1
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
2
|
Noreen S, Pervaiz F, Ijaz M, Hanif MF, Hamza JR, Mahmood H, Shoukat H, Maqbool I, Ashraf MA. pH-sensitive docetaxel-loaded chitosan/thiolated hyaluronic acid polymeric nanoparticles for colorectal cancer. Nanomedicine (Lond) 2024; 19:755-777. [PMID: 38334078 DOI: 10.2217/nnm-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Aim: This study aimed to develop and evaluate pH-sensitive docetaxel-loaded thiolated hyaluronic acid (HA-SH) nanoparticles (NPs) for targeted treatment of colon cancer. Materials & methods: HA-SH, synthesized via oxidation and subsequent covalent linkage to cysteamine, served as the precursor for developing HA-SH NPs through polyelectrolyte complexation involving chitosan and thiol-bearing HA. Results & conclusion: HA-SH NPs displayed favorable characteristics, with small particle sizes (184-270 nm), positive zeta potential (15.4-18.6 mV) and high entrapment efficiency (91.66-95.02%). In vitro, NPs demonstrated potent mucoadhesion and enhanced cytotoxicity compared with free docetaxel. In vivo assessments confirmed safety and biocompatibility, suggesting HA-SH NPs as promising pH-sensitive drug carriers with enhanced antitumor activity for colorectal cancer treatments.
Collapse
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Ijaz
- Centre for Chemistry & Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, 6020, Austria
- COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Muhammad Farhan Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Jam Riyan Hamza
- Department of Chemistry & Biochemistry, University of Minnesota Duluth, MN 55812, USA
| | - Hassan Mahmood
- COMSATS University Islamabad, Lahore Campus, Punjab, 54000, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Irsah Maqbool
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | | |
Collapse
|
3
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
4
|
de Paula MC, Carvalho SG, Silvestre ALP, Dos Santos AM, Meneguin AB, Chorilli M. The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer. Carbohydr Polym 2023; 320:121257. [PMID: 37659830 DOI: 10.1016/j.carbpol.2023.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Despite advances in new approaches for colorectal cancer (CRC) therapy, intravenous chemotherapy remains one of the main treatment options; however, it has limitations associated with off-target toxicity, tumor cell resistance due to molecular complexity and CRC heterogeneity, which lead to tumor recurrence and metastasis. In oncology, nanoparticle-based strategies have been designed to avoid systemic toxicity and increase drug accumulation at tumor sites. Hyaluronic acid (HA) has obtained significant attention thanks to its ability to target nanoparticles (NPs) to CRC cells through binding to cluster-determinant-44 (CD44) and hyaluronan-mediated motility (RHAMM) receptors, along with its efficient biological properties of mucoadhesion. This review proposes to discuss the state of the art in HA-based nanoparticulate systems intended for localized treatment of CRC, highlighting the importance of the mucoadhesion and active targeting provided by this polymer. In addition, an overview of CRC will be provided, emphasizing the importance of CD44 and RHAMM receptors in this type of cancer and the current challenges related to this disease, and important concepts about the physicochemical and biological properties of HA will also be addressed. Finally, this review aims to contribute to the advancement of accuracy treatment of CRC by the design of new platforms based on by HA.
Collapse
Affiliation(s)
- Mariana Carlomagno de Paula
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Suzana Gonçalves Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
5
|
Wang J, Viola M, Migliorini C, Paoletti L, Arpicco S, Di Meo C, Matricardi P. Polysaccharide-Based Nanogels to Overcome Mucus, Skin, Cornea, and Blood-Brain Barriers: A Review. Pharmaceutics 2023; 15:2508. [PMID: 37896268 PMCID: PMC10610445 DOI: 10.3390/pharmaceutics15102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Nanocarriers have been extensively developed in the biomedical field to enhance the treatment of various diseases. However, to effectively deliver therapeutic agents to desired target tissues and enhance their pharmacological activity, these nanocarriers must overcome biological barriers, such as mucus gel, skin, cornea, and blood-brain barriers. Polysaccharides possess qualities such as excellent biocompatibility, biodegradability, unique biological properties, and good accessibility, making them ideal materials for constructing drug delivery carriers. Nanogels, as a novel drug delivery platform, consist of three-dimensional polymer networks at the nanoscale, offering a promising strategy for encapsulating different pharmaceutical agents, prolonging retention time, and enhancing penetration. These attractive properties offer great potential for the utilization of polysaccharide-based nanogels as drug delivery systems to overcome biological barriers. Hence, this review discusses the properties of various barriers and the associated constraints, followed by summarizing the most recent development of polysaccharide-based nanogels in drug delivery to overcome biological barriers. It is expected to provide inspiration and motivation for better design and development of polysaccharide-based drug delivery systems to enhance bioavailability and efficacy while minimizing side effects.
Collapse
Affiliation(s)
- Ju Wang
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Marco Viola
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Claudia Migliorini
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Luca Paoletti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | - Chiara Di Meo
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| | - Pietro Matricardi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Roma, Italy; (J.W.); (M.V.); (C.M.); (L.P.); (C.D.M.)
| |
Collapse
|
6
|
Arshad R, Arshad MS, Malik A, Alkholief M, Akhtar S, Tabish TA, Moghadam AA, Rahdar A, Díez-Pascual AM. Mannosylated preactivated hyaluronic acid-based nanostructures for bacterial infection treatment. Int J Biol Macromol 2023; 242:124741. [PMID: 37156311 DOI: 10.1016/j.ijbiomac.2023.124741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Salmonella Typhi is an intracellular bacterium causing a variety of enteric diseases, being typhoid fever the most common. Current modalities for treating S. typhi infection are subjected to multi-drug resistance. Herein, a novel macrophage targeting approach was developed via coating bioinspired mannosylated preactivated hyaluronic acid (Man-PTHA) ligands on a self-nanoemulsifying drug delivery system (SNEDDS) loaded with the anti-bacterial drug ciprofloxacin (CIP). The shake flask method was used to determine the drug solubility in the different excipients (oil, surfactants and co-surfactants). Man-PTHA were characterized by physicochemical, in vitro, and in vivo parameters. The mean droplet size was 257 nm, with a PDI of 0.37 and zeta potential of -15 mV. In 72 h, 85 % of the drug was released in a sustained manner, and the entrapment efficiency was 95 %. Outstanding biocompatibility, mucoadhesion, muco-penetration, anti-bacterial action and hemocompatibility were observed. Intra-macrophage survival of S. typhi was minimal (1 %) with maximum nanoparticle uptake, as shown by their higher fluorescence intensity. Serum biochemistry evaluation showed no significant changes or toxicity, and histopathological evaluation confirmed the entero-protective nature of the bioinspired polymers. Overall, results confirm that Man-PTHA SNEDDS can be employed as novel and effective delivery systems for the therapeutic management of S. typhi infection.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan.
| | | | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Musaed Alkholief
- Department of Pharmaceutics, College of Pharmacy, king Saud university, Riyadh, Saudi Arabia.
| | - Suhail Akhtar
- A.T. Still University of Health Sciences, Kirksville, MO, USA.
| | - Tanveer A Tabish
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, Alcalá de Henares, 28805 Madrid, Spain.
| |
Collapse
|
7
|
Chemical modification of hyaluronic acid improves its supportive action on embryo implantation. Int J Biol Macromol 2022; 222:198-206. [PMID: 36130644 DOI: 10.1016/j.ijbiomac.2022.09.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
Hyaluronic acid (HA) is a supplement of the embryo transfer medium that improves embryo implantation. We have suggested that the supportive action of HA can be promoted by introducing additional artificial binding sites on the HA structure. HA was modified at carboxyl sites separately with thiol (SH) and N-hydroxysuccinimide (NHS), as mucoadhesive and amine-reactive groups, respectively. The mouse blastocysts were incubated with HA derivatives for 15 min. The HA coatings maintained their potential for enzymatic degradation and showed no detrimental effect on embryonic viability and developmental potential. After in vivo transfer, a significantly higher implantation rate was attained by HA-NHS treatment (80 %) compared with the HA-SH (53 %) and the commercial transfer medium, EmbryoGlue® (56 %). The HA-NHS was produced by a slight modification on the native structure of HA using a simple, fast, non-expensive and scalable chemistry which all promise applicability of this new HA derivative in assisted reproductive technologies.
