recently received a great deal of attention. The current study sought to elucidate the Combination drug therapy by herbal nanomedicine prevent multidrug resistance protein 1: promote apoptosis in Lung Carcinoma. The impact of several tween (20, 60, and 80) types with varied hydrophobic tails on BBR/CUR-TNV was evaluated. Additionally, the MDR1 activity and apoptosis rate of the BBR/CUR-TNV combination therapy were assessed. The encapsulation effectiveness of TNV was affected by the type of tween. With the TNV made from tween 60, cholesterol, and PEG (47.5: 47.5:5), more encapsulation effectiveness was attained. By combining CUR with BBR, especially when given in TNV, apoptosis increased. Additionally, when CUR and BBR were administered in combination, they significantly reduced the risk of MDR1 development. The current work suggests that the delivery of berberine and curcumin as a combination medication therapy via tween-based nanovesicles may be a potential lung cancer treatment.
Collapse
Affiliation(s)
- Ashraf Alemi
- Abadan University of Medical Sciences, Abadan, Iran
| | | | | | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Veisi
- Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | | | | |
Collapse
|
5
|
Aldawsari MF, Khafagy ES, Moglad EH, Selim Abu Lila A. Formulation optimization, in vitro and in vivo evaluation of niosomal nanocarriers for enhanced topical delivery of cetirizine. Saudi Pharm J 2023; 31:101734. [PMID: 37649675 PMCID: PMC10462889 DOI: 10.1016/j.jsps.2023.101734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023] Open
Abstract
Cetirizine hydrochloride (CTZ), a second-generation anti-histaminic drug, has been recently explored for its effectiveness in the treatment of alopecia. Niosomes are surfactant-based nanovesicular systems that have promising applications in both topical and transdermal drug delivery. The aim of this study was to design topical CTZ niosomes for management of alopecia. Thin film hydration technique was implemented for the fabrication of CTZ niosomes. The niosomes were examined for vesicle size, surface charge, and entrapment efficiency. The optimized niosomal formulation was incorporated into a hydrogel base (HPMC) and explored for physical characteristics, ex vivo permeation, and in vivo dermato-kinetic study. The optimized CTZ-loaded niosomal formulation showed an average size of 403.4 ± 15.6 nm, zeta potential of - 12.9 ± 1.7 mV, and entrapment efficiency percentage of 52.8 ± 1.9%. Compared to plain drug solution, entrapment of CTZ within niosomes significantly prolonged in vitro drug release up to 12 h. Most importantly, ex-vivo skin deposition studies and in vivo dermato-kinetic studies verified superior skin deposition/retention of CTZ from CTZ-loaded niosomal gels, compared to plain CTZ gel. CTZ-loaded niosomal gel permitted higher drug deposition percentage (19.2 ± 1.9%) and skin retention (AUC0-10h 1124.5 ± 87.9 μg/mL.h) of CTZ, compared to 7.52 ± 0.7% and 646.2 ± 44.6 μg/mL.h for plain CTZ gel, respectively. Collectively, niosomes might represent a promising carrier for the cutaneous delivery of cetirizine for the topical management of alopecia.
Collapse
Affiliation(s)
- Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Ehssan H. Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Amr Selim Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| |
Collapse
|
6
|
Todke P, Polaka S, Raval N, Gondaliya P, Tambe V, Maheshwari R, Kalia K, Tekade RK. 'Transfersome-embedded-gel' for dual-mechanistic delivery of anti-psoriatic drugs to dermal lymphocytes. J Microencapsul 2022; 39:495-511. [PMID: 35993180 DOI: 10.1080/02652048.2022.2116119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM Develop a platform for co-delivering clobetasol propionate (CP) and cyclosporine (CyA) to the epidermis and dermis to treat psoriasis. METHODS The transfersomes were prepared by thin-film hydration method. Transfersomes were characterised by dynamic light scattering and transmission electron microscope (TEM). Then, the gel stability, viscosity, pH, and spreadability were measured. Cytotoxicity of the CyA-loaded transfersome embedded in CP-dispersed gel (TEG-CyA-CP) was assessed on both human keratinocyte cell line (HaCaT) and Jurkat cells. In vitro cellular uptake and ex vivo dermal distribution was measured. The expression of inflammatory markers was assessed by reverse-transcription PCR (RT-PCR). RESULTS Nanoscale (<150 nm) transferosomes with high CyA encapsulation efficiency (>86%) were made. TEG-CyA-CP demonstrated higher viscosity (4808.8 ± 12.01 mPas), which may help control dual drug release. Ex vivo results showed TEG-CyA-CP ability to deliver CyA in the dermis and CP in the epidermis. RT-PCR studies showed the optimised formulation helps reduce the tumour necrosis factor (TNF-α) and interleukin-1 (IL-1) levels to relieve psoriasis symptoms. CONCLUSION The developed TEG-CyA-CP represents a promising fit-to-purpose delivery platform for the dual-site co-delivery of CyA and CP in treating psoriasis.
Collapse
Affiliation(s)
- Pooja Todke
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Suryanarayana Polaka
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Nidhi Raval
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Piyush Gondaliya
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Vishakha Tambe
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Rahul Maheshwari
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Kiran Kalia
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Rakesh Kumar Tekade
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| |
Collapse
|
7
|
Abdallah HM, El-Megrab NA, Balata GF, Eissa NG. Niosomal and ethosomal gels: A comparative in vitro and ex vivo evaluation for repurposing of spironolactone. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Li D, Martini N, Wu Z, Chen S, Falconer JR, Locke M, Zhang Z, Wen J. Niosomal Nanocarriers for Enhanced Dermal Delivery of Epigallocatechin Gallate for Protection against Oxidative Stress of the Skin. Pharmaceutics 2022; 14:pharmaceutics14040726. [PMID: 35456560 PMCID: PMC9029719 DOI: 10.3390/pharmaceutics14040726] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 01/06/2023] Open
Abstract
Among green tea catechins, epigallocatechin gallate (EGCG) is the most abundant and has the highest biological activities. This study aims to develop and statistically optimise an EGCG-loaded niosomal system to overcome the cutaneous barriers and provide an antioxidant effect. EGCG-niosomes were prepared by thin film hydration method and statistically optimised. The niosomes were characterised for size, zeta potential, morphology and entrapment efficiency. Ex vivo permeation and deposition studies were conducted using full-thickness human skin. Cell viability, lipid peroxidation, antioxidant enzyme activities after UVA-irradiation and cellular uptake were determined. The optimised niosomes were spherical and had a relatively uniform size of 235.4 ± 15.64 nm, with a zeta potential of −45.2 ± 0.03 mV and an EE of 53.05 ± 4.46%. The niosomes effectively prolonged drug release and demonstrated much greater skin penetration and deposition than free EGCG. They also increased cell survival after UVA-irradiation, reduced lipid peroxidation, and increased the antioxidant enzymes’ activities in human dermal fibroblasts (Fbs) compared to free EGCG. Finally, the uptake of niosomes was via energy-dependent endocytosis. The optimised niosomes have the potential to be used as a dermal carrier for antioxidants and other therapeutic compounds in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Danhui Li
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (D.L.); (N.M.); (Z.W.); (S.C.)
| | - Nataly Martini
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (D.L.); (N.M.); (Z.W.); (S.C.)
