1
|
Grodzicka M, Michlewska S, Buczkowski A, Sekowski S, Pena-Gonzalez CE, Ortega P, de la Mata FJ, Blasiak J, Bryszewska M, Ionov M. A new class of polyphenolic carbosilane dendrimers binds human serum albumin in a structure-dependent fashion. Sci Rep 2024; 14:5946. [PMID: 38467715 PMCID: PMC10928121 DOI: 10.1038/s41598-024-56509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
The use of dendrimers as drug and nucleic acid delivery systems requires knowledge of their interactions with objects on their way to the target. In the present work, we investigated the interaction of a new class of carbosilane dendrimers functionalized with polyphenolic and caffeic acid residues with human serum albumin, which is the most abundant blood protein. The addition of dendrimers to albumin solution decreased the zeta potential of albumin/dendrimer complexes as compared to free albumin, increased density of the fibrillary form of albumin, shifted fluorescence spectrum towards longer wavelengths, induced quenching of tryptophan fluorescence, and decreased ellipticity of circular dichroism resulting from a reduction in the albumin α-helix for random coil structural form. Isothermal titration calorimetry showed that, on average, one molecule of albumin was bound by 6-10 molecules of dendrimers. The zeta size confirmed the binding of the dendrimers to albumin. The interaction of dendrimers and albumin depended on the number of caffeic acid residues and polyethylene glycol modifications in the dendrimer structure. In conclusion, carbosilane polyphenolic dendrimers interact with human albumin changing its structure and electrical properties. However, the consequences of such interaction for the efficacy and side effects of these dendrimers as drug/nucleic acid delivery system requires further research.
Collapse
Affiliation(s)
- Marika Grodzicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
- Department of General Biophysics, The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki, 90-237, Lodz, Poland
| | - Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Adam Buczkowski
- Division of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236, Lodz, Poland
| | - Szymon Sekowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Cornelia E Pena-Gonzalez
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Universidad de Alcalá, Colmenar Viejo Road, Km 9, 100, 28034, Madrid, Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Universidad de Alcalá, Colmenar Viejo Road, Km 9, 100, 28034, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Universidad de Alcalá, Colmenar Viejo Road, Km 9, 100, 28034, Madrid, Spain
- Networking Research Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Pl. Dabrowskiego 2, 09-402, Plock, Poland
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Pl. Dabrowskiego 2, 09-402, Plock, Poland.
| |
Collapse
|
2
|
Michlewska S, Garaiova Z, Šubjakova V, Hołota M, Kubczak M, Grodzicka M, Okła E, Naziris N, Balcerzak Ł, Ortega P, de la Mata FJ, Hianik T, Waczulikova I, Bryszewska M, Ionov M. Lipid-coated ruthenium dendrimer conjugated with doxorubicin in anti-cancer drug delivery: Introducing protocols. Colloids Surf B Biointerfaces 2023; 227:113371. [PMID: 37244201 DOI: 10.1016/j.colsurfb.2023.113371] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
One of the major limitations for the treatment of many diseases is an inability of drugs to cross the cell membrane barrier. Different kinds of carriers are being investigated to improve drug bioavailability. Among them, lipid or polymer-based systems are of special interest due to their biocompatibility. In our study, we combined dendritic and liposomal carriers and analysed the biochemical and biophysical properties of these formulations. Two preparation methods of Liposomal Locked-in Dendrimers (LLDs) systems have been established and compared. Carbosilane ruthenium metallodendrimer was complexed with an anti-cancer drug (doxorubicin) and locked in a liposomal structure, using both techniques. The LLDs systems formed by hydrophilic locking had more efficient transfection profiles and interacted with the erythrocyte membrane better than systems using the hydrophobic method. The results indicate these systems have improved transfection properties when compared to non-complexed components. The coating of dendrimers with lipids significantly reduced their hemotoxicity and cytotoxicity. The nanometric size, low polydispersity index and reduced positive zeta potential of such complexes made them attractive for future application in drug delivery. The formulations prepared by the hydrophobic locking protocol were not effective and will not be considered furthermore as prospective drug delivery systems. In contrast, the formulations formed by the hydrophilic loading method have shown promising results where the cytotoxicity of LLD systems with doxorubicin was more effective against cancer than normal cells.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging & Specialized Biological Techniques. Faculty of Biology & Environmental Protection. University of Lodz, Banacha 12/16, Lodz 90-237, Poland.