Collapse
|
8
|
Noreen S, Pervaiz F, Ijaz M, Shoukat H. Synthesis and characterization of pH-sensitive chemically crosslinked block copolymer [Hyaluronic acid/Poloxamer 407-co-poly (Methacrylic acid)] hydrogels for colon targeting. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2033771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Fahad Pervaiz
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, Comsats University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Hina Shoukat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| |
Collapse
|
9
|
Clementino AR, Pellegrini G, Banella S, Colombo G, Cantù L, Sonvico F, Del Favero E. Structure and Fate of Nanoparticles Designed for the Nasal Delivery of Poorly Soluble Drugs. Mol Pharm 2021; 18:3132-3146. [PMID: 34259534 PMCID: PMC8335725 DOI: 10.1021/acs.molpharmaceut.1c00366] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles are promising mediators to enable nasal systemic and brain delivery of active compounds. However, the possibility of reaching therapeutically relevant levels of exogenous molecules in the body is strongly reliant on the ability of the nanoparticles to overcome biological barriers. In this work, three paradigmatic nanoformulations vehiculating the poorly soluble model drug simvastatin were addressed: (i) hybrid lecithin/chitosan nanoparticles (LCNs), (ii) polymeric poly-ε-caprolactone nanocapsules stabilized with the nonionic surfactant polysorbate 80 (PCL_P80), and (iii) polymeric poly-ε-caprolactone nanocapsules stabilized with a polysaccharide-based surfactant, i.e., sodium caproyl hyaluronate (PCL_SCH). The three nanosystems were investigated for their physicochemical and structural properties and for their impact on the biopharmaceutical aspects critical for nasal and nose-to-brain delivery: biocompatibility, drug release, mucoadhesion, and permeation across the nasal mucosa. All three nanoformulations were highly reproducible, with small particle size (∼200 nm), narrow size distribution (polydispersity index (PI) < 0.2), and high drug encapsulation efficiency (>97%). Nanoparticle composition, surface charge, and internal structure (multilayered, core-shell or raspberry-like, as assessed by small-angle neutron scattering, SANS) were demonstrated to have an impact on both the drug-release profile and, strikingly, its behavior at the biological interface. The interaction with the mucus layer and the kinetics and extent of transport of the drug across the excised animal nasal epithelium were modulated by nanoparticle structure and surface. In fact, all of the produced nanoparticles improved simvastatin transport across the epithelial barrier of the nasal cavity as compared to a traditional formulation. Interestingly, however, the permeation enhancement was achieved via two distinct pathways: (a) enhanced mucoadhesion for hybrid LCN accompanied by fast mucosal permeation of the model drug, or (b) mucopenetration and an improved uptake and potential transport of whole PCL_P80 and PCL_SCH nanocapsules with delayed boost of permeation across the nasal mucosa. The correlation between nanoparticle structure and its biopharmaceutical properties appears to be a pivotal point for the development of novel platforms suitable for systemic and brain delivery of pharmaceutical compounds via intranasal administration.
Collapse
Affiliation(s)
- Adryana Rocha Clementino
- National Council for Scientific and Technological Development-CNPq, Brazilian Government, Brasília DF, 70311-000, Brazil.,Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy
| | - Giulia Pellegrini
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Laura Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy.,Biopharmanet-TEC, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy
| | - Elena Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| |
Collapse
|
10
|
Arshad R, Tabish TA, Naseem AA, Hassan MRU, Hussain I, Hussain SS, Shahnaz G. Development of poly-L-lysine multi-functionalized muco-penetrating self- emulsifying drug delivery system (SEDDS) for improved solubilization and targeted delivery of ciprofloxacin against intracellular Salmonella typhi. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115972] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Puri V, Sharma A, Kumar P, Singh I, Huanbutta K. Synthesis and Characterization of Thiolated Gum Ghatti as a Novel Excipient: Development of Compression-Coated Mucoadhesive Tablets of Domperidone. ACS OMEGA 2021; 6:15844-15854. [PMID: 34179628 PMCID: PMC8223422 DOI: 10.1021/acsomega.1c01328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/01/2021] [Indexed: 05/08/2023]
Abstract
Mucoadhesive polymers represent a major part of site-specific and localized retention strategies in oral drug delivery. The present research was designed to synthesize and characterize a novel mucoadhesive carbohydrate polymer (thiolated gum ghatti; TGG), which was employed to formulate mucoadhesive tablets of domperidone using an industrially viable compression coating technique. Thiolation of gum ghatti was achieved by the ester formation (esterification) between the hydroxyl group and the carboxyl group of gum ghatti and thioglycolic acid. TGG was characterized by various physicochemical techniques such as FTIR, XRD, SEM, and DSC. In rheological studies, the observed viscosities of pure gum mucin were 45.45 and 71.75 mPa·s and those of the thiolated gum were 78.7 and 112.58 mPa·s, respectively, in water and simulated gastric fluid. A significant increase in viscosity for thiolated gum may be attributed to increased macromolecular interactions responsible for enhanced mucoadhesive potential of thiolated gum. In silico studies corroborate the role of mucin gum interaction and energetic stabilization for enhanced mucoadhesion properties of thiolated gum. Ex vivo mucoadhesion strength of gum ghatti- and TGG-coated tablets was found to be ranging between 45.77 ± 1.49 and 88.16 ± 1.75 and 115.32 ± 2.36 and 184.65 ± 2.07 mN, respectively. In an acute oral toxicity study, TGG did not show any toxicity on the vital organs of the Wistar rat and proved to be a safe polymer. TGG may be regarded as a promising polymer for developing different mucoadhesive drug delivery systems.
Collapse
Affiliation(s)
- Vivek Puri
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Chitkara
University School of Pharmacy, Chitkara
University, Solan 174103, Himachal Pradesh, India
| | - Ameya Sharma
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
- Chitkara
University School of Pharmacy, Chitkara
University, Solan 174103, Himachal Pradesh, India
| | - Pradeep Kumar
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Inderbir Singh
- Chitkara
College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Kampanart Huanbutta
- Faculty
of Pharmaceutical Sciences, Burapha University, 169, Saensook, Muang 20131, Chonburi, Thailand
| |
Collapse
|
12
|
Osmałek T, Froelich A, Jadach B, Tatarek A, Gadziński P, Falana A, Gralińska K, Ekert M, Puri V, Wrotyńska-Barczyńska J, Michniak-Kohn B. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021; 13:884. [PMID: 34203714 PMCID: PMC8232205 DOI: 10.3390/pharmaceutics13060884] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The vagina has been considered a potential drug administration route for centuries. Most of the currently marketed and investigated vaginal formulations are composed with the use of natural or synthetic polymers having different functions in the product. The vaginal route is usually investigated as an administration site for topically acting active ingredients; however, the anatomical and physiological features of the vagina make it suitable also for drug systemic absorption. In this review, the most important natural and synthetic polymers used in vaginal products are summarized and described, with special attention paid to the properties important in terms of vaginal application. Moreover, the current knowledge on the commonly applied and innovative dosage forms designed for vaginal administration was presented. The aim of this work was to highlight the most recent research directions and indicate challenges related to vaginal drug administrations. As revealed in the literature overview, intravaginal products still gain enormous scientific attention, and novel polymers and formulations are still explored. However, there are research areas that require more extensive studies in order to provide the safety of novel vaginal products.