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (D.L.); (N.M.); (Z.W.); (S.C.)
| | - Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (D.L.); (N.M.); (Z.W.); (S.C.)
| | - James Robert Falconer
- Department of Plastic, School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Brisbane, QLD 4102, Australia;
| | - Michelle Locke
- Reconstructive Surgery, Middlemore Hospital, Counties Manukau District Health Board, Auckland 2104, New Zealand;
| | - Zhiwen Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China;
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand; (D.L.); (N.M.); (Z.W.); (S.C.)
- Correspondence:
| |
Collapse
|
9
|
Huang J, Zhao D, Cui C, Hao J, Zhang Z, Guo L. Research Progress and Trends of Phenylethanoid Glycoside Delivery Systems. Foods 2022; 11:foods11050769. [PMID: 35267401 PMCID: PMC8909102 DOI: 10.3390/foods11050769] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Phenylethanoid glycosides (PhGs) are obtained from a wide range of sources and show strong biological and pharmacological activities, such as antioxidant, antibacterial and neuroprotective effects. However, intestinal malabsorption and the low bioavailability of PhGs seriously affect their application. Delivery systems are an effective method to improve the bioavailability of active substances. Scope and approach: In this article, the biological activities of and delivery systems for PhGs are introduced. The application statuses of delivery systems for echinacoside, acteoside and salidroside are reviewed. Finally, the problems of the lack of uniform standards for delivery systems and the poor targeted delivery accuracy of PhGs in the current research are proposed and suggestions for future research are put forward based on those problems. Key findings and conclusions: Although there are still some problems in the delivery system of phenylethanoside, such as inconsistent standards and inaccurate delivery, phenylethanoside itself has been proven to have a variety of physiological activities. Therefore, the action mechanism and application of phenylethanoside and its delivery system should be studied further.
Collapse
Affiliation(s)
- Jin Huang
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 051432, China; (J.H.); (C.C.); (J.H.)
| | - Dandan Zhao
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 051432, China; (J.H.); (C.C.); (J.H.)
- Correspondence: (D.Z.); (L.G.)
| | - Chaojing Cui
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 051432, China; (J.H.); (C.C.); (J.H.)
| | - Jianxiong Hao
- College of Food Science & Biology, Hebei University of Science & Technology, Shijiazhuang 051432, China; (J.H.); (C.C.); (J.H.)
| | - Zhentao Zhang
- Technical Institute of Physics and Chemistry CAS, Beijing 100190, China;
| | - Limin Guo
- Institute of Agro-Production Storage and Processing, Xinjiang Academy of Agricultural Sciences, Ürümqi 830091, China
- Correspondence: (D.Z.); (L.G.)
| |
Collapse
|
10
|
Sangboonruang S, Semakul N, Obeid MA, Ruano M, Kitidee K, Anukool U, Pringproa K, Chantawannakul P, Ferro VA, Tragoolpua Y, Tragoolpua K. Potentiality of Melittin-Loaded Niosomal Vesicles Against Vancomycin-Intermediate Staphylococcus aureus and Staphylococcal Skin Infection. Int J Nanomedicine 2021; 16:7639-7661. [PMID: 34819727 PMCID: PMC8606986 DOI: 10.2147/ijn.s325901] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Staphylococcus aureus is an important human pathogen, especially causing skin and soft tissue infections (SSTIs). Over the decades, the infections caused by antibiotic-resistant strains have often become life-threatening. Consequently, exploration and development of competent approaches to combat these serious circumstances are urgently required. Methods The antibacterial activity of melittin (Mel) on S. aureus, methicillin-resistant S. aureus (MRSA) and clinical isolates of vancomycin-intermediate S. aureus (VISA) was investigated by minimum inhibitory concentration (MIC) and time-killing assays. The localization of Mel on the bacterial cell was visualized by confocal laser scanning microscopy and its effect on the membrane was indicated based on propidium iodide uptake. The non-ionic surfactant vesicle (NISV) or niosome nanocarrier was established for Mel loading (Mel-loaded NISV) by the thin-film hydration method. Physicochemical and in vitro biological properties of Mel-loaded NISVs were characterized. The cellular uptake of Mel-loaded NISVs was evaluated by holotomography analysis. In addition, an ex vivo study was conducted on a porcine ear skin model to assess the permeation ability of Mel-loaded NISVs and their potential to inhibit bacterial skin infection. Results The effective inhibitory activity of Mel on skin pathogens was demonstrated. Among the tested strains, VISA was most susceptible to Mel. Regarding to its function, Mel targeted the bacterial cell envelope and disrupted cell membrane integrity. Mel-loaded NISVs were successfully fabricated with a nano-size of 120-200 nm and entrapment efficiency of greater than 90%. Moreover, Mel-loaded NISVs were taken up and accumulated in the intracellular space. Meanwhile, Mel was released and distributed throughout the cytosol and nucleus. Mel-loaded NISVs efficiently inhibited the growth of bacteria, particularly MRSA and VISA. Importantly, they not only penetrated epidermal and dermal skin layers, but also reduced the bacterial growth in infected skin. Conclusion Mel-loaded NISVs have a great potential to exhibit antibacterial activity. Therapeutic application of Mel-loaded NISVs could be further developed as an alternative platform for the treatment of skin infection via dermal and transdermal delivery.
