1
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
2
|
Xu C, Tan Y, Zhang LY, Luo XJ, Wu JF, Ma L, Deng F. The Application of Aptamer and Research Progress in Liver Disease. Mol Biotechnol 2024; 66:1000-1018. [PMID: 38305844 PMCID: PMC11087326 DOI: 10.1007/s12033-023-01030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
Aptamers, as a kind of small-molecule nucleic acid, have attracted much attention since their discovery. Compared with biological reagents such as antibodies, aptamers have the advantages of small molecular weight, low immunogenicity, low cost, and easy modification. At present, aptamers are mainly used in disease biomarker discovery, disease diagnosis, treatment, and targeted drug delivery vectors. In the process of screening and optimizing aptamers, it is found that there are still many problems need to be solved such as the design of the library, optimization of screening conditions, the truncation of screened aptamer, and the stability and toxicity of the aptamer. In recent years, the incidence of liver-related diseases is increasing year by year and the treatment measures are relatively lacking, which has attracted the people's attention in the application of aptamers in liver diseases. This article mainly summarizes the research status of aptamers in disease diagnosis and treatment, especially focusing on the application of aptamers in liver diseases, showing the crucial significance of aptamers in the diagnosis and treatment of liver diseases, and the use of Discovery Studio software to find the binding target and sequence of aptamers, and explore their possible interaction sites.
Collapse
Affiliation(s)
- Cheng Xu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Li-Ye Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Xiao-Jie Luo
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China
| | - Lan Ma
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, Hubei, China.
- Institute of Organ Fibrosis and Targeted Drug Delivery, China Three Gorges University, Yichang, China.
| | - Fei Deng
- Department of Oncology, The Second People's Hospital of China Three Gorges University, Yichang, 443000, China.
| |
Collapse
|
3
|
Liao Y, Xiong S, Ur Rehman Z, He X, Peng H, Liu J, Sun S. The Research Advances of Aptamers in Hematologic Malignancies. Cancers (Basel) 2023; 15:300. [PMID: 36612296 PMCID: PMC9818631 DOI: 10.3390/cancers15010300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Currently, research for hematological malignancies is very intensive, with many breakthroughs. Among them, aptamer-based targeted therapies could be counted. Aptamer is a targeting tool with many unique advantages (easy synthesis, low toxicity, easy modification, low immunogenicity, nano size, long stability, etc.), therefore many experts screened corresponding aptamers in various hematological malignancies for diagnosis and treatment. In this review, we try to summarize and provide the recent progress of aptamer research in the diagnosis and treatment of hematologic malignancies. Until now, 29 aptamer studies were reported in hematologic malignancies, of which 12 aptamers were tested in vivo and the remaining 17 aptamers were only tested in vitro. In this case, 11 aptamers were combined with chemotherapeutic drugs for the treatment of hematologic malignancies, 4 aptamers were used in combination with nanomaterials for the diagnosis and treatment of hematologic malignancies, and some studies used aptamers for the targeted transportation of siRNA and miRNA for targeted therapeutic effects. Their research provides multiple approaches to achieve more targeted goals. These findings show promising and encouraging future for both hematological malignancies basic and clinical trials research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuming Sun
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China
| |
Collapse
|
4
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
5
|
Sartorius K, Antwi SO, Chuturgoon A, Roberts LR, Kramvis A. RNA Therapeutic Options to Manage Aberrant Signaling Pathways in Hepatocellular Carcinoma: Dream or Reality? Front Oncol 2022; 12:891812. [PMID: 35600358 PMCID: PMC9115561 DOI: 10.3389/fonc.2022.891812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the early promise of RNA therapeutics as a magic bullet to modulate aberrant signaling in cancer, this field remains a work-in-progress. Nevertheless, RNA therapeutics is now a reality for the treatment of viral diseases (COVID-19) and offers great promise for cancer. This review paper specifically investigates RNAi as a therapeutic option for HCC and discusses a range of RNAi technology including anti-sense oligonucleotides (ASOs), Aptamers, small interfering RNA (siRNA), ribozymes, riboswitches and CRISPR/Cas9 technology. The use of these RNAi based interventions is specifically outlined in three primary strategies, namely, repressing angiogenesis, the suppression of cell proliferation and the promotion of apoptosis. We also discuss some of the inherent chemical and delivery problems, as well as targeting issues and immunogenic reaction to RNAi interventions.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa.,The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States.,Department of Surgery, KZN Kwazulu-Natal (UKZN) Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Samuel O Antwi
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States.,Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Lewis R Roberts
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States.,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Fan A, Zhao X, Liu H, Li D, Guo T, Zhang J, Duan L, Cheng H, Nie Y, Fan D, Zhao X, Lu Y. eEF1A1 promotes colorectal cancer progression and predicts poor prognosis of patients. Cancer Med 2022; 12:513-524. [PMID: 35607944 PMCID: PMC9844609 DOI: 10.1002/cam4.4848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 01/26/2023] Open
Abstract
Colorectal cancer (CRC) is a major leading cause of cancer mortality worldwide in which dysregulated protein synthesis plays an etiologic role. The eukaryotic elongation factor 1 A1 (eEF1A1) exerts significant effects on protein synthesis by contributing to peptide chain extension. Whereas its role in CRC remains to be investigated. In this study, we found that the mRNA and protein levels of eEF1A1 were significantly upregulated in CRC cell lines and tissues. Elevated expression of eEF1A1 was correlated with shorter overall survival in 94 CRC patients. The inhibition of proliferation and cell cycle block were observed in CRC cells after eEF1A1 downregulation. Mechanistically, weighted gene correlation network analysis and further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that mitogen-activated protein kinases (MAPKs) signaling pathways were significantly enriched in high-eEF1A1 expression group, and the levels of phosphorylated p38/JNK/ERK MAPK were dramatically decreased after eEF1A1 downregulation. Overexpression of eEF1A1 in CRC correlated with a poor prognosis. Collectively, this study determined the oncogenic role of eEF1A1 in CRC proliferation and tumorigenesis. eEF1A1 might be a promising therapeutic target and prognostic biomarker in CRC.