Collapse
Affiliation(s)
- Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Adam Tatarek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Aleksandra Falana
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Kinga Gralińska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Michał Ekert
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 60-780 Poznań, Poland; (A.F.); (B.J.); (A.T.); (P.G.); (A.F.); (K.G.); (M.E.)
| | - Vinam Puri
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| | - Joanna Wrotyńska-Barczyńska
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznań, Poland;
| | - Bozena Michniak-Kohn
- Department of Pharmaceutics, William Levine Hall, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Life Sciences Building, New Jersey Center for Biomaterials, Piscataway, NJ 08854, USA; (V.P.); (B.M.-K.)
| |
Collapse
|
13
|
Gerton ML, Mann BK. Mucoadhesive hyaluronic acid-based films for vaginal delivery of metronidazole. J Biomed Mater Res B Appl Biomater 2021; 109:1706-1712. [PMID: 33675578 DOI: 10.1002/jbm.b.34827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 11/08/2022]
Abstract
Bacterial vaginosis is a prevalent women's health issue that affects millions of women worldwide every year; however, current treatments are often messy, inconvenient, and ineffective. Therefore, we developed a new hyaluronic acid-based film to deliver metronidazole that would be more effective, more convenient, and at a pH similar to that of the normal vaginal environment. Films were made by crosslinking modified hyaluronic acid to create a hydrogel, in which metronidazole or metronidazole benzoate and methylcellulose were incorporated, and the hydrogel was dried to a thin film. Through release testing, coupled with assessments of handleability, tensile strength, and mucoadhesion, it was determined that the films have the potential to remain in the vaginal environment for an extended time period and gradually release the drug for at least 6 days, which is a typical treatment length. As such, the films present a viable alternative to current treatment methods, allowing for both easy handling and a single treatment while eliminating the issues of pH and overall inconvenience.
Collapse
Affiliation(s)
| | - Brenda K Mann
- EyeGate Pharmaceuticals, Salt Lake City, Utah, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Pacheco MS, Barbieri D, da Silva CF, de Moraes MA. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. Int J Biol Macromol 2021; 178:504-513. [PMID: 33647337 DOI: 10.1016/j.ijbiomac.2021.02.180] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022]
Abstract
In recent years, orally disintegrating films (ODFs) have been studied as alternative ways for drug administration. They can easily be applied into the mouth and quickly disintegrate, releasing the drug with no need of water ingestion and enabling absorption through the oral mucosa. The ODFs matrices are typically composed of hydrophilic polymers, in which the natural polymers are highlighted since they are polymers extracted from natural sources, non-toxic, biocompatible, biodegradable, and have favorable properties for this application. Besides that, natural polymers such as polysaccharides and proteins can be applied either alone or blended with other synthetic, semi-synthetic, or natural polymers to achieve better mechanical and mucoadhesive properties and fast disintegration. In this review, we analyzed ODFs developed using natural polymers or blends involving natural polymers, such as maltodextrin, pullulan, starch, gelatin, collagen, alginate, chitosan, pectin, and others, to overview the recent publications and discuss how natural polymers can influence ODFs properties.
Collapse
Affiliation(s)
- Murilo Santos Pacheco
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Douglas Barbieri
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Classius Ferreira da Silva
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Mariana Agostini de Moraes
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil.
| |
Collapse
|
15
|
Chindamo G, Sapino S, Peira E, Chirio D, Gallarate M. Recent Advances in Nanosystems and Strategies for Vaginal Delivery of Antimicrobials. NANOMATERIALS 2021; 11:nano11020311. [PMID: 33530510 PMCID: PMC7912580 DOI: 10.3390/nano11020311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
Abstract
Vaginal infections such as bacterial vaginosis (BV), chlamydia, gonorrhea, genital herpes, candidiasis, and trichomoniasis affect millions of women each year. They are caused by an overgrowth of microorganisms, generally sexually transmitted, which in turn can be favored by alterations in the vaginal flora. Conventional treatments of these infections consist in systemic or local antimicrobial therapies. However, in the attempt to reduce adverse effects and to contrast microbial resistance and infection recurrences, many efforts have been devoted to the development of vaginal systems for the local delivery of antimicrobials. Several topical dosage forms such as aerosols, lotions, suppositories, tablets, gels, and creams have been proposed, although they are sometimes ineffective due to their poor penetration and rapid removal from the vaginal canal. For these reasons, the development of innovative drug delivery systems, able to remain in situ and release active agents for a prolonged period, is becoming more and more important. Among all, nanosystems such as liposomes, nanoparticles (NPs), and micelles with tunable surface properties, but also thermogelling nanocomposites, could be exploited to improve local drug delivery, biodistribution, retention, and uptake in vulvovaginal tissues. The aim of this review is to provide a survey of the variety of nanoplatforms developed for the vaginal delivery of antimicrobial agents. A concise summary of the most common vaginal infections and of the conventional therapies is also provided.
Collapse
|
16
|
Baus RA, Leichner C, Steinbring C, Bernkop-Schnürch A. Strategies for improved hair binding: Keratin fractions and the impact of cationic substructures. Int J Biol Macromol 2020; 160:201-211. [PMID: 32445814 DOI: 10.1016/j.ijbiomac.2020.05.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/09/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
Keratin extracts and hydrolysates from varying sources, their chemical modifications and compositions thereof have shown potential in the restoration of hair properties. Within this study on reactivity of thiol groups and the shielding effect of anionic charges the binding of keratin-associated proteins (KAP) and α-keratins (Ker) extracted from human hair to natural and permed hair fibers was evaluated. Selectively extracted KAP and Ker were preactivated with 6-mercaptonicotinamide in a quantity of 194 ± 21 μmol/g for KAP and 169 ± 27 μmol/g for Ker resulting in 1.9- and 1.4-fold enhanced binding to natural hair, respectively. The amount of accumulated Ker on hair fibers was furthermore increased by 1.7-fold in presence of 25 mM L-arginine. Perming of hair impaired binding characteristics of Ker with negligible effects for preactivation, whereas unmodified and preactivated KAP showed results comparable to natural hair. Strongly enhanced penetrability after perming was reflected by the mean penetration depth for fluorescein of 25 μm compared to 5 μm for natural fibers.
Collapse
Affiliation(s)
- Randi Angela Baus
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christina Leichner
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christian Steinbring
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
17
|
|
18
|
Zhang Y, Miyamoto Y, Ihara S, Yang JZ, Zuill DE, Angsantikul P, Zhang Q, Gao W, Zhang L, Eckmann L. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. ADVANCED THERAPEUTICS 2019; 2:1900157. [PMID: 32377561 PMCID: PMC7202563 DOI: 10.1002/adtp.201900157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/17/2022]
Abstract
Trichomonas vaginalis is responsible for the most common non-viral sexually-transmitted disease worldwide. Standard treatment is with oral nitro-heterocyclic compounds, metronidazole or tinidazole, but resistance to these drugs is emerging and adverse effects can be problematic. Topical treatment offers potential benefits for increasing local drug concentrations and efficacy, while reducing systemic drug exposure, but no topical strategies are currently approved for trichomoniasis. The anti-rheumatic drug, auranofin (AF), was recently discovered to have significant trichomonacidal activity, but has a long plasma half-life and significant adverse effects. Here, we used this drug as a model to develop a novel topical formulation composed of AF-loaded nanoparticles (NP) embedded in a thermoresponsive hydrogel for intravaginal administration. The AF-NP composite gel showed sustained drug release for at least 12 h, and underwent sol-gel transition with increased viscoelasticity within a minute. Intravaginal administration in mice showed excellent NP retention for >6 h and markedly increased local AF levels, but reduced plasma and liver levels compared to oral treatment with a much higher dose. Furthermore, intravaginal AF-NP gel greatly outperformed oral AF in eliminating vaginal trichomonad infection in mice, while causing no systemic or local toxicity. These results show the potential of the AF-NP hydrogel formulation for effective topical therapy of vaginal infections.
