1
|
Sau D, Hazra T, Shiuly A. Microplastics in lentic environments: implications for Indian ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114756-114778. [PMID: 37910348 DOI: 10.1007/s11356-023-30604-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The paper focused on occurrence, characterization, and analytical methods of microplastic (MP) pollution in the lentic environment mainly for the Indian scenario. To understand the flow of MP from plastic waste, a material flow diagram was developed using STAN, assigning the transfer coefficients based on existing scientific literature and primary survey from local recycling facilities and industries. The quantity, morphology, and polymers of MP in the water and sediments of the lentic environment were compared for various states from 2011 to 2022. The reasons for the geographical heterogeneity in microplastics may be the migratory routes of MPs in the ecosystems like commercial uses and wastewater characteristics which possibly discharged in lentic system. Factors like particle density, water surface area, water surface depth, wind speed and direction, and water flow size mainly affect MP concentrations in the lentic water body, and mainly PHI and PLI are keys to MP risk analysis. The surface characteristics of MPs reveal that it absorbs many toxic contaminants including heavy metals. The impacts of MP on ecosystem and human health were also discussed. The impacts of socioeconomic conditions on MP concentrations for different states in India were also added. Proposed methods for plastic waste generation control also included which will help for developing policy in future to prevent MP pollution in lentic environments and also motivate future researchers to establish new standardized methods of MP analysis.
Collapse
Affiliation(s)
- Debasis Sau
- Department of Civil Engineering, Jadavpur University, 188, Raja S C Mullick Street, Kolkata, 700032, India
| | - Tumpa Hazra
- Department of Civil Engineering, Jadavpur University, 188, Raja S C Mullick Street, Kolkata, 700032, India.
| | - Amit Shiuly
- Department of Civil Engineering, Jadavpur University, 188, Raja S C Mullick Street, Kolkata, 700032, India
| |
Collapse
|
2
|
Mazel V, Tchoreloff P. Indices for the brittleness of pharmaceutical tablets: A reassessment. Int J Pharm 2023; 645:123364. [PMID: 37661031 DOI: 10.1016/j.ijpharm.2023.123364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
Brittleness is an important mechanical property. In the classical sense, a material is considered brittle if, during loading, it behaves elastically until failure. Nevertheless, it is also sometimes understood as the fact to be resistant to breakage. In the case of pharmaceutical tablets, three different indices have been defined to measure brittleness: the brittle fracture index (BFI), the brittle/ductile index (BDI) and the tablet brittleness index (TBI). The aim of this work was to reassess the meaning of the different indices that are known to give contradictory results. Using theoretical considerations, numerical modelling and experiments, it was possible to show that the only index that unequivocally measures the brittleness of the tablet understood as elastic until failure is the BFI. If the other two indices can be useful, for example to assess the friability of the tablet in the case of the TBI, they do not make it possible to measure tablet brittleness in the classical sense, i.e. as opposed to ductility.
Collapse
Affiliation(s)
- Vincent Mazel
- Univ. Bordeaux, Arts et Metiers Institute of Technology, University of Bordeaux, CNRS, Bordeaux INP, INRAe, I2M Bordeaux, 33400 Talence, France.
| | - Pierre Tchoreloff
- Univ. Bordeaux, Arts et Metiers Institute of Technology, University of Bordeaux, CNRS, Bordeaux INP, INRAe, I2M Bordeaux, 33400 Talence, France
| |
Collapse
|
3
|
Sonnergaard J. Comparative evaluation of three methods for quantifying tablet brittleness. Pharm Dev Technol 2023; 28:719-723. [PMID: 37467516 DOI: 10.1080/10837450.2023.2238047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
A low value of deformation before crushing is an obvious and understandable measure of brittleness of materials including tablets. In this article, three methods based on deformation measurement in a flexure tester are compared. The simplest one is a plain measurement of distance from contact or selected start point till fracture. Next the brittle-ductile method (BDI), where the distance is established by normalisation of the force-displacement curve based on the work of failure (WOF). The third method is the tablet brittleness index (TBI) by Gong and Sun, where the reciprocal of a linear distance is proposed as a brittleness quantity. The study is based on data from a previous investigation, where tablets of microcrystalline cellulose and lactose in different combinations and with four different crushing forces were utilised. The investigation shows that the BDI method is preferable. It is easy to compute without data manipulation, the sensitivity to the fracture force is negligible and it provides an independent characteristic of the brittleness of a compacted material.
