1
|
Xu M, Liu T, Xu J, Guo Q, Ren Y, Zhu W, Zhuang H, Pan Z, Fu R, Zhao X, Wang F, Mao Y, Song L, Song Y, Ji L, Qian W, Hou S, Wang R, Li J, Zhang D, Guo H. Rapid Mass Spectrometry-Based Multiattribute Method for Glycation Analysis with Integrated Afucosylation Detection Capability. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1669-1679. [PMID: 38970800 DOI: 10.1021/jasms.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The multiattribute method (MAM) has emerged as a powerful tool for simultaneously screening multiple product quality attributes of therapeutic antibodies. One such potential critical quality attribute (CQA) is glycation, a common modification that can impact the heterogeneity, functional activity, and immunogenicity of therapeutic antibodies. However, current methods for monitoring glycation levels in MAM are rare and not sufficiently rapid and accurate. In this study, an improved mass spectrometry (MS)-based MAM was developed to simultaneously monitor glycation and other quality attributes including afucosylation. The method was evaluated using two therapeutic antibodies with different glycosylation site numbers. Treatment with IdeS, Endo F2, and dithiothreitol generated three distinct subunits, and the glycation results obtained were similar to those treated with PNGase F, which is routinely used to release glycans; the sample processing time was greatly reduced while providing additional quality attribute information. The MS-based MAM was also employed to assess the glycation progression following forced glycation in various buffer solutions. A significant increase in oxidation was observed when forced glycation was conducted in an ammonium bicarbonate buffer solution, and a total of 23 potential glycation sites and 4 significantly oxidized sites were identified. Notably, we found that ammonium bicarbonate was found to specifically stimulate oxidation, while glycation had a synergistic effect on oxidation. These findings establish this study as a novel methodology for achieving a technologically advanced platform and concept that enhances the efficacy of product development and quality control, characterized by its broad-spectrum, rapid, and accurate nature.
Collapse
Affiliation(s)
- Mengjiao Xu
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Tao Liu
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jin Xu
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingcheng Guo
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Taizhou Mabtech Pharmaceuticals Co., Ltd., Taizhou 225316, China
| | - Yule Ren
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Weifan Zhu
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Huangzhen Zhuang
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Zhiyuan Pan
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Rongrong Fu
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Xiang Zhao
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Fugui Wang
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
| | - Yanni Mao
- Waters Corporation, Shanghai 200126, China
| | | | | | - Lusha Ji
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weizhu Qian
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Sheng Hou
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Rui Wang
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
| | - Jun Li
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Dapeng Zhang
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Huaizu Guo
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252059, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai 201203, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- State Key Laboratory of Macromolecular Drugs and Large-Scale Manufacturing, Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai 201203, China
| |
Collapse
|
2
|
Li J, Wang H, Wang L, Yu D, Zhang X. Stabilization effects of saccharides in protein formulations: A review of sucrose, trehalose, cyclodextrins and dextrans. Eur J Pharm Sci 2024; 192:106625. [PMID: 37918545 DOI: 10.1016/j.ejps.2023.106625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Saccharides are a popular group of stabilizers in liquid, frozen and freeze dried protein formulations. The current work reviewed the stabilization mechanisms of three groups of saccharides: (i) Disaccharides, specifically sucrose and trehalose; (ii) cyclodextrins (CDs), a class of cyclic oligosaccharides; and (iii) dextrans, a class of polysaccharides. Compared to sucrose, trehalose exhibits a more pronounced preferential exclusion effect in liquid protein formulations, due to its stronger interaction with water molecules. However, trehalose obtains higher phase separation and crystallization propensity in frozen solutions, resulting in the loss of its stabilization function. In lyophilized formulations, sucrose has a higher crystallization propensity. Besides, its glass matrix is less homogeneous than that of trehalose, thus undermining its lyoprotectant function. Nevertheless, the hygroscopic nature of trehalose may result in high water absorption upon storage. Among all the CDs, the β form is believed to have stronger interactions with proteins than the α- and γ-CDs. However, the stabilization effect, brought about by CD-protein interactions, is case-by-case - in some examples, such interactions can promote protein destabilization. The stabilization effect of hydroxypropyl-β-cyclodextrin (HPβCD) has been extensively studied. Due to its amphiphilic nature, it can act as a surface-active agent in preventing interfacial stresses. Besides, it is a dual functional excipient in freeze dried formulations, acting as an amorphous bulking agent and lyoprotectant. Finally, dextrans, when combined with sucrose or trehalose, can be used to produce stable freeze dried protein formulations. A strong stabilization effect can be realized by low molecular weight dextrans. However, the terminal glucose in dextrans yields protein glycation, which warrants extra caution during formulation development.