Collapse
Affiliation(s)
- A‐hui Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Xiaojuan Zhao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular BiologyFourth Military Medical UniversityXi'anChina
| | - Hao Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Danxiu Li
- Department of Gastroenterology, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Tongtong Guo
- Department of Cell Biology, College of Life ScienceNorthwest UniversityXi'anChina
| | - Jiehao Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Lili Duan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Hao Cheng
- Department of Gastroenterology, Tangdu HospitalFourth Military Medical UniversityXi'anChina
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
7
|
Bosutti A, Dapas B, Grassi G, Bussani R, Zanconati F, Giudici F, Bottin C, Pavan N, Trombetta C, Scaggiante B. High eEF1A1 Protein Levels Mark Aggressive Prostate Cancers and the In Vitro Targeting of eEF1A1 Reveals the eEF1A1-actin Complex as a New Potential Target for Therapy. Int J Mol Sci 2022; 23:ijms23084143. [PMID: 35456960 PMCID: PMC9027132 DOI: 10.3390/ijms23084143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
Although the eukaryotic elongation factor eEF1A1 plays a role in various tumours, there is little information on its prognosis/therapeutic value in prostate carcinoma. In high-grade and castration-resistant prostate carcinoma (CRPC), the identification of novel therapeutic markers/targets remains a priority. The expression of eEF1A1 protein was determined in formalin-fixed, paraffin-embedded prostate cancer and hyperplasia tissue by IHC. The role of eEF1A1 was investigated in a cellular model using a DNA aptamer (GT75) we previously developed. We used the aggressive CRPC cancer PC-3 and non-tumourigenic PZHPV-7 lines. Cytotoxicity was measured by the MTS assay and eEF1A1 protein levels by in-cell Western assays. The mRNA levels of eEF1A1 were measured by qPCR and ddPCR. Higher expression of eEF1A1 was found in Gleason 7-8 compared with 4-6 tissues (Gleason ≥ 7, 87% versus Gleason ≤ 6, 54%; p = 0.033). Patients with a high expression of eEF1A1 had a worse clinical outcome. In PC-3, but not in PZHPV-7, GT75 decreased cell viability and increased autophagy and cell detachment. In PC-3 cells, but not in PZHPV-7, GT75 mainly co-localised with the fraction of eEF1A1 bound to actin. Overexpression of the eEF1A1 protein can identify aggressive forms of prostate cancer. The targeting of eEF1A1 by GT75 impaired cell viability in PC-3 cancer cells but not in PZHPV-7 non-tumourigenic cells, indicating a specific role for the protein in cancer survival. The eEF1A1-actin complexes appear to be critical for the viability of PC-3 cancer cells, suggesting that eEF1A1 may be an attractive target for therapeutic strategies in advanced forms of prostate cancer.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
- Correspondence: (G.G.); (B.S.); Tel.: +39-040-558-3686 (B.S.)
| | - Rossana Bussani
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Fabiola Giudici
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Nicola Pavan
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Carlo Trombetta
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy; (R.B.); (F.Z.); (F.G.); (C.B.); (N.P.); (C.T.)
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28 and Via Weiss 1, 34127 Trieste, Italy; (A.B.); (B.D.)
- Correspondence: (G.G.); (B.S.); Tel.: +39-040-558-3686 (B.S.)