| | - Zuzana Garaiova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Veronika Šubjakova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Marcin Hołota
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Małgorzata Kubczak
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Marika Grodzicka
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Elżbieta Okła
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Nikolaos Naziris
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Łucja Balcerzak
- Laboratory of Microscopic Imaging & Specialized Biological Techniques. Faculty of Biology & Environmental Protection. University of Lodz, Banacha 12/16, Lodz 90-237, Poland
| | - Paula Ortega
- Networking Research Center on Bioengineering. Biomaterials &Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabell on 11, Planta 028029, Madrid, Spain; Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Networking Research Center on Bioengineering. Biomaterials &Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabell on 11, Planta 028029, Madrid, Spain; Universidad de Alcalá. Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034 Madrid, Spain
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Iveta Waczulikova
- Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia
| | - Maria Bryszewska
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| | - Maksim Ionov
- Department of General Biophysics. Faculty of Biology & Environmental Protection. University of Lodz, Pomorska 141/143, Lodz 90-236, Poland
| |
Collapse
|
3
|
Kubczak M, Grodzicka M, Michlewska S, Karimov M, Ewe A, Aigner A, Bryszewska M, Ionov M. The effect of novel tyrosine-modified polyethyleneimines on human albumin structure - Thermodynamic and spectroscopic study. Colloids Surf B Biointerfaces 2023; 227:113359. [PMID: 37209597 DOI: 10.1016/j.colsurfb.2023.113359] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
The interaction of proteins with nanoparticle components are crucial for the evaluation of nanoparticle function, toxicity and biodistribution. Polyethyleneimines (PEIs) with defined tyrosine modifications are a class of novel polymers designed for improved siRNA delivery. Their interactions with biomacromolecules are still poorly described. This paper analyzes the interaction of different tyrosine-modified PEIs with human serum albumin as the most abundant serum protein. The ability of tyrosine modified, linear or branched PEIs to bind human serum albumin (HSA) was analyzed and further characterized. The interaction with hydrophobic parts of protein were studied using 1- nilinonaphthalene-8-sulfonic acid (ANS) and changes in the HSA secondary structure were evaluated using circular dichroism (CD). Complex formation and sizes were studied by transmission electron microscopy (TEM) and dynamic light scattering methods (DLS). We demonstrate that tyrosine modified PEIs are able to bind human serum albumin. Based on thermodynamic studies, van der Waals interaction, H-bonding and hydrophobic interactions are determined as main molecular forces involved in complex formation. Analysis of secondary structures revealed that the polymers decreased α-helix content, while increasing levels of randomly folded structures. Complex formation was confirmed by TEM and DLS. These findings are crucial for understanding polymer-protein interactions and the properties of nanoparticles.
Collapse
Affiliation(s)
- Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland.
| | - Marika Grodzicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland; BioMedChem Doctoral School of the UL and Lodz Institutes of the Polish Academy of Science, Banacha 12/16, 90-237 Lodz, Poland
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland; Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Poland, Banacha 12/16, 90-237 Lodz, Poland
| | - Michael Karimov
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Faculty of Medicine, Leipzig University, Germany, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Poland, PomorskaStr. 141/143, 90-236 Lodz, Poland
| |
Collapse
|
4
|
Yao Y, Yang J, Li W, Zhang A. Confinements of Thermoresponsive Dendronized Polymers to Proteins. Polym Chem 2022. [DOI: 10.1039/d2py00957a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crowding environment created by host polymers plays crucial roles in manipulating interactions with proteins and modulating their bioactivity. Here, we report our investigation on interactions between polymers and proteins in...