Collapse
Affiliation(s)
- Yue Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Sozaburo Ihara
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Justin Z Yang
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Douglas E Zuill
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Pavimol Angsantikul
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Qiangzhe Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
19
|
Buccal adhesive chitosan conjugate comprising pilocarpine for xerostomia. Int J Biol Macromol 2019; 135:1043-1051. [PMID: 31158424 DOI: 10.1016/j.ijbiomac.2019.05.219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Xerostomia is caused by different factors such as side effects of medication, radiotherapy by head and neck cancer as well as Sjögren syndrome. AIM The goal was to synthesize novel preactivated chitosan conjugates and to design adhesive dosage forms comprising sialagogue pilocarpine. METHODS Unmodified chitosan (CH) was covalently linked to sulfhydryl possessing mercaptonicotinic acid (MNA) via amide bond formation. In a second step, preactivation occurred via disulfide bond establishment between sulfhydryl linked chitosan and preactivation ligand MNA. Mucoadhesive and mucoprotective properties were scrutinized on buccal mucosa. Safety assessment was performed on head and neck squamous cells. Histology assay was conducted on buccal tissue. Pilocarpine was scrutinized in terms of controlled release behavior. RESULTS Novel preactivated CH was successfully synthesized and considered as not harmful to the cells at all. Furthermore, mucoadhesion was 1.3-fold improved in the presence of preactivated chitosan as compared to respective unmodified one. Pilocarpine exhibited a 3.1-fold controlled release in presence of novel synthesized chitosan as in comparison to unmodified CH. CONCLUSION The novelty of this promising polymeric carrier lies in the synthesis procedure leading to a pronounced mucoadhesive, mucoprotecting and controlled release encouraging dosage form in the management of xerostomia.
Collapse
|
20
|
Development and evaluation of performance characteristics of timolol-loaded composite ocular films as potential delivery platforms for treatment of glaucoma. Int J Pharm 2019; 566:111-125. [DOI: 10.1016/j.ijpharm.2019.05.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/24/2019] [Accepted: 05/22/2019] [Indexed: 02/04/2023]
|
21
|
Baus RA, Haug MF, Leichner C, Jelkmann M, Bernkop-Schnürch A. In Vitro-in Vivo Correlation of Mucoadhesion Studies on Buccal Mucosa. Mol Pharm 2019; 16:2719-2727. [PMID: 31038970 DOI: 10.1021/acs.molpharmaceut.9b00254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND For the development of novel buccoadhesive formulations, their physicochemical properties, strength of the interfacial joint, and residence time on the buccal mucosa are considered as a measure for their in vivo mucoadhesive properties. Focusing on these parameters, the predictive power of established in vitro systems was assessed for mucoadhesive properties in humans using discs as the model solid dosage form. METHODS Compressed into discs, hydroxyethyl cellulose, carboxymethyl cellulose, carbopol, polycarbophil, alginate, and xanthan gum were used as model polymers. Mucosal residence time, maximum detachment force (MDF), and total work of adhesion (TWA) were determined ex vivo on the porcine buccal mucosa and in vivo on healthy volunteers. The impact of detachment velocity, humidification, and experimental set-up employed for tensile studies was examined and correlated to in vivo studies. RESULTS Ex vivo results for mucosal residence time showed a very high correlation ( r = 0.997) with data obtained in vivo. For tensile studies, a set-up optimized for moistening the interface, speed, and alignment of the tensile force provided ex vivo results with very high correlation to in vivo experiments with r = 0.983 obtained for MDF and r = 0.973 for TWA, respectively. CONCLUSIONS Experimental set-ups for the determination of mucosal residence time and tensile studies could be identified as valid methods for the development of intraoral solid dosage forms.
Collapse
Affiliation(s)
- Randi Angela Baus
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , Leopold-Franzens-University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Michael Franz Haug
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , Leopold-Franzens-University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Christina Leichner
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , Leopold-Franzens-University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Max Jelkmann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , Leopold-Franzens-University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , Leopold-Franzens-University of Innsbruck , Innrain 80/82 , 6020 Innsbruck , Austria
| |
Collapse
|
22
|
|
23
|
Menzel C, Hauser M, Frey A, Jelkmann M, Laffleur F, Götzfried SK, Gust R, Bernkop-Schnürch A. Covalently binding mucoadhesive polymers: N-hydroxysuccinimide grafted polyacrylates. Eur J Pharm Biopharm 2019; 139:161-167. [PMID: 30898541 DOI: 10.1016/j.ejpb.2019.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 01/17/2023]
Abstract
AIM The aim of the study was to establish a novel type of covalently mucus-binding polymers by targeting selectively amino groups within mucus glycoproteins. METHODS N-Hydroxysuccinimide (NHS) was attached to carboxylic groups of polyacrylic acid (PAA). The reaction was mediated by the coupling reagent N,N'-dicyclohexylcarbodiimide (DCC) achieving polymeric NHS esters being able to form amide bonds with free amino groups. The chemical structure of the obtained conjugates was characterized via FTIR- and UV spectroscopy. Reactivity towards mucosal amino groups was evaluated UV spectrometrically upon addition of L-glycine. Furthermore, tensile force evaluations on intestinal mucosa as well as rheological experiments with mucus were performed in order to prove mucoadhesive potential. RESULTS Depending on the amount of NHS added to the synthesis, coupling rates of 876 to 1820 µmol NHS per gram polymer were obtained. Kinetic studies of amide bond formation showed a substrate dependent reaction velocity. Rheological synergism of PAA-NHS was proven by a 7.9-fold increased mucus viscosity compared to the control polymer. In further mucoadhesion studies PAA-NHS showed a 5.5-fold improved adhesion time compared to unmodified PAA. Tensile force evaluation confirmed these results with a 1.7-fold higher maximum detachment force (MDF) and 2.7-fold increased total work adhesion (TWA) for PAA-NHS compared to the unmodified control polymer. CONCLUSION The results of the present study provide strong evidence that coupling NHS to polymers could be a promising tool for the development of novel mucoadhesive excipients.
Collapse
Affiliation(s)
- Claudia Menzel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Moritz Hauser
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Amelie Frey
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Max Jelkmann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Sina K Götzfried
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
24
|
Asim MH, Jalil A, Shahzadi I, Khan M, Matuszczak B, Bernkop-Schnürch A. Mucoadhesive S-protected thiolated cyclodextrin-iodine complexes: a promising strategy to prolong mucosal residence time of iodine. Future Microbiol 2019; 14:411-424. [DOI: 10.2217/fmb-2018-0288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: The purpose of this study was to develop S-protected thiolated α-cyclodextrin–iodine complexes providing prolonged mucosal residence time and sustained release of the antimicrobial agent. Materials & methods: First, L-cysteine was conjugated with 2-mercaptonicotinic acid to generate cysteine-2-mercaptonicotinic acid (Cys-MNA). Subsequently, α-CD was oxidized with NaIO4 and Cys-MNA was bound to the resulting aldehyde groups via reductive amination. Finally, iodine was incorporated into complex. Result: S-protected thiolated α-CD displayed 3804 μmol/g MNA groups. The inclusion constant (KC) between iodine and S-protected thiolated α-CD was 5.37 × 104 M-1. In vitro release of iodine was around 15% per hour, whereas mucoadhesive properties showed 38-fold improvement in mucoadhesion. The complex did not show cytotoxicity at a concentration of 0.5% (m/v). In addition, complexes exhibited pronounced antimicrobial activity against Staphylococcus aureus and Escherichia coli. Conclusion: According to these results, S-protected thiolated α-CD-iodine complex might be a promising novel formulation for the mucosal use of iodine.