Collapse
Affiliation(s)
- Jørn Sonnergaard
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Berkenkemper S, Kleinebudde P. Evaluation of alternative methods to derive particle density from compression data. Int J Pharm 2023; 632:122582. [PMID: 36610520 DOI: 10.1016/j.ijpharm.2023.122582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The determination of particle density is a critical part of material characterization regarding compression analyses. Helium pycnometry as the most commonly used method is criticized for different aspects. Most prominent is the susceptibility to errors when measuring water-containing powders. Alternative methods for determining particle density using compression data have already been described. However, a systematic investigation and evaluation is still missing. In this study, the methods by Sun and Krumme were investigated in detail regarding their robustness against variations in tableting settings. Twelve pharmaceutical excipients were tableted at five different settings to verify the applicability and sensitivity to changes in the experimental set-up. Both methods were found to be robust against influencing parameters from the experiments. A sufficiently high compression pressure to approach a constant density value of the corresponding material during tableting was considered to be an essential requirement for the performance of the methods. Brittle materials with high yield pressure were found to be unsuitable for the application of both methods. The method of Krumme gave small deviations to measurements of helium pycnometry for water-free materials. By using the tablet density after in-die elastic recovery, Krumme's method could be used for water-containing materials as well. The method of Sun was found to give significantly smaller values for particle density due to inclusion of slow elastic recovery.
Collapse
Affiliation(s)
- Sabrina Berkenkemper
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Peter Kleinebudde
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitaetsstraße 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
5
|
Lin YJ, Nie H. A novel approach to mechanical characterization of pharmaceutical lyospheres. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Paul S, Wang C, Calvin Sun C. An extended macroindentation method for determining the hardness of poorly compressible materials. Int J Pharm 2022; 624:122054. [PMID: 35902058 DOI: 10.1016/j.ijpharm.2022.122054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Indentation hardness, H, is an important mechanical property that quantifies the resistance to deformation by a material. For pharmaceutical powders, H can be determined using a macroindentation method, provided they can form intact tablets suitable for testing. This work demonstrates a method for determining the hardness of problematic materials that cannot form suitable tablets for macroindentation. The method entails predicting the hardness of a given powder at zero porosity (H0) from those of microcrystalline cellulose and its binary mixture with the test compound using a power law mixing rule based on weight fraction. This method was found suitable for 13 binary mixtures. In addition, the H0 values derived by this method could capture changes due to different particle sizes of sucrose and sodium chloride. Furthermore, the derived H0 reasonably agreed with the single crystal indentation hardness of a set of 16 crystals when accounting for the effect of indentation condition and structural anisotropy. The mixture method thus extends the use of macroindentation for predicting indentation hardness of powders that cannot form intact tablets and, hence, their plasticity.
Collapse
Affiliation(s)
- Shubhajit Paul
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455.
| |
Collapse
|
7
|
Beyond Brittle/Ductile Classification: Applying Proper Constitutive Mechanical Metrics to Understand the Compression Characteristics of Pharmaceutical Materials. J Pharm Sci 2022; 111:1984-1991. [PMID: 35007567 DOI: 10.1016/j.xphs.2022.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/23/2022]
Abstract
Active pharmaceutical ingredients (API) and excipients are often classified as 'brittle' or 'ductile' based on their yield pressure determined through the Heckel analysis. Such a brittle/ductile classification is often correlated to some measure of elasticity, die-wall stresses, and brittle fracture propensities from studies performed with a handful of model excipients. This subsequently gives rise to the presumption that all ductile materials behave similarly to microcrystalline cellulose (MCC) and that all brittle materials to lactose, mannitol, or dicalcium phosphate. Such a 'one-size-fits-all' approach can subsequently lead to inaccurate classification of APIs, which often behave very differently than these model excipients. This study compares the commonly reported mechanical metrics of two proprietary APIs and two classical model excipients. We demonstrate that materials classified as 'ductile' by Heckel's 'standards' may behave very differently than MCC and in some cases may even have a propensity for brittle failure. Our data highlight the complexity of APIs and the need to evaluate a set of mechanical metrics, instead of binary assignments of ductility or brittleness based on quantities that do not fully capture the tableting process, to truly optimize a tablet formulation as part of the overall target product profile.