Collapse
Affiliation(s)
- Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Hongyue Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lushan Wang
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States; Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Dongyue Yu
- Pharmaceutical Candidate Optimization, Bristol Myers Squibb, Route 206 and Province Line Road, Princeton, NJ 08540, USA
| | - Xiangrong Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
3
|
Recent progress in drying technologies for improving the stability and delivery efficiency of biopharmaceuticals. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:35-57. [PMID: 36568503 PMCID: PMC9768793 DOI: 10.1007/s40005-022-00610-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Background Most biopharmaceuticals are developed in liquid dosage forms that are less stable than solid forms. To ensure the stability of biopharmaceuticals, it is critical to use an effective drying technique in the presence of an appropriate stabilizing excipient. Various drying techniques are available for this purpose, such as freeze drying or lyophilization, spray drying, spray freeze-drying, supercritical fluid drying, particle replication in nonwetting templates, and fluidized bed drying. Area covered In this review, we discuss drying technologies and their applications in the production of stable solid-state biopharmaceuticals, providing examples of commercially available products or clinical trial formulations. Alongside this, we also review how different analytical methods may be utilized in the evaluation of aerosol performance and powder characteristics of dried protein powders. Finally, we assess the protein integrity in terms of conformational and physicochemical stability and biological activity. Expert opinion With the aim of treating either infectious respiratory diseases or systemic disorders, inhaled biopharmaceuticals reduce both therapeutic dose and cost of therapy. Drying methods in the presence of optimized protein/stabilizer combinations, produce solid dosage forms of proteins with greater stability. A suitable drying method was chosen, and the process parameters were optimized based on the route of protein administration. With the ongoing trend of addressing deficiencies in biopharmaceutical production, developing new methods to replace conventional drying methods, and investigating novel excipients for more efficient stabilizing effects, these products have the potential to dominate the pharmaceutical industry in the future.
Collapse
|
4
|
Hsein H, Auffray J, Noel T, Tchoreloff P. Recent advances and persistent challenges in the design of freeze-drying process for monoclonal antibodies. Pharm Dev Technol 2022; 27:942-955. [PMID: 36206457 DOI: 10.1080/10837450.2022.2131818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Monoclonal antibodies constitute nowadays an important therapeutic class and the number of approved molecules for clinical uses continues to increase, achieving considerable part of the therapeutic market. Yet, the stability in solution of these biopharmaceuticals is often low. That's why freeze-drying has been and remains the method of choice to obtain monoclonal antibodies in the solid state and to improve their stability. The design of freeze-drying process and its optimization are still topical subjects of interest and the pharmaceutical industry is regularly challenged by the requirements of quality, safety and efficiency set by the regulatory authorities. These requirements imply a deep understanding of each step of the freeze-drying process, developing techniques to control the critical parameters and to monitor the quality of the intermediate and the final product. In addition to quality issues, the optimization of the freeze-drying process in order to reduce the cycle length is of great interest since freeze-drying is known to be an energy-expensive and time consuming process. In this review, we will present the recent literature dealing with the freeze-drying of monoclonal antibodies and focus on the process parameters and strategies used to improve the stability of these molecules and to optimize the FD process.
Collapse
Affiliation(s)
- Hassana Hsein
- Univ. Bordeaux, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, F-33400 Talence, France
| | - Julie Auffray
- Univ. Bordeaux, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, F-33400 Talence, France.,Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Thierry Noel
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Pierre Tchoreloff
- Univ. Bordeaux, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, F-33400 Talence, France
| |
Collapse
|
5
|
A Review on Mixing-Induced Protein Particle Formation: The Puzzle of Bottom-Mounted Mixers. J Pharm Sci 2020; 109:2363-2374. [DOI: 10.1016/j.xphs.2020.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
6
|
Wenzel T, Gieseler M, Gieseler H. Investigation of Two Different Pressure-Based Controlled Ice Nucleation Techniques in Freeze-Drying: The Integral Role of Shelf Temperature After Nucleation in Process Performance and Product Quality. J Pharm Sci 2020; 109:2746-2756. [PMID: 32497596 DOI: 10.1016/j.xphs.2020.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 11/19/2022]
Abstract
The purpose of this study was to investigate the impact of shelf temperature modifications during application of controlled ice nucleation techniques on process data and critical product quality attributes for a challenging, high-concentration and high-fill volume amorphous model system. Different freezing programs were applied and compared for the mechanistically different depressurization and vacuum-induced surface freezing techniques. Critical process data, such as product temperature and drying time, were analyzed. The final products were characterized with a focus on product morphology, residual moisture, reconstitution time and stability. The shelf temperature directly after primary nucleation showed a major influence on process performance and product quality attributes, with an isothermal hold step at an intermediate temperature leading to optimal results in terms of homogeneity and reduction of product temperatures and drying time for the model system used. The different controlled ice nucleation techniques led to significantly different results in terms of product morphology and process data, showing that the two mechanistically different controlled nucleation techniques are not interchangeable.