Collapse
Affiliation(s)
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Marta Ruano
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Kuntida Kitidee
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Usanee Anukool
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Kidsadagon Pringproa
- Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Panuwan Chantawannakul
- Division of Microbiology, Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Yingmanee Tragoolpua
- Division of Microbiology, Department of Biology, Faculty of Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
11
|
Despotopoulou D, Lagopati N, Pispas S, Gazouli M, Demetzos C, Pippa N. The technology of transdermal delivery nanosystems: from design and development to preclinical studies. Int J Pharm 2021; 611:121290. [PMID: 34788674 DOI: 10.1016/j.ijpharm.2021.121290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Transdermal administration has gained much attention due to the remarkable advantages such as patient compliance, drug escape from first-pass elimination, favorable pharmacokinetic profile and prolonged release properties. However, the major limitation of these systems is the limited skin penetration of the stratum corneum, the skin's most important barrier, which protects the body from the insertion of substances from the environment. Transdermal drug delivery systems are aiming to the disruption of the stratum corneum in order for the active pharmaceutical ingredients to enter successfully the circulation. Therefore, nanoparticles are holding a great promise because they can act as effective penetration enhancers due to their small size and other physicochemical properties that will be analyzed thoroughly in this report. Apart from the investigation of the physicochemical parameters, a comparison between the different types of nanoparticles will be performed. The complexity of skin anatomy and the unclear mechanisms of penetration should be taken into consideration to reach some realistic conclusions regarding the way that the described parameters affect the skin permeability. To the best of the authors knowledge, this is among the few reports on the literature describing the technology of transdermal delivery systems and how this technology affects the biological activity.
Collapse
Affiliation(s)
- Despoina Despotopoulou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Nefeli Lagopati
- Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Science, Laboratory of Biology, School of Medicine National and Kapodistrian University of Athens, Greece
| | - Costas Demetzos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou 15771, National and Kapodistrian University of Athens, Athens, Greece; Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
12
|
Mohd Nordin UU, Ahmad N, Salim N, Mohd Yusof NS. Lipid-based nanoparticles for psoriasis treatment: a review on conventional treatments, recent works, and future prospects. RSC Adv 2021; 11:29080-29101. [PMID: 35478537 PMCID: PMC9038133 DOI: 10.1039/d1ra06087b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Psoriasis is a lingering inflammatory skin disease that attacks the immune system. The abnormal interactions between T cells, immune cells, and inflammatory cytokines causing the epidermal thickening. International guidelines have recommended topical treatments for mild to moderate psoriasis whilst systemic and phototherapy treatments for moderate to severe psoriasis. However, current therapeutic approaches have a wider extent to treat moderate to severe type of psoriasis especially since the emergence of diverse biologic agents. In the meantime, topical delivery of conventional treatments has prompted many unsatisfactory effects to penetrate through the skin (stratum corneum). By understanding the physiology of stratum corneum barrier functions, scientists have developed different types of lipid-based nanoparticles like solid lipid nanoparticles, nanostructured lipid carriers, nanovesicles, and nanoemulsions. These novel drug delivery systems help the poorly solubilised active pharmaceutical ingredient reaches the targeted site seamlessly because of the bioavailability feature of the nanosized molecules. Lipid-based nanoparticles for psoriasis treatments create a paradigm for topical drug delivery due to their lipids' amphiphilic feature to efficiently encapsulate both lipophilic and hydrophilic drugs. This review highlights different types of lipid-based nanoparticles and their recent works of nano formulated psoriasis treatments. The encapsulation of psoriasis drugs through lipid nanocarriers unfold numerous research opportunities in pharmaceutical applications but also draw challenges for the future development of nano drugs.
Collapse
Affiliation(s)
- Ummu Umaimah Mohd Nordin
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674008
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674008
| | - Norazlinaliza Salim
- Integrated Chemical Biophysics Research, Faculty of Science, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Nor Saadah Mohd Yusof
- Department of Chemistry, Faculty of Science, University of Malaya 50603 Kuala Lumpur Malaysia +603-79674193 +603-79674008
| |
Collapse
|
13
|
Wu T, Zhu C, Wang X, Kong Q, Guo T, He Z, He Y, Ruan S, Ruan H, Pei L, Zhang Y, Feng N. Cholesterol and phospholipid-free multilamellar niosomes regulate transdermal permeation of a hydrophobic agent potentially administrated for treating diseases in deep hair follicles. J Pharm Sci 2021; 111:1785-1797. [PMID: 34418454 DOI: 10.1016/j.xphs.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
We designed cholesterol- and phospholipid-free multilamellar niosomes (MLNs) structured by glyceryl monooleate (GMO) and poloxamer 407 (F127), and evaluated their capacity for transdermal drug delivery. The optimized MLNs had a mean size of 97.88 ± 63.25 nm and an encapsulation efficiency of 82.68% ± 2.14%. Notably, the MLNs exhibited a remarkable sustained cargo release. Compared with the tincture, lower transdermal flux but higher skin deposition of aconitine in vitro were achieved in the MLN group (p < 0.05). We further found that MLNs improved the permeability of the stratum corneum. Additionally, both water-soluble rhodamine B- and liposoluble coumarin 6-labeled MLNs were found to penetrate deeply into the skin through the hair follicles and could be internalized by fibroblasts (CCC-ESF-1). The MLNs possessed greater wettability, and the study focused on delivery to deeper hair follicles and up to the outer hair sheath, which showed advantages for treating diseases of hair follicles, and was potentially superior to the hydrophobic PLGA nanoparticles (diameter: 637.87 ± 22.77 nm) which mainly accumulated in superficial hair follicles. Hair follicles were therefore demonstrated to be an important way to enhance skin permeability, and MLNs are a promising alternative for topical and transdermal drug delivery.
Collapse
Affiliation(s)
- Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiang Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qingyue Kong
- School of acupuncture and massage, Shangdong University of Traditional Chinese Medicine, Ji'nan, 250355, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuanzhi He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hang Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Pei
- Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine.