Collapse
|
8
|
Upadhyay P, Mishra MK, Ramamurty U, Bond AD. Mechanical Anisotropy and Tabletability of Famotidine Polymorphs. CrystEngComm 2022. [DOI: 10.1039/d1ce01406d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the drug development process, early characterization of solid forms can help to envisage the bulk processability of a powder, which should assist in selecting an optimal solid form. In...
Collapse
|
9
|
Paul S, Tseng YC. A semi-empirical model for estimation of flaw size in internally defective tablets. J Pharm Sci 2021; 110:2340-2345. [PMID: 33662393 DOI: 10.1016/j.xphs.2021.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/27/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
Capping is a mechanical defect in tablets, which is attributed to multiple factors including intrinsic material properties and tableting conditions. A suitable non-destructive approach using acoustically derived elastic modulus has showed distinctive features between a defective tablet and a defect-free tablet. In this work, a semi-empirical model was developed to estimate flaw size in an internally defective tablet from the relationship among elastic modulus, tablet density, and time of flight (acoustic wave to traverse through the tablet). The model was found fundamentally consistent where the derived flaw size showed clear dependence on powder mechanical properties of seven diverse formulations studied. Furthermore, the flaw size was reasonably correlated with the internal tablet microstructure illustrated by X-ray micro-tomography findings, both qualitatively and quantitatively. This model could thus be efficiently implemented for risk-based evaluation of internal defects in visibly intact tablets to ensure robustness of drug products.
Collapse
Affiliation(s)
- Shubhajit Paul
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA.
| | - Yin-Chao Tseng
- Department of Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877, USA
| |
Collapse
|
10
|
Profound tabletability deterioration of microcrystalline cellulose by magnesium stearate. Int J Pharm 2020; 590:119927. [PMID: 33010396 DOI: 10.1016/j.ijpharm.2020.119927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022]
Abstract
Magnesium stearate (MgSt) is a common lubricant used in tablet formulations to facilitate tablet manufacturing by reducing ejection force. The use of MgSt in tablet formulation is known to potentially deteriorate tabletability of plastic powders and slow down drug dissolution. Here, we report surprisingly profound deterioration in tabletability of microcrystalline cellulose by hand-mixing. We also show that the hand mixing process is highly variable. To ensure the reproducibility of tabletability assessment of powders, hand-mixing should be used with caution. For research that employs hand mixing, mixing procedure should be carefully controlled and reported.
Collapse
|
11
|
Croquelois B, Girardot J, Kopp J, Tchoreloff P, Mazel V. Quantification of tablet sensitivity to a stress concentration: Generalization of Hiestand's approach and link with the microstructure. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Flow and Tableting Behaviors of Some Egyptian Kaolin Powders as Potential Pharmaceutical Excipients. MINERALS 2019. [DOI: 10.3390/min10010023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The present work aimed at assessing the pharmaceutical tableting properties of some Egyptian kaolin samples belong to the Abu Zenima kaolin deposits (estimated at 120 million tons). Four representative samples were selected based on kaolinite richness and their structural order-disorder degree, and after purification, they were dried at 70 °C and heated from room temperature up to 400 °C (10 °C/min). Mineralogy, micromorphology, microtexture, granulometry, porosimetry, moisture content, bulk and tapped density, direct and indirect flowability, and tableting characteristics are studied. Results indicated that purified kaolin samples were made up of 95–99% kaolinite, <3% illite, 1% quartz and 1% anatase. The powder showed mesoporous character (pore diameters from 2 to 38 nm and total pore volume from 0.064 to 0.136 cm3/g) with dominance of fine nanosized particles (<1 μm–10 nm). The powder flow characteristics of both the ordered (Hinckley Index HI > 0.7, crystallite size D001 > 30 nm) and disordered (HI < 0.7, D001 < 30 nm) kaolinite-rich samples have been improved (Hausner ratio between 1.24 and 1.09) as their densities were influenced by thermal treatment (with some observed changes in the kaolinite XRD reflection profiles) and by moisture content (variable between 2.98% and 5.82%). The obtained tablets exhibited hardness between 33 and 44 N only from the dehydrated powders at 400 °C, with elastic recovery (ER) between 21.74% and 25.61%, ejection stress (ES) between 7.85 and 11.45 MPa and tensile fracture stress (TFS) between 1.85 and 2.32 MPa, which are strongly correlated with crystallinity (HI) and flowability (HR) parameters. These findings on quality indicators showed the promising pharmaceutical tabletability of the studied Egyptian kaolin powders and the optimization factors for their manufacturability and compactability.