Collapse
Affiliation(s)
- Mulazim H Asim
- Department of Pharmaceutical Technology, Center for Chemistry & Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan
| | - Aamir Jalil
- Department of Pharmaceutical Technology, Center for Chemistry & Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Iram Shahzadi
- Department of Pharmaceutical Technology, Center for Chemistry & Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Momin Khan
- Department of Microbiology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25100, Pakistan
| | - Barbara Matuszczak
- Center for Chemistry & Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Center for Chemistry & Biomedicine, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck 6020, Austria
| |
Collapse
|
25
|
Jalil A, Asim MH, Le NMN, Laffleur F, Matuszczak B, Tribus M, Bernkop-Schnürch A. S-protected gellan gum: Decisive approach towards mucoadhesive antimicrobial vaginal films. Int J Biol Macromol 2019; 130:148-157. [PMID: 30779984 DOI: 10.1016/j.ijbiomac.2019.02.092] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 01/09/2023]
Abstract
The aim of this study was to synthesize novel polymeric excipients forming mucoadhesive films for treatment of vaginal microbial infections. 2-(2-Amino ethyldisulfanyl) nicotinic acid was conjugated with gellan gum via amide bond formation. The structure of the resulting S-protected gellan gum was confirmed by 1H NMR. S-protected gellan gum variants were characterized for thiol content, cytotoxicity, rheological behaviour and film forming capability. Depending on the added amount of AMENA degree of thiolation was 81 ± 13 (S-GG 81) and 174 ± 16 (S-GG 174) μmol/g, respectively. Vaginal films were casted from S-protected gellan gum variants and studied for adherence to vaginal mucosa, drug release and antimicrobial activity. S-protected gellan gum remained biocompatible showing >87% cell viability. S-GG 81 and S-GG 174 exhibited 1.84- and 4.3-fold increased dynamic viscosity in porcine mucus in comparison to unmodified gellan gum, respectively. Compared to gellan gum films, thiol functionalized gellan gum films showed 3-fold improved adhesion on mucosal surface over a period of 3 h along with significant antimicrobial activity. Moreover, S-protected gellan gum provided a sustained release of metronidazole. According to these results, S-protected gellan gum proved to be a promising novel excipient for casting vaginal films, exhibiting strongly improved mucoadhesive and antimicrobial properties.
Collapse
Affiliation(s)
- Aamir Jalil
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Mulazim Hussain Asim
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Nguyet-Minh Nguyen Le
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Department of Industrial Pharmacy, University of Medicine and Pharmacy, 70000 Ho Chi Minh City, Viet Nam
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Barbara Matuszczak
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Martina Tribus
- Institute of Mineralogy and Petrography, Innrain 52, University of Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
26
|
Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications. Int J Biol Macromol 2018; 120:876-885. [DOI: 10.1016/j.ijbiomac.2018.08.149] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/26/2018] [Indexed: 01/13/2023]
|
27
|
Cho IS, Oh HM, Cho MO, Jang BS, Cho JK, Park KH, Kang SW, Huh KM. Synthesis and characterization of thiolated hexanoyl glycol chitosan as a mucoadhesive thermogelling polymer. Biomater Res 2018; 22:30. [PMID: 30275973 PMCID: PMC6158885 DOI: 10.1186/s40824-018-0137-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mucoadhesive polymers, which may increase the contact time between the polymer and the tissue, have been widely investigated for pharmaceutical formulations. In this study, we developed a new polysaccharide-based mucoadhesive polymer with thermogelling properties. METHODS Hexanoyl glycol chitosan (HGC), a new thermogelling polymer, was synthesized by the chemical modification of glycol chitosan using hexanoic anhydride. The HGC was further modified to include thiol groups to improve the mucoadhesive property of thermogelling HGC. The degree of thiolation of the thiolated HGCs (SH-HGCs) was controlled in the range of 5-10% by adjusting the feed molar ratio. The structure of the chemically modified polymers was characterized by 1H NMR and ATR-FTIR. The sol-gel transition, mucoadhesiveness, and biocompatibility of the polymers were determined by a tube inverting method, rheological measurements, and in vitro cytotoxicity tests, respectively. RESULTS The aqueous solution (4 wt%) of HGC with approximately 33% substitution showed a sol-gel transition temperature of approximately 41 °C. SH-HGCs demonstrated lower sol-gel transition temperatures (34 ± 1 and 31 ± 1 °С) compared to that of HGC due to the introduction of thiol groups. Rheological studies of aqueous mixture solutions of SH-HGCs and mucin showed that SH-HGCs had stronger mucoadhesiveness than HGC due to the interaction between the thiol groups of SH-HGCs and mucin. Additionally, we confirmed that the thermogelling properties might improve the mucoadhesive force of polymers. Several in vitro cytotoxicity tests showed that SH-HGCs showed little toxicity at concentrations of 0.1-1.0 wt%, indicating good biocompatibility of the polymers. CONCLUSIONS The resultant thiolated hexanoyl glycol chitosans may play a crucial role in mucoadhesive applications in biomedical areas.
Collapse
Affiliation(s)
- Ik Sung Cho
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Hye Min Oh
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Myeong Ok Cho
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
- Predictive Model Research Center, Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon, 34114 Republic of Korea
| | - Bo Seul Jang
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| | - Jung-Kyo Cho
- ezlab, 120, Heungdeokjungang-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16950 Republic of Korea
| | - Kyoung Hwan Park
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
- Predictive Model Research Center, Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon, 34114 Republic of Korea
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology, 141, Gajeong-ro, Yuseong-gu, Daejeon, 34114 Republic of Korea
- Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, 34113 Republic of Korea
| | - Kang Moo Huh
- Department of Organic Materials Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea
| |
Collapse
|
28
|
Giuliano E, Paolino D, Fresta M, Cosco D. Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics 2018; 10:pharmaceutics10030159. [PMID: 30213143 PMCID: PMC6161217 DOI: 10.3390/pharmaceutics10030159] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Poloxamer 407, also known by the trademark Pluronic® F127, is a water-soluble, non-ionic triblock copolymer that is made up of a hydrophobic residue of polyoxypropylene (POP) between the two hydrophilic units of polyoxyethylene (POE). Poloxamer 407-based hydrogels exhibit an interesting reversible thermal characteristic. That is, they are liquid at room temperature, but they assume a gel form when administered at body temperature, which makes them attractive candidates as pharmaceutical drug carriers. These systems have been widely investigated in the development of mucoadhesive formulations because they do not irritate the mucosal membranes. Based on these mucoadhesive properties, a simple administration into a specific compartment should maintain the required drug concentration in situ for a prolonged period of time, decreasing the necessary dosages and side effects. Their main limitations are their modest mechanical strength and, notwithstanding their bioadhesive properties, their tendency to succumb to rapid elimination in physiological media. Various technological approaches have been investigated in the attempt to modulate these properties. This review focuses on the application of poloxamer 407-based hydrogels for mucosal drug delivery with particular attention being paid to the latest published works.