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
14
|
Malathi S, Balashanmugam P, Devasena T, Kalkura SN. Enhanced antibacterial activity and wound healing by a novel collagen blended ZnO nanoparticles embedded niosome nanocomposites. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
|
16
|
An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Mirtaleb MS, Shahraky MK, Ekrami E, Mirtaleb A. Advances in biological nano-phospholipid vesicles for transdermal delivery: A review on applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Kassem AA, Abd El-Alim SH. Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug Delivery. NANOPHARMACEUTICALS: PRINCIPLES AND APPLICATIONS VOL. 2 2021. [DOI: 10.1007/978-3-030-44921-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Wu L, Georgiev MI, Cao H, Nahar L, El-Seedi HR, Sarker SD, Xiao J, Lu B. Therapeutic potential of phenylethanoid glycosides: A systematic review. Med Res Rev 2020; 40:2605-2649. [PMID: 32779240 DOI: 10.1002/med.21717] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Phenylethanoid glycosides (PhGs) are generally water-soluble phenolic compounds that occur in many medicinal plants. Until June 2020, more than 572 PhGs have been isolated and identified. PhGs possess antibacterial, anticancer, antidiabetic, anti-inflammatory, antiobesity, antioxidant, antiviral, and neuroprotective properties. Despite these promising benefits, PhGs have failed to fulfill their therapeutic applications due to their poor bioavailability. The attempts to understand their metabolic pathways to improve their bioavailability are investigated. In this review article, we will first summarize the number of PhGs compounds which is not accurate in the literature. The latest information on the biological activities, structure-activity relationships, mechanisms, and especially the clinical applications of PhGs will be reviewed. The bioavailability of PhGs will be summarized and factors leading to the low bioavailability will be analyzed. Recent advances in methods such as bioenhancers and nanotechnology to improve the bioavailability of PhGs are also summarized. The existing scientific gaps of PhGs in knowledge are also discussed, highlighting research directions in the future.
Collapse
Affiliation(s)
- Lipeng Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Milen I Georgiev
- Laboratory of Metabolomics, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Hui Cao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Lutfun Nahar
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Hesham R El-Seedi
- Department of Medicinal Chemistry, Pharmacognosy Group, Uppsala University, Uppsala, Sweden.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Satyajit D Sarker
- School of Pharmacy and Biomolecular Sciences, Centre for Natural Products Discovery (CNPD), Liverpool John Moores University, Liverpool, UK
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau, China
| | - Baiyi Lu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
20
|
Tajbakhsh M, Saeedi M, Morteza-Semnani K, Akbari J, Nokhodchi A. Innovation of testosome as a green formulation for the transdermal delivery of testosterone enanthate. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Zhang Y, Jing Q, Hu H, He Z, Wu T, Guo T, Feng N. Sodium dodecyl sulfate improved stability and transdermal delivery of salidroside-encapsulated niosomes via effects on zeta potential. Int J Pharm 2020; 580:119183. [DOI: 10.1016/j.ijpharm.2020.119183] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
|
22
|
Shabbir M, Nagra U, Zaman M, Mahmood A, Barkat K. Lipid Vesicles and Nanoparticles for Non-invasive Topical and Transdermal Drug Delivery. Curr Pharm Des 2020; 26:2149-2166. [PMID: 31931691 DOI: 10.2174/1381612826666200114090659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/23/2019] [Indexed: 11/22/2022]
Abstract
The delivery of drugs, via different layers of skin, is challenging because it acts as a natural barrier and exerts hindrance against molecules to permeate into or through it. To overcome such obstacles, different noninvasive methods, like vehicle-drug interaction, modifications of the horny layer and nanoparticles have been suggested. The aim of the present review is to highlight some of the non-invasive methods for topical, diadermal and transdermal delivery of drugs. Special emphasis has been made on the information available in numerous research articles that put efforts in overcoming obstacles associated with barrier functions imposed by various layers of skin. Advances have been made in improving patient compliance that tends to avoid hitches involved in oral administration. Of particular interest is the use of lipid-based vesicles and nanoparticles for dermatological applications. These particulate systems can effectively interact and penetrate into the stratum corneum via lipid exchange and get distributed in epidermis and dermis. They also have the tendency to exert a systemic effect by facilitating the absorption of an active moiety into general circulation.
Collapse
Affiliation(s)
- Maryam Shabbir
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Uzair Nagra
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| |
Collapse
|
23
|
Starigazdová J, Nešporová K, Čepa M, Šínová R, Šmejkalová D, Huerta-Angeles G, Velebný V. In vitro investigation of hyaluronan-based polymeric micelles for drug delivery into the skin: The internalization pathway. Eur J Pharm Sci 2019; 143:105168. [PMID: 31783157 DOI: 10.1016/j.ejps.2019.105168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/04/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023]
Abstract
In our previous research, we concluded that polymeric micelles based on hyaluronic acid are able to penetrate into the deeper layers of skin tissue. The aim of this work was to characterize the mechanisms involved in the uptake by skin cells, which is important for understanding the influence of the carrier composition on the drug penetration. To reach this goal, we used micelles encapsulating curcumin made of oleyl-hyaluronan (HAC18:1) and hexyl-hyaluronan (HAC6) covalently linked with fluorescent Nile Blue. This labeling enabled us to track the micelle-forming derivative and also micelle payload into the keratinocytes and fibroblasts by fluorescent microscopy and flow cytometry. The regulation of both the passive and active cellular uptake was used to determine the mechanism of micelle internalization. Furthermore, the changes of membrane fluidity were measured for these derivatives by FRAP. Using these methods we concluded that carriers entered the cells using both active and passive transport. Passive transport was facilitated by the affinity of the carrier to the cell membrane, especially in the case of HAC18:1 carrier, which changed significantly the membrane fluidity. The active transport was dependent on cell type, but mainly driven by the clathrin-mediated endocytosis and macropinocytosis. Surprisingly, the main HA receptor, CD44, was not involved in the uptake. We can conclude that these carrier systems could be used for the local transport of active substances or hydrophobic drugs into the skin cells using the advantage of passive transport of oleyl-HA derivative.