Collapse
|
5
|
Canonico B, Cangiotti M, Montanari M, Papa S, Fusi V, Giorgi L, Ciacci C, Ottaviani MF, Staneva D, Grabchev I. Characterization of a fluorescent 1,8-naphthalimide-functionalized PAMAM dendrimer and its Cu(ii) complexes as cytotoxic drugs: EPR and biological studies in myeloid tumor cells. Biol Chem 2021; 403:345-360. [PMID: 34883001 DOI: 10.1515/hsz-2021-0388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023]
Abstract
The activity and interacting ability of a polyamidoamine (PAMAM) dendrimer modified with 4-N-methylpiperazine-1,8-naphthalimide units (termed D) and complexed by Cu(ii) ions, towards healthy and cancer cells were studied. Comparative electron paramagnetic resonance (EPR) studies of the Cu(ii)-D complex are presented: coordination mode, chemical structure, flexibility and stability of these complexes, in the absence and presence of myeloid cancer cells and peripheral blood mononuclear cells (PBMC). The interactions of Cu(ii) ions in the biological media at different equilibrium times were studied, highlighting different stability and interacting conditions with the cells. Furthermore, flow cytometry and confocal analysis, trace the peculiar properties of the dendrimers in PBMC and U937 cells. Indeed, a new probe (Fly) was used as a potential fluorescent tool for biological imaging of Cu(ii). The study highlights that dendrimer and, mainly, the Cu(ii) metallodendrimer are cytotoxic agents for the cells, specifically for U937 tumor cells, inducing mitochondrial dysfunction, ROS increase and lysosome involvement. The metallodendrimer shows antitumor selectivity, fewer affecting healthy PBMC, inducing a massive apoptotic cell death on U937 cells, in line with the high stability of this complex, as verified by EPR studies. The results underline the potentiality of this metallodendrimer to be used as anticancer drug.
Collapse
Affiliation(s)
- Barbara Canonico
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Michela Cangiotti
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Mariele Montanari
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | - Vieri Fusi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Luca Giorgi
- Department of Pure and Applied Sciences (DiSPeA), University of Urbino, I-61029 Urbino, Italy
| | - Caterina Ciacci
- Department of Biomolecular Sciences (DISB), University of Urbino, I-61029 Urbino, Italy
| | | | - Desislava Staneva
- University of Chemical Technology and Metallurgy, BG-1756 Sofia, Bulgaria
| | - Ivo Grabchev
- Sofia University "St. Kliment Ohridski", Faculty of Medicine, BG-1407 Sofia, Bulgaria
| |
Collapse
|
6
|
Milowska K, Rodacka A, Melikishvili S, Buczkowski A, Pałecz B, Waczulikova I, Hianik T, Majoral JP, Ionov M, Bryszewska M. Dendrimeric HIV-peptide delivery nanosystem affects lipid membranes structure. Sci Rep 2021; 11:16810. [PMID: 34413368 PMCID: PMC8376938 DOI: 10.1038/s41598-021-96194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to evaluate the nature and mechanisms of interaction between HIV peptide/dendrimer complexes (dendriplex) and artificial lipid membranes, such as large unilayered vesicles (LUV) and lipid monolayers in the air-water interface. Dendriplexes were combined as one of three HIV-derived peptides (Gp160, P24 and Nef) and one of two cationic phosphorus dendrimers (CPD-G3 and CPD-G4). LUVs were formed of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) or of a mixture of DMPC and dipalmitoyl-phosphatidylglycerol (DPPG). Interactions between dendriplexes and vesicles were characterized by dynamic light scattering (DLS), fluorescence anisotropy, differential scanning calorimetry (DSC) and Langmuir-Blodgett methods. The morphology of formed systems was examined by transmission electron microscopy (TEM). The results suggest that dendriplexes interact with both hydrophobic and hydrophilic regions of lipid bilayers. The interactions between dendriplexes and negatively charged lipids (DMPC-DPPG) were stronger than those between dendriplexes and liposomes composed of zwitterionic lipids (DMPC). The former were primarily of electrostatic nature due to the positive charge of dendriplexes and the negative charge of the membrane, whereas the latter can be attributed to disturbances in the hydrophobic domain of the membrane. Obtained results provide new information about mechanisms of interaction between lipid membranes and nanocomplexes formed with HIV-derived peptides and phosphorus dendrimers. These data could be important for the choosing the appropriate antigen delivery vehicle in the new vaccines against HIV infection.