Collapse
Affiliation(s)
- Tim Wenzel
- Department of Pharmaceutics, Friedrich-Alexander University (FAU) Erlangen-Nuernberg, Freeze Drying Focus Group (FDFG), Cauerstrasse 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Margit Gieseler
- GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany
| | - Henning Gieseler
- Department of Pharmaceutics, Friedrich-Alexander University (FAU) Erlangen-Nuernberg, Freeze Drying Focus Group (FDFG), Cauerstrasse 4, 91058 Erlangen, Germany; GILYOS GmbH, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany.
| |
Collapse
|
7
|
Assegehegn G, Brito-de la Fuente E, Franco JM, Gallegos C. Use of a temperature ramp approach (TRA) to design an optimum and robust freeze-drying process for pharmaceutical formulations. Int J Pharm 2020; 578:119116. [PMID: 32027958 DOI: 10.1016/j.ijpharm.2020.119116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
Abstract
Freeze-drying, until now, has been a process that was designed using a trial and error experimental approach. This approach is often material and time consuming, and the resulting freeze-drying processes are neither optimum nor robust. Accordingly, the objective of this study was to develop a simple-to-use and experimental-based approach to design an optimum and robust freeze-drying process for any given formulation. The temperature ramp approach (TRA) detailed in this study involves the implementation of a customized design of experiments (DoE) to perform few (three or four) experiments using a given drug formulation. The DoE results are analyzed to define optimum processing conditions (i.e., shelf temperature and chamber pressure) based on a predefined range of target product temperature for primary drying, which could be defined from formulation characterization at its frozen state. In this study, a successful freeze-drying process of two model formulations using the TRA was designed. Verification experiments at the optimum processing conditions showed excellent agreement in both product temperature and sublimation rate with the values obtained using the TRA. Thus, the TRA detailed in this study offers a significant advantage to reduce development time and material, and enhance the efficiency and robustness of the resulting freeze-drying process.
Collapse
Affiliation(s)
- Getachew Assegehegn
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Global Manufacturing Pharmaceuticals, Bad Homburg, Germany.
| | - Edmundo Brito-de la Fuente
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Global Manufacturing Pharmaceuticals, Bad Homburg, Germany
| | - José M Franco
- Pro2TecS-Chemical Product and Process Technology Research Centre, Complex Fluid Engineering Laboratory, Departamento de Ingeniería Química, Universidad de Huelva, Huelva, Spain
| | - Críspulo Gallegos
- Fresenius-Kabi Deutschland GmbH, Product and Process Engineering Center, Global Manufacturing Pharmaceuticals, Bad Homburg, Germany
| |
Collapse
|
8
|
Simon N, Sperber C, Voigtländer C, Born J, Gilbert DF, Seyferth S, Lee G, Kappes B, Friedrich O. Improved stability of polyclonal antibodies: A case study with lyophilization-conserved antibodies raised against epitopes from the malaria parasite Plasmodium falciparum. Eur J Pharm Sci 2020; 142:105086. [PMID: 31626961 DOI: 10.1016/j.ejps.2019.105086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 11/29/2022]
Abstract
Antibodies can be produced as polyclonal (pAb) or monoclonal (mAb) liquid formulations with limited shelf-life. For pAbs, unlike mAbs, only little is known about excipients and lyophilization affecting antibody stability upon reconstitution. We used a model pAb directed against Plasmodium falciparum (Pf) pyridoxal 5'-phosphate synthase 2 (Pdx2) to systemically study effects of bulking agents (amino acids, phosphate buffers, salt solutions), sugar(alcohols), surfactants and protein additions (bovine serum albumin, BSA) in liquid pAb formulations (isolated or in combinations) on the activity to detect the antigen in Pf extracts by Western blots. Repeated freeze-thaw cycles (20x) and extended room temperature storage markedly compromised pAb stability, the former being ameliorated by addition of cryoprotectants (glycerol, sucrose). Lyophilization of pure liquid pAb formulation markedly decreased antibody reactivity upon reconstitution which was not preserved by most bulking agents tested (e.g., histidine, arginine, acetate). Among the tested salt solutions (NaCl, Ringer, PBS), phosphate buffered saline had the largest lyoprotective potential, alongside sucrose, but not trehalose or maltitol. Among combinations of excipients, PBS, sucrose, low concentration BSA and Tween potently preserved PfPdx2 stability. Results for PBS were transferable to PfEnolase pAb, indicating that some of the formulations investigated here might be a low-cost solution for more general applicability to pAbs.