Collapse
|
13
|
Kuncahyo I, Choiri S, Fudholi A, Rohman A, Martien R. Understanding the effect of lipid formulation loading and ethanol as a diluent on solidification of pitavastatin super-saturable SNEDDS using factorial design approach. Res Pharm Sci 2019; 14:378-390. [PMID: 31798654 PMCID: PMC6827189 DOI: 10.4103/1735-5362.268198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Solidification of a preconcentrate lipid formulation namely self-nano emulsifying drug delivery system (SNEDDS) is required to achieve feasibility, flexibility, and a new concept of “dry nano-emulsion”. The purpose of this study was to assess the effect of SNEDDS loading and ethanol as a diluent on the solidification of pitavastatin supersaturable SNEDDS (S-SNEDDS). A 22 full factorial design approach with a center point addition as a curvature was implemented to determine the effect of S-SNEDDS loading and ethanol on the physical characteristics, namely flowability, compactibility, and drug release behavior. Vibrational spectra, thermal behavior, and morphology of solid S-SNEDDS formulation were also evaluated. The results indicated that there was no interaction between S-SNEDDS and carrier, based on vibrational spectra. However, thermal behaviors (enthalpy and weight loss) were depending on SNEDDS loading. Thereafter, the ethanol as a diluent of preconcentrated formulation had no effect on the morphology of carrier structure. However, the S-SNEDDS loading altered the structure of carrier owing to either solubilization or abrasion processes. The statistical model suggested that ethanol as diluent reduced the flowability, compactibility, and drug releases. Meanwhile, the liquid SNEDDS loading affected the reducing of flowability and compactibility. Finally, solidification without diluent and 20% lipid formulation load was recommended. In addition, it was very useful because of ease on handling, flexibility for further formulation, and desired characteristics of final solid dosage form.
Collapse
Affiliation(s)
- Ilham Kuncahyo
- Faculty of Pharmacy, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia.,Department of Pharmaceutical Science, Setia Budi University, Surakarta, Indonesia
| | - Syaiful Choiri
- Drug Delivery and Pharmaceutical Technology, Pharmaceutics Research Group, Department of Pharmacy, Universitas Sebelas Maret, Ir. Sutami 36A, Surakarta, Indonesia
| | - Achmad Fudholi
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| | - Abdul Rohman
- Department of Pharmaceutical Chemistry, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| | - Ronny Martien
- Department of Pharmaceutics, Gadjah Mada University, Sekip Utara, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Relationship between hydrate stability and accuracy of true density measured by helium pycnometry. Int J Pharm 2019; 567:118444. [PMID: 31212057 DOI: 10.1016/j.ijpharm.2019.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/20/2022]
Abstract
Mechanical properties of a material, such as hardness and elastic modulus, depend on porosity exponentially. Thus, an accurate characterization of material mechanical properties requires correct porosity, which depends on the accuracy of measured true density. Helium pycnometry is the most common technique for determining true density of a powder material but it is not suitable for materials containing volatile components. For unstable hydrates, dehydration during measurement releases water and invalidates the ideal gas law used for calculating sample volume. Consequently, measured true density is over-estimated, which causes gross errors in mechanical properties extrapolated to zero porosity. This work shows that physical stability and the dehydration kinetics, determined by both water-bonding structures and bonding energy, directly affect the magnitude of error in measured true density.