Collapse
Affiliation(s)
- Katarzyna Milowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Aleksandra Rodacka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| | - Sophie Melikishvili
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48, Bratislava, Slovakia
| | - Adam Buczkowski
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, 165 Pomorska St., 90-236, University of Lodz, Lodz, Poland
| | - Bartlomiej Pałecz
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, 165 Pomorska St., 90-236, University of Lodz, Lodz, Poland
| | - Iveta Waczulikova
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48, Bratislava, Slovakia
| | - Tibor Hianik
- Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska dolina, 842 48, Bratislava, Slovakia
| | - Jean Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS (LCC), 205 Route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland
| |
Collapse
|
7
|
Terehova M, Dzmitruk V, Abashkin V, Kirakosyan G, Ghukasyan G, Bryszewska M, Pedziwiatr-Werbicka E, Ionov M, Gómez R, de la Mata FJ, Mignani S, Shi X, Majoral JP, Sukhodola A, Shcharbin D. Comparison of the effects of dendrimer, micelle and silver nanoparticles on phospholipase A2 structure. J Biotechnol 2021; 331:48-52. [PMID: 33727080 DOI: 10.1016/j.jbiotec.2021.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/02/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022]
Abstract
The interaction of nanoparticles (NP) with proteins (the so-called 'protein corona') is a huge challenge in attempting to apply them in personalized nanomedicine. We have analyzed the interaction between A) two 'soft' NPs (a cationic phosphorus dendrimer of generation 3; a cationic phosphorus amphiphilic dendron of generation 2), and B) one 'hard' nanoparticle (silver NP covered with cationic carbosilane dendritic moieties); and membrane-bound protein phospholipase A2 from bovine pancreas. The hard and soft NPs have differences in the nature of their interactions with phospholipase A2. This enzyme surrounds hard AgNP, whereas dendrimer and amphiphilic dendron form aggregates/micelles with phospholipase A2. There is a difference in action of phospholipase A2 bound to the core of dendrimer, and of micelles formed from non-covalent interactions between the amphiphilic dendron. These data are important in understanding the nature of interaction between different kinds of nanoparticles and proteins.
Collapse
Affiliation(s)
- Maria Terehova
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Volha Dzmitruk
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | | | | | - Maria Bryszewska
- Department of General Biophysics, University of Lodz, Pomorska str. 141/143, 90-236, Lodz, Poland
| | | | - Maksim Ionov
- Department of General Biophysics, University of Lodz, Pomorska str. 141/143, 90-236, Lodz, Poland
| | - Rafael Gómez
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine(CIBER-BBN), Spain
| | - F Javier de la Mata
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine(CIBER-BBN), Spain
| | - Serge Mignani
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques CNRS UMR 860 Université Paris Descartes PRES Sorbone Paris Cité, rue des Saints Pères, 75006, Paris, France
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Jean-Pierre Majoral
- Laboratoire Chimie de Coordination, CNRS, 205 route de Narbonne, 31077, Toulouse Cedex, France; Université de Toulouse, UPS, INP, Toulouse, 31077 Cedex 4, France
| | - Aleksandr Sukhodola
- B.I. Stepanov Institute of Physics of NASB, Skoriny str. 68, 220072, Minsk, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus.
| |
Collapse
|
8
|
Michlewska S, Kubczak M, Maroto-Díaz M, Sanz Del Olmo N, Ortega P, Shcharbin D, Gomez Ramirez R, Javier de la Mata F, Ionov M, Bryszewska M. Synthesis and Characterization of FITC Labelled Ruthenium Dendrimer as a Prospective Anticancer Drug. Biomolecules 2019; 9:biom9090411. [PMID: 31450702 PMCID: PMC6770823 DOI: 10.3390/biom9090411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/27/2022] Open
Abstract
Metallodendrimers-dendrimers with included metals-are widely investigated as biocompatible equivalents to metal nanoparticles. Applications can be expected in the fields of catalysis, as chemical sensors in molecular recognition and as anticancer drugs. Metallodendrimers can also mimic certain biomolecules, for example, haemoprotein in the case of using a dendrimer with a porphyrin core. In previous papers, we showed the promising anticancer effects of carbosilane ruthenium dendrimers. The present paper is devoted to studying biocompatibility and the cytotoxic effect on normal and cancer cells of carbosilane ruthenium dendrimers labelled with fluorescent probe fluorescein isothiocyanate (FITC). The addition of fluorescent probe allowed tracking the metallodendrimer in both normal and cancer cells. It was found that carbosilane ruthenium dendrimer labelled with FITC in concentration up to 10 µmol/L was more cytotoxic for cancer cells than for normal cells. Thus, FITC labelled carbosilane ruthenium dendrimer is a good candidate for diagnostic imaging and studying anticancer effects of metallodendrimers in cancer therapy.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Marta Maroto-Díaz
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellon´ 11, Planta, 028029 Madrid, Spain
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, 28871 Alcalá de Henares, Spain
| | - Natalia Sanz Del Olmo
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellon´ 11, Planta, 028029 Madrid, Spain
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, 28871 Alcalá de Henares, Spain
| | - Paula Ortega
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellon´ 11, Planta, 028029 Madrid, Spain
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, 28871 Alcalá de Henares, Spain
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaja 27, 220072 Minsk, Belarus
| | - Rafael Gomez Ramirez
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellon´ 11, Planta, 028029 Madrid, Spain
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, 28871 Alcalá de Henares, Spain
- Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Monforte de Lemos 3-5, Pabellon´ 11, Planta, 028029 Madrid, Spain
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, 28871 Alcalá de Henares, Spain
- Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, 28034 Madrid, Spain
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
9
|
Ruthenium dendrimers against acute promyelocytic leukemia: in vitro studies on HL-60 cells. Future Med Chem 2019; 11:1741-1756. [PMID: 31287722 DOI: 10.4155/fmc-2018-0274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Coordination of ruthenium arene fragments on carbosilane dendrimers' surface greatly increases their antitumor properties. Newly synthetized ruthenium dendrimers are water-soluble, monodisperse and stable. Since carbosilane dendrimers are good carriers of drugs and genes, the presence of ruthenium in their structure makes them promising candidates for new drug delivery systems with improved antitumor potential. Carbosilane ruthenium dendrimers are more toxic to cancer cells than normal cells. Results of several in vitro studies applied here indicate that carbosilane ruthenium dendrimers induce apoptosis in promyelocytic leukemia HL-60 cells.