Collapse
Affiliation(s)
- Jana Starigazdová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | | | - Martin Čepa
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| | - Romana Šínová
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; Department of Experimental Biology, Faculty of Sciences, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| | | | | | - Vladimír Velebný
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic
| |
Collapse
|
24
|
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144:18-39. [PMID: 31446046 DOI: 10.1016/j.ejpb.2019.08.015] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/17/2023]
Abstract
Development of nanocarriers for drug delivery has received considerable attention due to their potential in achieving targeted delivery to the diseased site while sparing the surrounding healthy tissue. Safe and efficient drug delivery has always been a challenge in medicine. During the last decade, a large amount of interest has been drawn on the fabrication of surfactant-based vesicles to improve drug delivery. Niosomes are self-assembled vesicular nano-carriers formed by hydration of non-ionic surfactant, cholesterol or other amphiphilic molecules that serve as a versatile drug delivery system with a variety of applications ranging from dermal delivery to brain-targeted delivery. A large number of research articles have been published reporting their fabrication methods and applications in pharmaceutical and cosmetic fields. Niosomes have the same advantages as liposomes, such as the ability to incorporate both hydrophilic and lipophilic compounds. Besides, niosomes can be fabricated with simple methods, require less production cost and are stable over an extended period, thus overcoming the major drawbacks of liposomes. This review provides a comprehensive summary of niosomal research to date, it provides a detailed overview of the formulation components, types of niosomes, effects of components on the formation of niosomes, fabrication and purification methods, physical characterization techniques of niosomes, recent applications in pharmaceutical field such as in oral, ocular, topical, pulmonary, parental and transmucosal drug delivery, and cosmetic applications. Finally, limitations and the future outlook for this delivery system have also been discussed.
Collapse
Affiliation(s)
- Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Sara Hanning
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - James Falconer
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Level 4, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Michelle Locke
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Department of Plastic and Reconstructive Surgery, Middlemore Hospital, Counties Manukau District Health Board, Private Bag 93311, Otahuhu, Auckland 1640, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
25
|
Mohamed MI, Abdelbary AA, Kandil SM, Mahmoud TM. Preparation and evaluation of optimized zolmitriptan niosomal emulgel. Drug Dev Ind Pharm 2019; 45:1157-1167. [DOI: 10.1080/03639045.2019.1601737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Aly Ahmed Abdelbary
- Department of pharmaceutics, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Soha Mohamed Kandil
- Department of pharmaceutics, Faculty of Pharmacy, MTI University, Cairo, Egypt
| | | |
Collapse
|
26
|
Al-mahallawi AM, Fares AR, Abd-Elsalam WH. Enhanced Permeation of Methotrexate via Loading into Ultra-permeable Niosomal Vesicles: Fabrication, Statistical Optimization, Ex Vivo Studies, and In Vivo Skin Deposition and Tolerability. AAPS PharmSciTech 2019; 20:171. [PMID: 31004239 DOI: 10.1208/s12249-019-1380-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to incorporate methotrexate (MTX) into ultra-permeable niosomal vesicles, containing cremophor RH40 as an edge activator (EA) and polyvinyl alcohol (PVA) as a stabilizer to enhance the drug permeation. Formulae were prepared by ethanol injection method following a Box-Behnken design in order to optimize the formulation variables (EA%, stabilizer %, and sonication time). To investigate the role of both cremophor RH40 and PVA, conventional MTX niosomes and MTX niosomes containing PVA only were fabricated. Drug entrapment efficiency percent (EE%), particle size (PS) analysis, zeta potential (ZP) measurements, and transmission electron microscopy (TEM) were conducted to characterize the vesicles. Cell viability studies and ex vivo permeation experiments of the optimized formula were conducted. Lastly, in vivo skin deposition of MTX from both the optimized formula and MTX solution was performed in rats. Besides, histopathological changes in rat skin were assessed. The optimized MTX ultra-permeable niosomal formula demonstrated spherical morphology, with an EE% of 65.16% and a PS of 453.6 nm. The optimized formula showed better physical stability in comparison with that of the same composition but lacking PVA. The cell viability studies verified the superior cytotoxicity of the optimized formula, and the ex vivo permeation studies revealed its ability to improve the drug permeation. The optimized formula demonstrated a significant deposition of MTX in rat dorsal skin, and histopathological evaluation confirmed the tolerability of the optimized formula in rats upon topical application. Accordingly, ultra-permeable noisomes, as a stable nanosystem, could be promising for effective delivery of MTX.
Collapse
|
27
|
Zhang YT, Zhang K, Li Z, Zhang HY, Guo T, Li YY, Zhao JH, Feng NP. DOC-LS, a new liposome for dermal delivery, and its endocytosis by HaCaT and CCC-ESF-1 cells. IET Nanobiotechnol 2019; 12:1037-1041. [PMID: 30964010 DOI: 10.1049/iet-nbt.2018.5079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The main objective of this work was to investigate the uptake channels of skin cells through which coumarin 6, transported by deoxycholate-mediated liposomes (DOC-LS), was internalised; this was also compared against the action of conventional LS. Coumarin 6-loaded DOC-LS and LS were characterised for size distribution, zeta potential, and shape, and analysed in vitro in human epidermal immortal keratinocyte (HaCaT) (epidermal) and human embryonic skin fibroblast (CCC-ESF-1) (dermal) cell lines. Various endocytosis inhibitors were incubated with cells treated with the nanocarriers. Flow cytometry results indicated that HaCaT and CCC-ESF-1 cells internalise the tested preparations through pinocytotic vesicles, macropinocytosis, clathrin-mediated endocytic pathways, and via lysosomes, which consume a considerable amount of energy. The endocytosis pathways of DOC-LS and LS showed no difference. This study provides a basis for the application of LS being combined with a microneedle system for efficient intracellular drug delivery, targeting cutaneous histocyte disorders.
Collapse
Affiliation(s)
- Yong-Tai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Kai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Hong-Yu Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Teng Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yan-Yan Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ji-Hui Zhao
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Nian-Ping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
28
|
Potential of nanoparticulate carriers for improved drug delivery via skin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-00418-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Rameshk M, Sharififar F, Mehrabani M, Pardakhty A, Farsinejad A, Mehrabani M. Proliferation and In Vitro Wound Healing Effects of the Microniosomes Containing Narcissus tazetta L. Bulb Extract on Primary Human Fibroblasts (HDFs). Daru 2018; 26:10.1007/s40199-018-0211-7. [PMID: 30209758 PMCID: PMC6154482 DOI: 10.1007/s40199-018-0211-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/09/2018] [Indexed: 01/30/2023] Open
Abstract
PURPOSE In Traditional Persian Medicine (TPM), different natural treatments have been suggested for skin damages such as Narcissus tazetta L. bulb application. New drug delivery systems such as niosomes have shown considerable increase transdermal drug delivery through stratum corneum, the main barrier against substances transport into skin. The aim of this study is preparation of niosomal formulations from N. tazetta bulb extract and evaluation of its in vitro wound healing effect. MATERIALS AND METHODS Non-ionic surfactant vesicles (NSVs or niosomes) were prepared by film hydration method from percolated extract of N. tazetta bulb. A number of 12 niosomal formulations (F1-F12) were prepared using different proportions of Span 60/Tween 60/cholesterol and 80% methanol-dissolved/aqueous PEN (percolation extract of N. tazetta) (30 and 50 mg/ml). Their morphology, particle size, physical and chemical stability and encapsulation efficiency was studied. In vitro wound healing effect of various concentrations of the best PEN niosomal formulation (F9) was evaluated in comparison to PEN on human dermal fibroblasts (HDFs). RESULTS Increasing the aqueous/methanolic PEN concentration from 3 to 5% resulted size reduction of NSVs with statistically significant difference (p < 0.05). F9 showed the most physicochemical stability and was chosen for in vitro wound healing effect. This formulation exhibited significantly effects (p < 0.05) on cell proliferation in HDF cells at 1.562 and 3.125 μg/ml compared with the untreated cells using neutral red assay. CONCLUSION Formulation of PEN in niosome carrier significantly decreased the gap width on human dermal fibroblasts. Graphical abstract Schematic processes of proliferation effect of narcisus tazetta bulb on fibroblast cells.