Collapse
Affiliation(s)
- Nina Simon
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany.
| | - Christine Sperber
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany; Division of Pharmaceutics, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Cornelia Voigtländer
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany
| | - Julia Born
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany
| | - Daniel F Gilbert
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany
| | - Stefan Seyferth
- Division of Pharmaceutics, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Geoffrey Lee
- Division of Pharmaceutics, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, Erlangen 91058, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University Erlangen-Nürnberg, Paul-Gordan-Str. 3, Erlangen 91052, Germany.
| |
Collapse
|
9
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
10
|
Lyophilization of High-Concentration Protein Formulations. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2019. [DOI: 10.1007/978-1-4939-8928-7_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Vollrath I, Friess W, Freitag A, Hawe A, Winter G. Comparison of ice fog methods and monitoring of controlled nucleation success after freeze-drying. Int J Pharm 2018; 558:18-28. [PMID: 30597272 DOI: 10.1016/j.ijpharm.2018.12.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/19/2018] [Accepted: 12/13/2018] [Indexed: 11/28/2022]
Abstract
Improving freeze-drying processes regarding drying time and batch homogeneity is subject of ongoing research work. In this context, controlled nucleation raised great expectations. However, practically we face some challenges, e.g. how to non-destructively monitor successfully performed controlled nucleation. The question if different controlled nucleation methods lead to comparable products, as not every method can easily be implemented in lab and production scale equipment, is also of high interest. Additionally, the optimal nucleation temperature for controlled nucleation is an open question. In our study, we addressed these challenges. We successfully evaluated frequency modulated spectroscopy as a fast and non-destructive method to monitor controlled nucleation success and batch homogeneity. We found that the better homogeneity generated by controlled nucleation during the freezing step did not sustain in the dried product. Lyophilizates produced by three different ice fog methods for controlled nucleation were characterized by comparable specific surface areas but differed in residual moisture content. To investigate the impact of the ice nucleation temperature (TN) on the resulting specific surface area, we performed controlled nucleation at -3 °C and -10 °C. We concluded that TN is not the only specific surface area determining factor and a high TN does not necessarily lead to larger pores but poses a higher risk of not-nucleating vials.
Collapse
Affiliation(s)
- Ilona Vollrath
- Coriolis Pharma Research GmbH, D-82152 Martinsried, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, D-81377 Munich, Germany
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, D-81377 Munich, Germany
| | | | - Andrea Hawe
- Coriolis Pharma Research GmbH, D-82152 Martinsried, Germany.
| | - Gerhard Winter
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University, D-81377 Munich, Germany
| |
Collapse
|
12
|
Vollrath I, Friess W, Freitag A, Hawe A, Winter G. Does controlled nucleation impact the properties and stability of lyophilized monoclonal antibody formulations? Eur J Pharm Biopharm 2018; 129:134-144. [DOI: 10.1016/j.ejpb.2018.05.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 11/29/2022]
|
13
|
Gitter JH, Geidobler R, Presser I, Winter G. A Comparison of Controlled Ice Nucleation Techniques for Freeze-Drying of a Therapeutic Antibody. J Pharm Sci 2018; 107:2748-2754. [PMID: 30055225 DOI: 10.1016/j.xphs.2018.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
The aim of this study was to investigate if mechanistically different controlled ice nucleation techniques in freeze-drying are comparable to each other with respect to drying process performance and product quality attributes. Therefore, we studied 3 different model formulations including amorphous (sucrose, trehalose) and semi-crystalline (mannitol:sucrose 4:1) solids containing a monoclonal antibody IgG1 (5 g/L) processed either by application of ice fog or depressurization technique setting an ice nucleation temperature of -5°C. Subsequently, the same freeze-drying protocol on identical machinery was applied. The results showed that the techniques are comparable with respect to the thermal history of product temperature sensors and primary drying time, solid state- and protein-related product quality attributes. All analytics comprising Karl Fischer titration, X-ray powder diffraction and Brunauer-Emmet-Teller as well as high-performance size exclusion chromatography, turbidity and subvisible particle counting using flow-imaging microscopy exhibited similarity and comparability among the controlled nucleation protocols.