Collapse
|
10
|
Hołota M, Magiera J, Michlewska S, Kubczak M, Del Olmo NS, García-Gallego S, Ortega P, de la Mata FJ, Ionov M, Bryszewska M. In Vitro Anticancer Properties of Copper Metallodendrimers. Biomolecules 2019; 9:E155. [PMID: 31003561 PMCID: PMC6523220 DOI: 10.3390/biom9040155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/08/2023] Open
Abstract
Newly synthesized carbosilane copper dendrimers (CCD) with chloride and nitrate surface groups seem to be good candidates to be used as gene and drug carriers in anti-cancer therapy, due to their properties such as size and surface charge. Copper attached to the nanoparticles is an important element of many biological processes and recently their anti-cancer properties have been widely examined. Zeta size and potential, transmission electron microscopy (TEM), circular dichroism (CD), analysis of haemolytic activity, and fluorescence anisotropy techniques were used to characterize copper dendrimers. Additionally, their cytotoxic properties toward normal (PBMC) and cancer (1301; HL-60) cells were examined. All tested dendrimers were more cytotoxic against cancer cells in comparison with normal cells.
Collapse
Affiliation(s)
- Marcin Hołota
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Jakub Magiera
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Sylwia Michlewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237, Lodz, Poland.
| | - Małgorzata Kubczak
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Natalia Sanz Del Olmo
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Spain. Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, Spain.
| | - Sandra García-Gallego
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Spain. Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain.
| | - Paula Ortega
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Spain. Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain.
| | - F Javier de la Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcalá, Spain. Instituto de Investigación Química "Andrés M. del Río" (IQAR), UAH, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, 28034 Madrid, Spain.
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
11
|
Beaussart A, Beloin C, Ghigo JM, Chapot-Chartier MP, Kulakauskas S, Duval JFL. Probing the influence of cell surface polysaccharides on nanodendrimer binding to Gram-negative and Gram-positive bacteria using single-nanoparticle force spectroscopy. NANOSCALE 2018; 10:12743-12753. [PMID: 29946619 DOI: 10.1039/c8nr01766b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The safe use and design of nanoparticles (NPs) ask for a comprehensive interpretation of their potentially adverse effects on (micro)organisms. In this respect, the prior assessment of the interactions experienced by NPs in the vicinity of - and in contact with - complex biological surfaces is mandatory. It requires the development of suitable techniques for deciphering the processes that govern nano-bio interactions when a single organism is exposed to an extremely low dose of NPs. Here, we used atomic force spectroscopy (AFM)-based force measurements to investigate at the nanoscale the interactions between carboxylate-terminated polyamidoamine (PAMAM) nanodendrimers (radius ca. 4.5 nm) and two bacteria with very distinct surface properties, Escherichia coli and Lactococcus lactis. The zwitterionic nanodendrimers exhibit a negative peripheral surface charge and/or a positive intraparticulate core depending on the solution pH and salt concentration. Following an original strategy according to which a single dendrimer NP is grafted at the very apex of the AFM tip, the density and localization of NP binding sites are probed at the surface of E. coli and L. lactis mutants expressing different cell surface structures (presence/absence of the O-antigen of the lipopolysaccharides (LPS) or of a polysaccharide pellicle). In line with electrokinetic analysis, AFM force measurements evidence that adhesion of NPs onto pellicle-decorated L. lactis is governed by their underlying electrostatic interactions as controlled by the pH-dependent charge of the peripheral and internal NP components, and the negatively-charged cell surface. In contrast, the presence of the O-antigen on E. coli systematically suppresses the adhesion of nanodendrimers onto cells, may the apparent NP surface charge be determined by the peripheral carboxylate groups or by the internal amine functions. Altogether, this work highlights the differentiated roles played by surface polysaccharides in mediating NP attachment to Gram-positive and Gram-negative bacteria. It further demonstrates that the assessment of NP bioadhesion features requires a critical analysis of the electrostatic contributions stemming from the various structures composing the stratified cell envelope, and those originating from the bulk and surface NP components. The joint use of electrokinetics and AFM provides a valuable option for rapidly addressing the binding propensity of NPs to microorganisms, as urgently needed in NP risk assessments.