Collapse
|
15
|
Paul S, Tajarobi P, Boissier C, Sun CC. Tableting performance of various mannitol and lactose grades assessed by compaction simulation and chemometrical analysis. Int J Pharm 2019; 566:24-31. [PMID: 31095984 DOI: 10.1016/j.ijpharm.2019.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/06/2019] [Accepted: 05/11/2019] [Indexed: 11/30/2022]
Abstract
Mannitol and lactose are commonly used fillers in pharmaceutical tablets, available in several commercial grades that are produced using different manufacturing processes. These grades significantly differ in particulate and powder properties that impact tablet manufacturability. Choice of sub-optimum type or grade of excipient in tablet formulation can lead to manufacturing problems and difficulties, which are magnified during a continuous manufacturing process. Previous characterization of tableting performance of these materials was limited in scope and under conditions not always realistic to the commercial production of tablets. This work seeks to comprehensively characterize the compaction properties of 11 mannitol and 5 lactose grades using a compaction simulator at both slow and fast tableting speeds. These include tabletability, compressibility, tablet brittleness, die-wall stress transmission, and strain rate sensitivity. A chemometrical analysis of data, using the partial least square technique, was performed to construct a model to provide accurate prediction of tablet tensile strength for mannitol grades. Such knowledge facilitates the selection of suitable tablet filler to attain high quality tablet products.
Collapse
Affiliation(s)
- Shubhajit Paul
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, United States
| | - Pirjo Tajarobi
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Catherine Boissier
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, United States.
| |
Collapse
|
16
|
Lou H, Chung JI, Kiang YH, Xiao LY, Hageman MJ. The application of machine learning algorithms in understanding the effect of core/shell technique on improving powder compactability. Int J Pharm 2019; 555:368-379. [DOI: 10.1016/j.ijpharm.2018.11.039] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 11/25/2022]
|
17
|
Sun WJ, Kothari S, Sun CC. The relationship among tensile strength, Young's modulus, and indentation hardness of pharmaceutical compacts. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.02.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Paul S, Sun CC. Systematic evaluation of common lubricants for optimal use in tablet formulation. Eur J Pharm Sci 2018; 117:118-127. [DOI: 10.1016/j.ejps.2018.02.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/19/2018] [Accepted: 02/08/2018] [Indexed: 10/18/2022]
|
19
|
Paul S, Chang SY, Dun J, Sun WJ, Wang K, Tajarobi P, Boissier C, Sun CC. Comparative analyses of flow and compaction properties of diverse mannitol and lactose grades. Int J Pharm 2018; 546:39-49. [PMID: 29705102 DOI: 10.1016/j.ijpharm.2018.04.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 11/25/2022]
Abstract
Appropriate selection of excipient grade during tablet formulation development depends on thorough knowledge in their compaction and flow properties. Each chemically unique pharmaceutical excipient is usually available in several commercial grades that are widely different in powder properties, which influence their performance for a specific formulation application. In this work, 11 grades of mannitol were systematically characterized, in terms of their particulate, flow and tableting properties, and compared against 5 grades of lactose. Principal component analysis (PCA) identified significant correlations among selected variables, such as particle size, surface area, flowability, wall friction, plasticity parameter, tensile strength, and tablet brittleness. PCA also revealed similar grades of the two excipients, which may be used to select replacement grade, if needed, based on similarity in their overall properties.