Collapse
Affiliation(s)
- Elena Giuliano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Massimo Fresta
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| | - Donato Cosco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario "S. Venuta", Viale S. Venuta, I-88100 Catanzaro, Italy.
| |
Collapse
|
29
|
Laffleur F, Bernkop-Schnürch A. Evaluation of dermal adhesive formulations for topical application. Eur J Pharm Biopharm 2018; 124:89-94. [DOI: 10.1016/j.ejpb.2017.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 11/24/2022]
|
30
|
Griesser J, Hetényi G, Bernkop-Schnürch A. Thiolated Hyaluronic Acid as Versatile Mucoadhesive Polymer: From the Chemistry Behind to Product Developments-What Are the Capabilities? Polymers (Basel) 2018; 10:polym10030243. [PMID: 30966278 PMCID: PMC6414859 DOI: 10.3390/polym10030243] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/07/2018] [Accepted: 02/24/2018] [Indexed: 01/09/2023] Open
Abstract
Within the last decade, intensive research work has been conducted on thiolated hyaluronic acids (HA-SH). By attaching sulfhydryl ligands onto naturally occurring hyaluronic acid various types of HA-SH can be designed. Due the ability of disulfide bond formation within the polymer itself as well as with biological materials, certain properties such as mucoadhesive, gelling, enzyme inhibitory, permeation enhancing and release controlling properties are improved. Besides the application in the field of drug delivery, HA-SH has been investigated as auxiliary material for wound healing. Within this review, the characteristics of novel drug delivery systems based on HA-SH are summarized and the versatility of this polymer for further applications is described by introducing numerous relevant studies in this field.
Collapse
Affiliation(s)
- Janine Griesser
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| | - Gergely Hetényi
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
| | - Andreas Bernkop-Schnürch
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
31
|
Laffleur F. Comparative mucoadhesive study of hyaluronic acid-based conjugates on different mucosae. J Appl Polym Sci 2017. [DOI: 10.1002/app.46071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck; University of Innsbruck; Innsbruck Austria
- Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research at MIT, Langer Lab, 77 Massachusetts Ave; Cambridge Massachusetts 02139
| |
Collapse
|
32
|
Lupo N, Fodor B, Muhammad I, Yaqoob M, Matuszczak B, Bernkop-Schnürch A. Entirely S-protected chitosan: A promising mucoadhesive excipient for metronidazole vaginal tablets. Acta Biomater 2017; 64:106-115. [PMID: 29030305 DOI: 10.1016/j.actbio.2017.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
AIM Synthesis and evaluation of an entirely S-protected chitosan as mucoadhesive excipient for vaginal drug delivery. METHODS N-acetyl-cysteine was linked to 6-mercaptonicotinamide via disulphide exchange reaction. The obtained ligand, NAC-6-MNA, was subsequently attached to chitosan by carbodiimide mediated amide bond formation in two concentrations. The synthesized S-protected chitosan was chemically characterized and mucoadhesive properties and stability against oxidation were investigated. Moreover, metronidazole tablets comprising the S-protected chitosan were evaluated regarding water uptake capacity, disintegration behaviour, residence time on vaginal mucosa, release of the encapsulated drug and antimicrobial activity. RESULTS S-protected chitosan displayed 160±19 (CS-MNA-160) and 320±38 (CS-MNA-320)µmol of ligand per gram of polymer. At pH 4.2, CS-MNA-160 and CS-MNA-320 showed 5.2-fold and 6.2-fold increase in mucus viscosity in comparison to unmodified chitosan (One-way ANOVA, p<.001), whereas, 9.9-fold (CS-MNA-160) and 15.6-fold (CS-MNA-320) (One-way ANOVA, p<.001) increase in viscosity was measured at pH 6. The S-protected chitosan remained stable against oxidation in presence of 0.5%v/v hydrogen peroxide. Metronidazole tablets consisting in S-protected chitosan showed prolonged residence time on vaginal mucosa and improved water uptake capacity and disintegration time in comparison to tablets consisting of unmodified chitosan. Moreover, CS-MNA-320 metronidazole tablets displayed prolonged drug release and antimicrobial activity. CONCLUSIONS On the basis of the achieved results, entirely S-protected chitosan represents a promising excipient for the development of metronidazole vaginal tablets. STATEMENT OF SIGNIFICANCE S-protected thiomers are polymers modified with thiol groups protected by aromatic ligands and characterized by strong mucoadhesive properties and high stability against oxidation. Up to date, the entirely S-protection of thiol groups was achieved via the synthesis of the ligand 2-((2-amino-2-carboxyethyl)disulfanyl)nicotinic acid) which can be directly bound to the backbone of polymers bearing carboxylic moieties as pectin. However, this ligand is not suitable for positively charged polymers due to the negative charge. In this paper, the synthesis of a suitable ligand for the entirely S-protection of positively charged polymers is presented. The first entirely S-protected chitosan was synthesized, characterized and its mucoadhesive properties were assessed. Moreover, metronidazole tablets comprising the entirely S-protected chitosan were developed and evaluated as vaginal drug delivery system.
Collapse
|
33
|
Sanz R, Clares B, Mallandrich M, Suñer-Carbó J, Montes MJ, Calpena AC. Development of a mucoadhesive delivery system for control release of doxepin with application in vaginal pain relief associated with gynecological surgery. Int J Pharm 2017; 535:393-401. [PMID: 29146542 DOI: 10.1016/j.ijpharm.2017.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/05/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
Abstract
The main purpose of this study was to develop a semisolid mucoadhesive formulation for the non-invasive vaginal administration of doxepin (DOX) for relief of pain derived from the scarring process after surgery. An orafix® platform loading DOX was tested for adequate stability, rheology and vaginal mucoadhesion capacity. The formulation exhibited appropriate pH and was microbiologically stable. The rheological studies confirmed its pseudoplastic and thixotropic nature with prevalence of the elastic behavior component over the viscous one. Appropriate syringeability and spreadability results were also confirmed. Different experiments showed adequate mucoadhesion capacity even in the presence of simulated vaginal fluid. Finally, DOX release, permeation and retention in vaginal mucosa studies were also accomplished with promising results. DOX release kinetics followed the modified Higuchi model and the permeation studies did not render such high values as to suggest potential systemic absorption which could lead to undesirable systemic side effects. Therefore, we can hypostatize that the proposed formulation may assist to fill in the therapeutic gap regarding pure pain relief at local level in vagina.
Collapse
Affiliation(s)
- Roser Sanz
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Beatriz Clares
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Granada, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain.
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| | - Joaquim Suñer-Carbó
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - María Jesús Montes
- Department of Biology, Healthcare and the Environment, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Ana C Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Rojewska M, Bartkowiak A, Strzemiecka B, Jamrozik A, Voelkel A, Prochaska K. Surface properties and surface free energy of cellulosic etc mucoadhesive polymers. Carbohydr Polym 2017; 171:152-162. [PMID: 28578949 DOI: 10.1016/j.carbpol.2017.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 11/15/2022]
Affiliation(s)
- M Rojewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo Str., 60-965, Poznan, Poland
| | - A Bartkowiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo Str., 60-965, Poznan, Poland
| | - B Strzemiecka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo Str., 60-965, Poznan, Poland
| | - A Jamrozik
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo Str., 60-965, Poznan, Poland
| | - A Voelkel
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo Str., 60-965, Poznan, Poland
| | - K Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo Str., 60-965, Poznan, Poland.
| |
Collapse
|
35
|
Laffleur F, Schmelzle F, Ganner A, Vanicek S. In Vitro and Ex Vivo Evaluation of Novel Curcumin-Loaded Excipient for Buccal Delivery. AAPS PharmSciTech 2017; 18:2102-2109. [PMID: 28028792 DOI: 10.1208/s12249-016-0676-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022] Open
Abstract
This study aimed to develop a mucoadhesive polymeric excipient comprising curcumin for buccal delivery. Curcumin encompasses broad range of benefits such as antioxidant, anti-inflammatory, and chemotherapeutic activity. Hyaluronic acid (HA) as polymeric excipient was modified by immobilization of thiol bearing ligands. L-Cysteine (SH) ethyl ester was covalently attached via amide bond formation between cysteine and the carboxylic moiety of hyaluronic acid. Succeeded synthesis was proved by H-NMR and IR spectra. The obtained thiolated polymer hyaluronic acid ethyl ester (HA-SH) was evaluated in terms of stability, safety, mucoadhesiveness, drug release, and permeation-enhancing properties. HA-SH showed 2.75-fold higher swelling capacity over time in comparison to unmodified polymer. Furthermore, mucoadhesion increased 3.4-fold in case of HA-SH and drug release was increased 1.6-fold versus HA control, respectively. Curcumin-loaded HA-SH exhibits a 4.4-fold higher permeation compared with respective HA. Taking these outcomes in consideration, novel curcumin-loaded excipient, namely thiolated hyaluronic acid ethyl ester appears as promising tool for pharyngeal diseases.