Collapse
Affiliation(s)
- Maryam Rameshk
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
- Faculty of Persian Medicine, Department of Traditional Pharmacy, Kerman University of Medical Sciences, Modiriat Street, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Department of Pharmacognosy, Faculty of Pharmacy Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Haft Bagh-e Alavi Blvd, Kerman, Iran
| | - Alireza Farsinejad
- Department of Hematology and Blood Banking, faculty of allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
- Afzalipour School of Medicine, University of Shahid Bahonar, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center; Neuropharmacology Institute, Kerman University of Medical Sciences, Ibne cina street, Kerman, Iran
| |
Collapse
|
30
|
Kassem MA, Megahed MA, Abu Elyazid SK, Abd-Allah FI, Abdelghany TM, Al-Abd AM, El-Say KM. Enhancing the Therapeutic Efficacy of Tamoxifen Citrate Loaded Span-Based Nano-Vesicles on Human Breast Adenocarcinoma Cells. AAPS PharmSciTech 2018; 19:1529-1543. [PMID: 29470829 DOI: 10.1208/s12249-018-0962-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/23/2018] [Indexed: 11/30/2022] Open
Abstract
Serious adverse effects and low selectivity to cancer cells are the main obstacles of long term therapy with Tamoxifen (Tmx). This study aimed to develop Tmx-loaded span-based nano-vesicles for delivery to malignant tissues with maximum efficacy. The effect of three variables on vesicle size (Y1), zeta potential (Y2), entrapment efficiency (Y3) and the cumulative percent release after 24 h (Y4) were optimized using Box-Behnken design. The optimized formula was prepared and tested for its stability in different storage conditions. The observed values for the optimized formula were 310.2 nm, - 42.09 mV, 75.45 and 71.70% for Y1, Y2, Y3, and Y4, respectively. The examination using electron microscopy confirmed the formation of rounded vesicles with distinctive bilayer structure. Moreover, the cytotoxic activity of the optimized formula on both breast cancer cells (MCF-7) and normal cells (BHK) showed enhanced selectivity (9.4 folds) on cancerous cells with IC50 values 4.7 ± 1.5 and 44.3 ± 1.3 μg/ml on cancer and normal cells, respectively. While, free Tmx exhibited lower selectivity (2.5 folds) than optimized nano-vesicles on cancer cells with IC50 values of 9.0 ± 1.1 μg/ml and 22.5 ± 5.3 μg/ml on MCF-7 and BHK cells, respectively. The promising prepared vesicular system, with greater efficacy and selectivity, provides a marvelous tool to overcome breast cancer treatment challenges.
Collapse
|
31
|
Gu HL, Sun RB, Fei F, A LX, Gao HX, Tao MX, Feng SQ, Yang N, Zhang Y, Aa JY, Wang GJ. Salidroside shows a particular pharmacokinetic property in model rats of myocardial ischemia. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
Abu Hashim II, Abo El-Magd NF, El-Sheakh AR, Hamed MF, Abd El-Gawad AEGH. Pivotal role of Acitretin nanovesicular gel for effective treatment of psoriasis: ex vivo-in vivo evaluation study. Int J Nanomedicine 2018; 13:1059-1079. [PMID: 29503541 PMCID: PMC5824759 DOI: 10.2147/ijn.s156412] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The goal of the current study was to explore the potential benefits of Acitretin (Act) nanovesicular gel as a prospective antipsoriatic topical delivery system counteracting the drug challenges in terms of its extremely low aqueous solubility, instability, skin irritation, and serious systemic adverse effects. Act-loaded niosomes were successfully developed, entirely characterized, and optimized. Further evaluation of the optimized formula was conducted regarding its stability and ex vivo cytotoxicity on different cell lines. The optimized niosomal vesicles were then incorporated in gel base matrix and investigated by sequential ex vivo (skin permeation and deposition) and in vivo (skin irritation and antipsoriatic activity using mouse tail model) experiments. The optimized Act-loaded niosomes (span 60:cholesterol molar ratio 1:1) were spherical in shape and exhibited the highest entrapment efficiency (90.32±3.80%) with appropriate nanosize and zeta potential of 369.73±45.45 nm and -36.33±1.80 mV, respectively. Encapsulation of the drug in the nanovesicles was further emphasized by differential scanning calorimetric and powder X-ray diffraction studies. After 3 months storage at 4±1°C, the optimized formula preserved its stability. Act nano niosomal gel produced a remarkable enhanced ex vivo permeation profile up to 30 h and significant drug deposition in the viable epidermal-dermal layers compared with those of Act gel. The pronounced antipsoriatic activity of the medicated nano niosomes was proved ex vivo in HaCaT cells (a keratinocyte cell line). Topical application of Act nano niosomal gel to mouse tail model further established its distinct in vivo antipsoriatic superiority in terms of significantly higher orthokeratosis, drug activity, and reduction in epidermal thickness compared with the control and other gel formulations. Also, negligible skin irritation and better skin tolerability of Act nanovesicular gel were revealed by primary irritation index and histopathologic examination.