Collapse
|
12
|
Role of cationic carbosilane dendrons and metallic core of functionalized gold nanoparticles in their interaction with human serum albumin. Int J Biol Macromol 2018; 118:1773-1780. [PMID: 29997045 DOI: 10.1016/j.ijbiomac.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/14/2022]
Abstract
Functionalization of gold nanoparticles by different chemical groups is an important issue regarding the biomedical applications of such particles. Therefore we have analyzed the interaction between gold nanoparticles functionalized by carbosilane dendrons with human serum albumin at different pHs, and in the presence of the protein unfolding agent, guanidine hydrochloride, using circular dichroism, zeta-potential and fluorescence quenching. The effect of a nanoparticle dendronization and pure dendrons on the immunoreactivity of albumin was estimated using ELISA. In addition, the tool to estimate the binding capacity of dendronized gold nanoparticles using a hydrophobic fluorescent probe 1,8-ANS (1-anilinonaphthalene-8-sulfonic acid) was chosen. We concluded that the effect of a nanoparticle on the structure, immunochemical properties and unfolding of albumin significantly decreased with second and third generations dendrons attached. Differences in pH dependence of the interaction between nanoparticles, their dendrons and albumin showed several effects of the "dendritic corona" and the metallic part of nanoparticle on the protein. These interactions indicate changes in the immunoreactivity of the protein, whereas dendron coating per se had no effect. Thus, dendronization of gold nanoparticles helps to shield them from interactions with plasma proteins.
Collapse
|
13
|
Pedziwiatr-Werbicka E, Serchenya T, Shcharbin D, Terekhova M, Prokhira E, Dzmitruk V, Shyrochyna I, Sviridov O, Peña-González CE, Gómez R, Sánchez-Nieves J, Javier de la Mata F, Bryszewska M. Dendronization of gold nanoparticles decreases their effect on human alpha-1-microglobulin. Int J Biol Macromol 2018; 108:936-941. [DOI: 10.1016/j.ijbiomac.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/30/2023]
|
14
|
Michlewska S, Ionov M, Maroto-Díaz M, Szwed A, Ihnatsyeu-Kachan A, Loznikova S, Shcharbin D, Maly M, Ramirez RG, de la Mata FJ, Bryszewska M. Ruthenium dendrimers as carriers for anticancer siRNA. J Inorg Biochem 2018; 181:18-27. [PMID: 29353086 DOI: 10.1016/j.jinorgbio.2018.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/29/2017] [Accepted: 01/07/2018] [Indexed: 12/27/2022]
Abstract
Dendrimers, which are considered as one of the most promising tools in the field of nanobiotechnology due to their structural organization, showed a great potential in gene therapy, drug delivery, medical imaging and as antimicrobial and antiviral agents. This article is devoted to study interactions between new carbosilane-based metallodendrimers containing ruthenium and anti-cancer small interfering RNA (siRNA). Formation of complexes between anti-cancer siRNAs and Ru-based carbosilane dendrimers was evaluated by transmission electron microscopy, circular dichroism and fluorescence. The zeta-potential and the size of dendriplexes were determined by dynamic light scattering. The internalization of dendriplexes were estimated using HL-60 cells. Results show that ruthenium dendrimers associated with anticancer siRNA have the ability to deliver siRNA as non-viral vectors into the cancer cells. Moreover, dendrimers can protect siRNA against nuclease degradation. Nevertheless, further research need to be performed to examine the therapeutic potential of ruthenium dendrimers as well as dendrimers complexed with siRNA and anticancer drugs towards cancer cells.