Collapse
|
36
|
Rojewska M, Olejniczak-Rabinek M, Bartkowiak A, Snela A, Prochaska K, Lulek J. The wettability and swelling of selected mucoadhesive polymers in simulated saliva and vaginal fluids. Colloids Surf B Biointerfaces 2017; 156:366-374. [DOI: 10.1016/j.colsurfb.2017.05.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 01/07/2023]
|
37
|
Shtenberg Y, Goldfeder M, Schroeder A, Bianco-Peled H. Alginate modified with maleimide-terminated PEG as drug carriers with enhanced mucoadhesion. Carbohydr Polym 2017; 175:337-346. [PMID: 28917874 DOI: 10.1016/j.carbpol.2017.07.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022]
Abstract
The goal of this study was to generate a new mucoadhesive carbohydrate-based delivery system composed of alginate (Alg) backbone covalently attached to polyethylene glycol (PEG) modified with a unique functional end-group (maleimide). The immobilization of PEG-maleimide chains significantly improved the mucoadhesion properties attributed to thioether bonds creation via Michael-type addition and hydrogen bonding with the mucus glycoproteins. Mucoadhesion studies using tensile and rotating cylinder assays revealed a 3.6-fold enhanced detachment force and a 2.8-fold enhanced retention time compared to the unmodified polymer, respectively. Additional indirect studies confirmed the presence of polymer-mucus glycoproteins interactions. Drug release experiments were used to evaluate the release profiles from Alg-PEG-maleimide tablets in comparison to Alg and Alg-SH tablets. Viability studies of normal human dermal fibroblasts cells depicted the non-toxic nature of Alg-PEG-maleimide. Overall, our studies disclose that PEG-maleimide substitutions on other biocompatible polymers can lead to the development of useful biomaterials for diverse biomedical applications.
Collapse
Affiliation(s)
- Yarden Shtenberg
- The Inter-Departmental Program of Biotechnology, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Mor Goldfeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa 3200003, Israel; The Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
38
|
Laffleur F. Evaluation of chemical modified hydrogel formulation for topical suitability. Int J Biol Macromol 2017; 105:1310-1314. [PMID: 28757424 DOI: 10.1016/j.ijbiomac.2017.07.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/10/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Skin delivery and transdermal delivery are key ambitions of the pharmaceutical and cosmetically researchers. AIM The study aimed to chemically modify well-known polymeric gelling agents in order to boost their topical suitability by fostering their dermal adhesiveness. METHODS Conventional chitosan was modified via amide bound formation with sulfhydryl compound thioglycolic acid. Subsequently, preactivated chitosan conjugate was established by preactivation of chitosan-thioglycolic acid with mercaptonicotinamide being covalently attached via disulfide bond linkage. All conjugates were examined due to their dermal adhesiveness and controlled drug release properties. RESULTS Preactivated chitosan conjugates Exhibit 7.46-fold dermal adhesiveness on skin due to tensile adhesion strength. Furthermore a 1.9-fold controlled release of Rhodamine123 as model drug was determined in comparison to unmodified chitosan. CONCLUSION Taken together, preactivated chitosan gels show a promising platform for topical application.
Collapse
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Austria; Massachusetts Institute of Technology, Koch Institute for Integrative Cancer Research at MIT, Langer Lab, 77 Massachussets Ave, Cambridge, MA, 02139, USA.
| |
Collapse
|
39
|
Bassi da Silva J, Ferreira SBDS, de Freitas O, Bruschi ML. A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems. Drug Dev Ind Pharm 2017; 43:1053-1070. [DOI: 10.1080/03639045.2017.1294600] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jéssica Bassi da Silva
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá, Paran´, Brazil
| | - Sabrina Barbosa de Souza Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá, Paran´, Brazil
| | - Osvaldo de Freitas
- Department of Pharmaceutical Sciences, Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringá, Maringá, Paran´, Brazil
| |
Collapse
|
40
|
Pereira de Sousa I, Suchaoin W, Zupančič O, Leichner C, Bernkop-Schnürch A. Totally S-protected hyaluronic acid: Evaluation of stability and mucoadhesive properties as liquid dosage form. Carbohydr Polym 2016; 152:632-638. [DOI: 10.1016/j.carbpol.2016.06.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/03/2016] [Accepted: 06/12/2016] [Indexed: 01/17/2023]
|
41
|
Shah KU, Shah SU, Dilawar N, Khan GM, Gibaud S. Thiomers and their potential applications in drug delivery. Expert Opin Drug Deliv 2016; 14:601-610. [PMID: 27548003 DOI: 10.1080/17425247.2016.1227787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Thiomers are the product of the immobilization of sulfhydryl-bearing ligands onto the polymer backbone of a conventional polymer, which results in a significant improvement in mucoadhesion; in situ gelation and efflux inhibition compare with unchanged polymers. Because of thiol groups, thiomers have more reactivity and enhanced protection against oxidation. Since the late 1990s, extensive work has been conducted on these promising polymeric excipients in the pharmaceutical field. Areas covered: This review covers thiomers, their classification and their different properties. Various techniques for the synthesis, purification and characterization of thiomers are described in detail. This review also encompasses their various properties such as mucoadhesion, permeation enhancement, in situ gelation and efflux inhibition, as well as different formulations based on thiomers. In addition to the use of thiomers as multifunctional excipients, this review also encompasses their use as drugs. Expert opinion: The synthesis is realized by linkage of sulfhydryl-bearing ligands but reported methods give low yields. Higher degrees of modification are not necessary and would probably lead to extreme changes in properties. Nevertheless, an accurate characterization of the final product is important. The scale-up procedure for industrial manufacturing has been adapted to produce GMP materials; Lacrimera® eye drops have already entered the European market.