Collapse
Affiliation(s)
- Julian H Gitter
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandstr. 5, 81377 Munich, Germany.
| | - Raimund Geidobler
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88307 Biberach an der Riß, Germany
| | - Ingo Presser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88307 Biberach an der Riß, Germany
| | - Gerhard Winter
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Butenandstr. 5, 81377 Munich, Germany
| |
Collapse
|
14
|
Moussa EM, Wilson NE, Zhou QT, Singh SK, Nema S, Topp EM. Effects of Drying Process on an IgG1 Monoclonal Antibody Using Solid-State Hydrogen Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS). Pharm Res 2018; 35:12. [DOI: 10.1007/s11095-017-2318-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
|
15
|
Kumar S, Plotnikov NV, Rouse JC, Singh SK. Biopharmaceutical Informatics: supporting biologic drug development via molecular modelling and informatics. J Pharm Pharmacol 2017; 70:595-608. [DOI: 10.1111/jphp.12700] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/29/2016] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
The purpose of this article is to introduce an emerging field called ‘Biopharmaceutical Informatics’. It describes how tools from Information technology and Molecular Biophysics can be adapted, developed and gainfully employed in discovery and development of biologic drugs.
Key Findings
The findings described here are based on literature surveys and the authors’ collective experiences in the field of biologic drug product development. A strategic framework to forecast early the hurdles faced during drug product development is weaved together and elucidated using chemical degradation as an example. Efficiency of translating biologic drug discoveries into drug products can be significantly improved by combining learnings from experimental biophysical and analytical data on the drug candidates with molecular properties computed from their sequences and structures via molecular modeling and simulations.
Summary
Biopharmaceutical Informatics seeks to promote applications of computational tools towards discovery and development of biologic drugs. When fully implemented, industry-wide, it will enable rapid materials-free developability assessments of biologic drug candidates at early stages as well as streamline drug product development activities such as commercial scale production, purification, formulation, analytical characterization, safety and in vivo performance.
Collapse
Affiliation(s)
- Sandeep Kumar
- Pharmaceutical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, USA
| | - Nikolay V Plotnikov
- Pharmaceutical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, USA
| | - Jason C Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, USA
| | - Satish K Singh
- Pharmaceutical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, MO, USA
| |
Collapse
|
16
|
Fisher AC, Lee SL, Harris DP, Buhse L, Kozlowski S, Yu L, Kopcha M, Woodcock J. Advancing pharmaceutical quality: An overview of science and research in the U.S. FDA's Office of Pharmaceutical Quality. Int J Pharm 2016; 515:390-402. [PMID: 27773853 DOI: 10.1016/j.ijpharm.2016.10.038] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 11/29/2022]
Abstract
Failures surrounding pharmaceutical quality, particularly with respect to product manufacturing issues and facility remediation, account for the majority of drug shortages and product recalls in the United States. Major scientific advancements pressure established regulatory paradigms, especially in the areas of biosimilars, precision medicine, combination products, emerging manufacturing technologies, and the use of real-world data. Pharmaceutical manufacturing is increasingly globalized, prompting the need for more efficient surveillance systems for monitoring product quality. Furthermore, increasing scrutiny and accelerated approval pathways provide a driving force to be even more efficient with limited regulatory resources. To address these regulatory challenges, the Office of Pharmaceutical Quality (OPQ) in the Center for Drug Evaluation and Research (CDER) at the U.S. Food and Drug Administration (FDA) harbors a rigorous science and research program in core areas that support drug quality review, inspection, surveillance, standards, and policy development. Science and research is the foundation of risk-based quality assessment of new drugs, generic drugs, over-the-counter drugs, and biotechnology products including biosimilars. This is an overview of the science and research activities in OPQ that support the mission of ensuring that safe, effective, and high-quality drugs are available to the American public.
Collapse
Affiliation(s)
- Adam C Fisher
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Sau L Lee
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States.
| | - Daniel P Harris
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Lucinda Buhse
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Steven Kozlowski
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Lawrence Yu
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Michael Kopcha
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Silver Spring, MD 20993, United States
| | - Janet Woodcock
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, MD 20993, United States
| |
Collapse
|