Collapse
Affiliation(s)
- Sylwia Michlewska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland; Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Marta Maroto-Díaz
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcala de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Aleksandra Szwed
- Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | | | - Svetlana Loznikova
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaja 27, Minsk 220072, Belarus
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Akademicheskaja 27, Minsk 220072, Belarus
| | - Marek Maly
- Department of Physics, Faculty of Science, J. E. Purkinje University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Rafael Gomez Ramirez
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcala de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco Javier de la Mata
- Departamento Química Orgánica y Química Inorganica, Universidad de Alcala de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Maria Bryszewska
- Department of General Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
15
|
Multi-Target Inhibition of Cancer Cell Growth by SiRNA Cocktails and 5-Fluorouracil Using Effective Piperidine-Terminated Phosphorus Dendrimers. COLLOIDS AND INTERFACES 2017. [DOI: 10.3390/colloids1010006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Shcharbin D, Pedziwiatr-Werbicka E, Vcherashniaya A, Janaszewska A, Marcinkowska M, Goska P, Klajnert-Maculewicz B, Ionov M, Abashkin V, Ihnatsyeu-Kachan A, de la Mata FJ, Ortega P, Gomez-Ramirez R, Majoral JP, Bryszewska M. Binding of poly(amidoamine), carbosilane, phosphorus and hybrid dendrimers to thrombin—Constants and mechanisms. Colloids Surf B Biointerfaces 2017; 155:11-16. [DOI: 10.1016/j.colsurfb.2017.03.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 11/28/2022]
|
17
|
Shcharbin D, Shcharbina N, Dzmitruk V, Pedziwiatr-Werbicka E, Ionov M, Mignani S, de la Mata FJ, Gómez R, Muñoz-Fernández MA, Majoral JP, Bryszewska M. Dendrimer-protein interactions versus dendrimer-based nanomedicine. Colloids Surf B Biointerfaces 2017; 152:414-422. [PMID: 28167455 DOI: 10.1016/j.colsurfb.2017.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022]
Abstract
Dendrimers are hyperbranched polymers belonging to the huge class of nanomedical devices. Their wide application in biology and medicine requires understanding of the fundamental mechanisms of their interactions with biological systems. Summarizing, electrostatic force plays the predominant role in dendrimer-protein interactions, especially with charged dendrimers. Other kinds of interactions have been proven, such as H-bonding, van der Waals forces, and even hydrophobic interactions. These interactions depend on the characteristics of both participants: flexibility and surface charge of a dendrimer, rigidity of protein structure and the localization of charged amino acids at its surface. pH and ionic strength of solutions can significantly modulate interactions. Ligands and cofactors attached to a protein can also change dendrimer-protein interactions. Binding of dendrimers to a protein can change its secondary structure, conformation, intramolecular mobility and functional activity. However, this strongly depends on rigidity versus flexibility of a protein's structure. In addition, the potential applications of dendrimers to nanomedicine are reviwed related to dendrimer-protein interactions.
Collapse
Affiliation(s)
- Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus.
| | | | - Volha Dzmitruk
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Elzbieta Pedziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maksim Ionov
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Serge Mignani
- Université Paris Descartes, Laboratoire de Chimie et de Biochimie pharmacologiques et toxicologique, Paris, France
| | - F Javier de la Mata
- Departamento Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - Rafael Gómez
- Departamento Química Orgánica y Química Inorgánica, Universidad de Alcalá, Alcalá de Henares, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain
| | - Maria Angeles Muñoz-Fernández
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain; Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Spanish HIV-HGM BioBank, Madrid, Spain
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination, CNRS, Toulouse, France; Université de Toulouse, Toulouse, France
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
Szwed A, Milowska K, Ionov M, Shcharbin D, Moreno S, Gomez-Ramirez R, de la Mata FJ, Majoral JP, Bryszewska M, Gabryelak T. Interaction between dendrimers and regulatory proteins. Comparison of effects of carbosilane and carbosilane–viologen–phosphorus dendrimers. RSC Adv 2016. [DOI: 10.1039/c6ra16558c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For nanoparticles to be used successfully in biomedical application, their interactions with biological fluids need to be investigated, in which they will react with proteins and other macromolecules.
Collapse
|