Collapse
Affiliation(s)
- Kifayat Ullah Shah
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Shefaat Ullah Shah
- b Department of Pharmaceutics, Faculty of Pharmacy , Gomal University , D.I.Khan , Pakistan.,c EA3452/CITHEFOR, Faculté de Pharmacie , Université de Lorraine , Nancy , France
| | - Naz Dilawar
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Gul Majid Khan
- a Department of Pharmacy , Quaid-e-Azam University , Islamabad , Pakistan
| | - Stéphane Gibaud
- c EA3452/CITHEFOR, Faculté de Pharmacie , Université de Lorraine , Nancy , France
| |
Collapse
|
42
|
Partenhauser A, Bernkop-Schnürch A. Mucoadhesive polymers in the treatment of dry X syndrome. Drug Discov Today 2016; 21:1051-62. [DOI: 10.1016/j.drudis.2016.02.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/05/2016] [Accepted: 02/23/2016] [Indexed: 11/29/2022]
|
43
|
Menzel C, Silbernagl J, Laffleur F, Leichner C, Jelkmann M, Huck CW, Hussain S, Bernkop-Schnürch A. 2,2'Dithiodinicotinyl ligands: Key to more reactive thiomers. Int J Pharm 2016; 503:199-206. [PMID: 26972378 DOI: 10.1016/j.ijpharm.2016.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 01/10/2023]
Abstract
The aim of this study was to establish a novel type of preactivated thiomers exhibiting a comparatively higher reactivity with mucus and consequently improved mucoadhesive properties. In order to achieve this goal, the dimeric form of 2-mercaptonicotinic acid (MNA-MNA) was directly attached to the polymeric backbone of chitosan (CHI) via amide bond formation mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDAC) used as a coupling reagent. The remaining free amino groups were in the following reacted with succinic anhydride (Succ) in order to obtain a uniformly anionically charged polymer (CHI-Succ-MNA-MNA). Within this study, different coupling rates of up to 170 μmol MNA-MNA per gram polymer were achieved. The attachment of the dimeric ligand resulted in a preactivated thiomer with a comparatively more reactive disulfide substructure due to the additional nitrogen atom in conjugation over the aromatic moieties. Furthermore, the obtained polymer is entirely preactivated and thus prevented against undesired oxidation reactions. Kinetic studies of disulfide exchange reactions showed a 3.8-fold higher reactivity of CHI-Succ-MNA-MNA in comparison to a state-of-the-art preactivated thiomer. Within rheological measurements, CHI-Succ-MNA-MNA with a coupling rate of 170 μmol (CHI-Succ-MNA-MNA 170) led to a 5.7-fold higher mucus viscosity than the non-thiolated control polymer (CHI-Succ) indicating a rheological synergism due to mucoadhesive properties. These results were confirmed by a second mucoadhesion study, which showed a significantly prolonged retention time of CHI-Succ-MNA-MNA on the small intestinal mucosa compared to CHI-Succ (P<0.02). Accordingly, the double preactivation seems to be a promising strategy in order to obtain entirely preactivated polymers with enhanced mucoadhesive properties.
Collapse
Affiliation(s)
- Claudia Menzel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Jennifer Silbernagl
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christina Leichner
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Max Jelkmann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christian W Huck
- Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Shah Hussain
- Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
44
|
Abstract
INTRODUCTION With the introduction of mucoadhesion in 1980, pharmaceutical researchers have gained interest in mucoadhesive compositions. This interest has led to the development of mucoadhesive drug delivery systems aiming (I) to target a specific tissue, (II) to overcome barriers to absorption as well as (III) to control drug release of the therapeutic compositions. AREAS COVERED In this review, the term mucoadhesion and a variety of targetable mucosa are described through review of the literature. Mucoadhesive drug delivery systems and mucoadhesive polymers, such as thiomers, which are reported within the patent literature or in related publications are described in detail, including their therapeutic uses. EXPERT OPINION Mucoadhesion is associated with benefits such as controlled, sustained release, prolonged residence time at the site of action, the ability to target specific mucosae and ease of application which leads to higher rates of patient compliance. Although many research groups are investigating in this domain, not many drug delivery systems based on mucoadhesive polymers have got from bench to market. The most promising and advanced applications seen in patent literature within the last five years seems to be for oral application.
Collapse
Affiliation(s)
- Flavia Laffleur
- a Department of Pharmaceutical Technology , Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
45
|
Laffleur F, Leder N, Barthelmes J. In vitroevaluation of thio-poly acrylic acid for intraoral delivery. Drug Deliv 2015; 23:2065-73. [DOI: 10.3109/10717544.2015.1122673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Development of novel mucoadhesive hyaluronic acid derivate as lubricant for the treatment of dry eye syndrome. Ther Deliv 2015; 6:1211-9. [DOI: 10.4155/tde.15.55] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Dry eye – a disease affecting between 4 and 34% of the population worldwide. Stressful conditions to ocular surface, contact lenses as well as systemic disease cause dry eye. Novel synthesized hyaluronic acid derivate was evaluated in terms of its potential as mucoadhesive and lubricant. Results & methodology: Hyaluronic acid was chemically modified with cysteine ethyl ester (hyaluronic acid-cysteine ethyl ester). Mucoadhesion, disintegration and water uptake capacity, moreover, safety as the hen's egg test for mucous membrane compatibility were evaluated. According to the results, hyaluronic acid-cysteine ethyl ester achieved 3.81-fold increased swelling capacity, 30.5-fold more improvement mucoadhesive properties and 9.72-fold higher stability of hyaluronic acid, which was achieved due to the chemical modification. Summary: Thus, the promising results underpin further exploitation of this versatile polysaccharide for treating dry eye syndrome.
Collapse
|
47
|
Rodríguez-Gascón A, Del Pozo-Rodríguez A, Isla A, Solinís MA. Vaginal gene therapy. Adv Drug Deliv Rev 2015; 92:71-83. [PMID: 26189799 DOI: 10.1016/j.addr.2015.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/09/2015] [Accepted: 07/09/2015] [Indexed: 02/01/2023]
Abstract
In the last years, vaginal gene therapy has gained increasing attention mainly for the treatment and control of sexually transmitted infections. DNA delivery has been also suggested to improve reproductive outcomes for women with deficiencies in the female reproductive tract. Although no product has reached clinical phase, preclinical investigations reveal the potential of the vaginal tract as an effective administration route for gene delivery. This review focuses on the main advantages and challenges of vaginal gene therapy, and on the most used nucleic acid delivery systems, including viral and non-viral vectors. Additionally, the advances in the application of vaginal gene therapy for the treatment and/or prevention of infectious diseases such as the human immunodeficiency virus (HIV), the human papillomavirus (HPV) or the herpes simplex virus (HSV) are presented.
Collapse
Affiliation(s)
- Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain.
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - Arantxazu Isla
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - María Angeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
48
|
Laffleur F, Psenner J, Suchaoin W. Permeation enhancement via thiolation: in vitro and ex vivo evaluation of hyaluronic acid-cysteine ethyl ester. J Pharm Sci 2015; 104:2153-60. [PMID: 25900642 DOI: 10.1002/jps.24456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 11/11/2022]
Abstract
It was the aim of this study to evaluate the permeation-enhancing effect of synthesized thiolated hyaluronic acid (HA). HA, a naturally found polysaccharide, was chemically modified with l-cysteine ethyl ether (C) via amide bond formation. In vitro permeation enhancement was tested on Caco-2 cells with two compounds, sulforhodamine (SR) and fluorescein isothiocyanate-dextran (FD4). Cytotoxicity assays as lactate dehydrogenase and thiazolyl blue tetrazolium bromide (MTT) were performed on colon carcinoma cell line. Transepithelial electrical resistance (TEER) measurements were conducted. Ex vivo evaluation was accomplished on rat intestinal mucosa in order to predict the permeation enhancing effect with SR, sodium fluorescein (SF), and FD4, respectively. The MTT as well as lactate dehydrogenase revealed no toxicity over time periods of 3 and 12 h, respectively. The bioconjugate is biocompatible and safe to use. Furthermore, TEER measurements showed the integrity of tight junctions. The in vitro permeation studies on cell studies exhibit 1.28-fold enhancement for SR and 1.47-fold enhancement for FD4 with hyaluronic acid-cysteine ethyl ester (HAC) in comparison to unmodified one. The ex vivo transport studies exhibit 1.9-fold enhancement for SF, 1.31-fold enhancement for Rhodamine123, and 1.3-fold enhancement for FD4 with HAC in comparison to unmodified one, respectively. Thus, the promising results encourage further investigations and exploitation of this versatile polysaccharide.
Collapse
Affiliation(s)
- Flavia Laffleur
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Julia Psenner
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Wongsakorn Suchaoin
- Department of Pharmaceutical Technology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|