Collapse
Affiliation(s)
| | | | - Ahmed Ramadan El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed Fawzy Hamed
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
33
|
Soliman MS, Abd-Allah FI, Hussain T, Saeed NM, El-Sawy HS. Date seed oil loaded niosomes: development, optimization and anti-inflammatory effect evaluation on rats. Drug Dev Ind Pharm 2018; 44:1185-1197. [DOI: 10.1080/03639045.2018.1438465] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahmoud S. Soliman
- Department of pharmaceutics, College of Pharmacy, University of Hail, Hail, KSA
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Fathy I. Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Talib Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, KSA
| | - Noha M. Saeed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hossam S. El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
34
|
Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther Deliv 2017; 8:967-985. [DOI: 10.4155/tde-2017-0075] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanocarriers used for alternative drug-delivery strategies have gained interest due to improved penetration and delivery of drugs into specific regions of the skin in recent years. Dermal drug delivery via polymeric-based nanocarriers (polymeric nanoparticles, micelles, dendrimers) and lipid-based nanocarriers (solid–lipid nanoparticles and nanostructured lipid carriers, vesicular nanocarriers including liposomes, niosomes, transfersomes and ethosomes) has been widely investigated. Although penetration of nanocarriers through the intact skin could be restricted, these carriers are particularly considered as feasible for the treatment of dermatological diseases in which the skin barrier is disrupted and also for follicular delivery of drugs for management of skin disorders such as acne. This review mainly highlights the recent approaches on potential penetration enhancement and targeting mechanisms of these nanocarriers.
Collapse
|
35
|
Mady FM, Shaker MA. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int J Nanomedicine 2017; 12:7405-7417. [PMID: 29066891 PMCID: PMC5644528 DOI: 10.2147/ijn.s147740] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite the fact that various studies have investigated the clinical relevance of ellagic acid (EA) as a naturally existing bioactive substance in cancer therapy, little has been reported regarding the efficient strategy for improving its oral bioavailability. In this study, we report the formulation of EA-loaded nanoparticles (EA-NPs) to find a way to enhance its bioactivity as well as bioavailability after oral administration. Poly(ε-caprolactone) (PCL) was selected as the biodegradable polymer for the formulation of EA-NPs through the emulsion–diffusion–evaporation technique. The obtained NPs have been characterized by measuring particle size, zeta potential, Fourier transform infrared, differential scanning calorimetry, and X-ray diffraction. The entrapment efficiency and the release profile of EA was also determined. In vitro cellular uptake and cytotoxicity of the obtained NPs were evaluated using Caco-2 and HCT-116 cell lines, respectively. Moreover, in vivo study has been performed to measure the oral bioavailability of EA-NPs compared to free EA, using New Zealand white rabbits. NPs with distinct shape were obtained with high entrapment and loading efficiencies. Diffusion-driven release profile of EA from the prepared NPs was determined. EA-NP-treated HCT-116 cells showed relatively lower cell viability compared to free EA-treated cells. Fluorometric imaging revealed the cellular uptake and efficient localization of EA-NPs in the nuclear region of Caco-2 cells. In vivo testing revealed that the oral administration of EA-NPs produced a 3.6 times increase in the area under the curve compared to that of EA. From these results, it can be concluded that incorporation of EA into PCL as NPs enhances its oral bioavailability and activity.
Collapse
Affiliation(s)
- Fatma M Mady
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madina Al Munawara, Saudi Arabia.,Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia
| | - Mohamed A Shaker
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al Madina Al Munawara, Saudi Arabia.,Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
36
|
Tessier F, Laprise-Pelletier M, Boilard E, Fortin MA, Miled A. Automated and reconfigurable platform for niosome generation based on a microfluidic architecture. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:2998-3001. [PMID: 28268943 DOI: 10.1109/embc.2016.7591360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug delivery at the nano-scale is becoming an important topic in nano and regenerative medicine as it can offer a very localized therapy. Therefore, niosomes are one of the most important vehicles to release drug at the nanoscale. In this paper, we present a new automated microsystem for niosome generation on-demand. Used niosome were based on a mixture of cholesterol and dicetyl phosphate with chloroform. Three compact micropumps are connected to a microfluidic substrate in order to generate 100 nm noisome vesicles. Through this paper we also investigated the impact of using 150 μm pseudo-Y and cross shape microchannel on the diameter of vesicles. We have observed reliable results with Y-shaped microchannel, which was able to generate vesicles down to 91 nm. All the system is based on a low-cost fabrication process using dry photo resist.
Collapse
|
37
|
|
38
|
Kotla NG, Chandrasekar B, Rooney P, Sivaraman G, Larrañaga A, Krishna KV, Pandit A, Rochev Y. Biomimetic Lipid-Based Nanosystems for Enhanced Dermal Delivery of Drugs and Bioactive Agents. ACS Biomater Sci Eng 2017; 3:1262-1272. [PMID: 33440514 DOI: 10.1021/acsbiomaterials.6b00681] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Clinical utility of conventional oral therapies is limited by their inability to deliver therapeutic molecules at the local or targeted site, causing a variety of side effects. Transdermal delivery has made a significant contribution in the management of skin diseases with enhanced therapeutic activities over the past two decades. In the modern era, various biomimetic and biocompatible polymer-lipid hybrid systems have been used to augment the transdermal delivery of therapeutics such as dermal patches, topical gels, iontophoresis, electroporation, sonophoresis, thermal ablation, microneedles, cavitational ultrasound, and nano or microlipid vesicular systems. Nevertheless, the stratum corneum still represents the main barrier to the delivery of vesicles into the skin. Lipid based formulations applied to the skin are at the center of attention and are anticipated to be increasingly functional as the skin offers many advantages for the direction of such systems. Accordingly, this review provides an overview of the development of conventional to advanced biomimetic lipid vesicles for skin delivery of a variety of therapeutics, with special emphasis on recent developments in this field including the development of transferosomes, niosomes, aquasomes, cubosomes, and other new generation lipoidal carriers.