Collapse
Affiliation(s)
- Shubhajit Paul
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Shao-Yu Chang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Jiangnan Dun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Wei-Jhe Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Kunlin Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | | | | | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
20
|
Dependence of Friability on Tablet Mechanical Properties and a Predictive Approach for Binary Mixtures. Pharm Res 2017; 34:2901-2909. [DOI: 10.1007/s11095-017-2273-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/27/2017] [Indexed: 11/25/2022]
|
21
|
Dependence of Punch Sticking on Compaction Pressure—Roles of Particle Deformability and Tablet Tensile Strength. J Pharm Sci 2017; 106:2060-2067. [DOI: 10.1016/j.xphs.2017.04.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/19/2017] [Indexed: 11/21/2022]
|
22
|
Paul S, Sun CC. Gaining insight into tablet capping tendency from compaction simulation. Int J Pharm 2017; 524:111-120. [DOI: 10.1016/j.ijpharm.2017.03.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/14/2017] [Accepted: 03/26/2017] [Indexed: 11/25/2022]
|
23
|
|
24
|
Khalid MH, Kazemi P, Perez-Gandarillas L, Michrafy A, Szlęk J, Jachowicz R, Mendyk A. Computational intelligence models to predict porosity of tablets using minimum features. Drug Des Devel Ther 2017; 11:193-202. [PMID: 28138223 PMCID: PMC5238813 DOI: 10.2147/dddt.s119432] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The effects of different formulations and manufacturing process conditions on the physical properties of a solid dosage form are of importance to the pharmaceutical industry. It is vital to have in-depth understanding of the material properties and governing parameters of its processes in response to different formulations. Understanding the mentioned aspects will allow tighter control of the process, leading to implementation of quality-by-design (QbD) practices. Computational intelligence (CI) offers an opportunity to create empirical models that can be used to describe the system and predict future outcomes in silico. CI models can help explore the behavior of input parameters, unlocking deeper understanding of the system. This research endeavor presents CI models to predict the porosity of tablets created by roll-compacted binary mixtures, which were milled and compacted under systematically varying conditions. CI models were created using tree-based methods, artificial neural networks (ANNs), and symbolic regression trained on an experimental data set and screened using root-mean-square error (RMSE) scores. The experimental data were composed of proportion of microcrystalline cellulose (MCC) (in percentage), granule size fraction (in micrometers), and die compaction force (in kilonewtons) as inputs and porosity as an output. The resulting models show impressive generalization ability, with ANNs (normalized root-mean-square error [NRMSE] =1%) and symbolic regression (NRMSE =4%) as the best-performing methods, also exhibiting reliable predictive behavior when presented with a challenging external validation data set (best achieved symbolic regression: NRMSE =3%). Symbolic regression demonstrates the transition from the black box modeling paradigm to more transparent predictive models. Predictive performance and feature selection behavior of CI models hints at the most important variables within this factor space.
Collapse
Affiliation(s)
- Mohammad Hassan Khalid
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Pezhman Kazemi
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Lucia Perez-Gandarillas
- Centre National de la Recherche Scientifique, Centre RAPSODEE, Mines Albi, Université de Toulouse, Albi, France
| | - Abderrahim Michrafy
- Centre National de la Recherche Scientifique, Centre RAPSODEE, Mines Albi, Université de Toulouse, Albi, France
| | - Jakub Szlęk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
25
|
Full Out-of-Die Compressibility and Compactibility Profiles From Two Tablets. J Pharm Sci 2016; 106:843-849. [PMID: 27938894 DOI: 10.1016/j.xphs.2016.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 11/21/2022]
Abstract
In this study, a method is presented that can be used to generate full out-of-die compressibility and compactibility profiles using the data from only 2 tablets. For each material, one tablet was compacted at the maximum pressure of interest and a second tablet at a relatively low pressure. The in-die data collected during compaction to the maximum pressure of interest and the solid fraction change after ejection for both tablets were used to generate a profile equivalent to a complete out-of-die compressibility profile. After measuring the tensile strengths of each tablet, a compactibility profile was produced by fitting the out-of-die porosity and tensile strength data to the Ryshkewitch-Duckworth equation. This method generated accurate out-of-die compressibility and compactibility profiles for each of the materials studied. Not only is this technique computationally simple, but in cases where only small amounts of raw material are available, this method allows a detailed understanding of a material's mechanical behavior to be assessed.
Collapse
|
26
|
Microstructure of Tablet—Pharmaceutical Significance, Assessment, and Engineering. Pharm Res 2016; 34:918-928. [DOI: 10.1007/s11095-016-1989-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
27
|
Patel S, Sun CC. Macroindentation hardness measurement—Modernization and applications. Int J Pharm 2016; 506:262-7. [DOI: 10.1016/j.ijpharm.2016.04.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 04/12/2016] [Accepted: 04/25/2016] [Indexed: 11/30/2022]
|