Collapse
Affiliation(s)
- Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Bhargavi Chandrasekar
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Peadar Rooney
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, GKVK PO, Bellary Road, Bangalore 560065, India
| | - Aitor Larrañaga
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - K Vijaya Krishna
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland
| | - Yury Rochev
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Research Building, National University of Ireland Galway, Newcastle, Galway, Ireland.,School of Chemistry, National University of Ireland Galway, Newcastle, Galway, Ireland.,Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russian Federation
| |
Collapse
|
39
|
Kassem MA, El-Sawy HS, Abd-Allah FI, Abdelghany TM, El-Say KM. Maximizing the Therapeutic Efficacy of Imatinib Mesylate–Loaded Niosomes on Human Colon Adenocarcinoma Using Box-Behnken Design. J Pharm Sci 2017; 106:111-122. [DOI: 10.1016/j.xphs.2016.07.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023]
|
40
|
Enhancement of 8-methoxypsoralen topical delivery via nanosized niosomal vesicles: Formulation development, in vitro and in vivo evaluation of skin deposition. Int J Pharm 2017; 517:256-268. [DOI: 10.1016/j.ijpharm.2016.12.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 01/17/2023]
|
41
|
Cheng X, Yan H, Jia X, Zhang Z. Preparation and in vivo/in vitro evaluation of formononetin phospholipid/vitamin E TPGS micelles. J Drug Target 2016; 24:161-8. [PMID: 26325229 DOI: 10.3109/1061186x.2015.1064435] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
To enhance the formononetin (FN) antitumor effect, we developed a passive targeting FN-contained formulation. FN-contained Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS or TPGS)/phospholipid micelles were prepared by the solvent injection method. Particle size, polydispersity, zeta potential, encapsulation efficiency, drug release profile, and micelles morphology were evaluated and characterized by various methods including high-performance liquid chromatography, dynamic light scattering, and transmission electron microscopy. Cellular uptake of micelles was evaluated with fluorescence imaging coupled with HPLC method. Cytotoxicity of FN micelles and free FN was compared using MTT method. In vivo imaging was employed to assess the accumulation of DiR micelles and free DiR at tumor site. The antitumor effect of FN micelles was examined in tumor-bearing mice. The results showed that prepared FN micelles had an average particle diameter of 111.91 ± 5.82 nm with good stability. FN micelles enhanced the cellular uptake and improved cell cytotoxicity than free FN. Furthermore, DiR micelles quickly accumulated at the tumor site than free DiR. FN micelles significantly improved tumor inhibition rate compared to that observed with free FN in tumor-bearing mice with great biosafety. Thus, FN micelles demonstrated a clear treatment advantage and provided an ideal drug administration system to improve the antitumor effect of FN.
Collapse
|
42
|
Pan W, Qin M, Zhang G, Long Y, Ruan W, Pan J, Wu Z, Wan T, Wu C, Xu Y. Combination of hydrotropic nicotinamide with nanoparticles for enhancing tacrolimus percutaneous delivery. Int J Nanomedicine 2016; 11:4037-50. [PMID: 27578973 PMCID: PMC4998035 DOI: 10.2147/ijn.s108545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tacrolimus (FK506), an effective immunosuppressant for treating inflammatory skin diseases, hardly penetrates into and through the skin owing to its high hydrophobicity and molecular weight. The aim of this study was to develop a hybrid system based on nicotinamide (NIC) and nanoparticles (NPs) encapsulating FK506, such as FK506–NPs–NIC, for facilitating percutaneous delivery, which exploited virtues of both NIC and NPs to obtain the synergetic effect. Solubility and percutaneous permeation studies were carried out. The results showed that NIC could increase the solubility and permeability of FK506 and that 20% (w/v) NIC presented higher FK506 permeability and was thus chosen as the hydrotropic solution to solubilize FK506 and prepare FK506–NPs–NIC. Hyaluronic acid (HA) was chemically conjugated with cholesterol (Chol) to obtain amphiphilic conjugate of HA–Chol, which self-assembled NPs in 20% NIC solution containing FK506. The particle size, zeta potential, and morphology of NPs were characterized. The encapsulation efficiency and in vitro percutaneous permeation of NPs were evaluated in the presence and absence of NIC. The results demonstrated that hydrotropic solubilizing FK506 was readily encapsulated into NPs with a higher encapsulation efficiency of 79.2%±4.2%, and the combination of NPs with NIC exhibited a significantly synergistic effect on FK506 deposition within the skin (2.39±0.53 μg/cm2) and penetration through the skin (13.38±2.26 μg/cm2). The effect of the combination of NPs with NIC on drug permeation was further visualized by confocal laser scanning microscope through in vivo permeation studies, and the results confirmed that NPs–NIC synergistically enhanced the permeation of the drug into the skin. The cellular uptake performed in HaCaT cells presented a promoting effect of NPs on cellular uptake. These overall results demonstrated that HA–Chol–NPs–NIC can synergistically improve the percutaneous delivery of FK506, and it is a novel potential strategy based on a nano-sized carrier for FK506 to treat skin diseases.
Collapse
Affiliation(s)
- Wenhui Pan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengyao Qin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guoguang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yueming Long
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenyi Ruan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jingtong Pan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zushuai Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Tao Wan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chuanbin Wu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuehong Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
43
|
Habib BA, AbouGhaly MHH. Combined mixture-process variable approach: a suitable statistical tool for nanovesicular systems optimization. Expert Opin Drug Deliv 2016; 13:777-88. [DOI: 10.1517/17425247.2016.1166202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Basant A. Habib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed H. H. AbouGhaly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
44
|
CD147 monoclonal antibody mediated by chitosan nanoparticles loaded with α-hederin enhances antineoplastic activity and cellular uptake in liver cancer cells. Sci Rep 2015; 5:17904. [PMID: 26639052 PMCID: PMC4671144 DOI: 10.1038/srep17904] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/09/2015] [Indexed: 01/24/2023] Open
Abstract
An antibody that specifically interacts with an antigen could be applied to an active targeting delivery system. In this study, CD147 antibody was coupled with α-hed chitosan nanoparticles (α-Hed-CS-NPs). α-Hed-CS-CD147-NPs were round and spherical in shape, with an average particle size of 148.23 ± 1.75 nm. The half-maximum inhibiting concentration (IC50) of α-Hed-CS-CD147-NPs in human liver cancer cell lines HepG2 and SMMC-7721 was lower than that of free α-Hed and α-Hed-CS-NPs. α-Hed-induced cell death was mainly triggered by apoptosis. The increase in intracellular accumulation of α-Hed-CS-CD147-NPs was also related to CD147-mediated internalization through the Caveolae-dependent pathway and lysosomal escape. The higher targeting antitumor efficacy of α-Hed-CS-CD147-NPs than that α-Hed-CS-NPs was attributed to its stronger fluorescence intensity in the tumor site in nude mice.
Collapse
|