| |
Collapse
|
8
|
Gong T, Shuang Y. Expression and Clinical Value of Eukaryotic Translation Elongation Factor 1A1 (EEF1A1) in Diffuse Large B Cell Lymphoma. Int J Gen Med 2021; 14:7247-7258. [PMID: 34737619 PMCID: PMC8559353 DOI: 10.2147/ijgm.s324645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/29/2021] [Indexed: 12/02/2022] Open
Abstract
Background The eukaryotic translation elongation factor 1A1 (EEF1A1) participates in protein translation and has been reported to be involved in tumor progression such as hepatocellular carcinoma. Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. In the present study, we aimed to detect the expression of EEF1A1 in DLBCL and to analyze its relationship with prognosis. Methods We reviewed medical records of DLBCL patients in our hospital and evaluated their expression level of EEF1A1 in tumor tissues using immunohistochemical (IHC) assay. The Chi-square method was used for correlation analysis. The Kaplan–Meier method with Log rank test was used for univariate analysis. Cox proportional hazards model was used for multivariate analysis. Cellular and mice models were introduced to validate its oncogenic role. Results EEF1A1 expression in tumor cells was higher in certain DLBCL cases. Patients with higher EEF1A1 expression were more likely to have advanced tumor stage and poorer 5-year overall survival (OS) rates. EEF1A1 expression in tumor cells was an independent risk predictor for OS (P < 0.05). Cellular assays demonstrated that EEF1A1-shRNA significantly inhibited lymphoma cell proliferation. The study of xenografts further verified the effect of EEF1A1-shRNA on suppressing tumor growth in vivo. Conclusion EEF1A1 positivity predicts short survival in DLBCL patients. For patients with higher EEF1A1 expression, more strategy such as anti-EEF1A1 antibody treatment should be developed.
Collapse
Affiliation(s)
- Tiejun Gong
- Institute of Hematology and Oncology, Harbin the First Hospital, Harbin, 150010, People's Republic of China
| | - Yuerong Shuang
- Department of Lymphatic Hematology and Oncology, Jiangxi Cancer Hospital, Nanchang, 330029, People's Republic of China
| |
Collapse
|
9
|
Tonon F, Farra R, Zennaro C, Pozzato G, Truong N, Parisi S, Rizzolio F, Grassi M, Scaggiante B, Zanconati F, Bonazza D, Grassi G, Dapas B. Xenograft Zebrafish Models for the Development of Novel Anti-Hepatocellular Carcinoma Molecules. Pharmaceuticals (Basel) 2021; 14:ph14080803. [PMID: 34451900 PMCID: PMC8400454 DOI: 10.3390/ph14080803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common type of tumor and the second leading cause of tumor-related death worldwide. Liver cirrhosis is the most important predisposing factor for HCC. Available therapeutic approaches are not very effective, especially for advanced HCC, which is the most common form of the disease at diagnosis. New therapeutic strategies are therefore urgently needed. The use of animal models represents a relevant tool for preclinical screening of new molecules/strategies against HCC. However, several issues, including animal husbandry, limit the use of current models (rodent/pig). One animal model that has attracted the attention of the scientific community in the last 15 years is the zebrafish. This freshwater fish has several attractive features, such as short reproductive time, limited space and cost requirements for husbandry, body transparency and the fact that embryos do not show immune response to transplanted cells. To date, two different types of zebrafish models for HCC have been developed: the transgenic zebrafish and the zebrafish xenograft models. Since transgenic zebrafish models for HCC have been described elsewhere, in this review, we focus on the description of zebrafish xenograft models that have been used in the last five years to test new molecules/strategies against HCC.
Collapse
Affiliation(s)
- Federica Tonon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Rossella Farra
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Cristina Zennaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Nhung Truong
- Stem Cell Research and Application Laboratory, VNUHCM, University of Science, Ho Chi Minh City 72711, Vietnam;
| | - Salvatore Parisi
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Doctoral School in Molecular Biomedicine, University of Trieste, I 34127 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, CRO Aviano, National Cancer Institute, IRCCS, I 33081 Aviano, Italy; (S.P.); (F.R.)
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, I 30170 Mestre, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, I 34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
| | - Gabriele Grassi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I 34149 Trieste, Italy; (F.T.); (R.F.); (C.Z.); (G.P.); (F.Z.); (D.B.)
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
- Correspondence:
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I 34149 Trieste, Italy; (B.S.); (B.D.)
| |
Collapse
|
10
|
Perrone F, Craparo EF, Cemazar M, Kamensek U, Drago SE, Dapas B, Scaggiante B, Zanconati F, Bonazza D, Grassi M, Truong N, Pozzato G, Farra R, Cavallaro G, Grassi G. Targeted delivery of siRNAs against hepatocellular carcinoma-related genes by a galactosylated polyaspartamide copolymer. J Control Release 2021; 330:1132-1151. [PMID: 33212117 DOI: 10.1016/j.jconrel.2020.11.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 02/08/2023]
Abstract
Given the lack of effective treatments for Hepatocellular carcinoma (HCC), the development of novel therapeutic approaches is very urgent. Here, siRNAs were delivered to HCC cells by a synthetic polymer containing α,β-poly-(N-2-hydroxyethyl)-D,L-aspartamide-(PHEA) derivatized with diethylene triamine (DETA) and bearing in the side chain galactose (GAL) linked via a polyethylene glycol (PEG) to obtain (PHEA-DETA-PEG-GAL, PDPG). The GAL residue allows the targeting to the asialo-glycoprotein receptor (ASGPR), overexpressed in HCC cells compared to normal hepatocytes. Uptake studies performed using a model siRNA or a siRNA targeted against the enhanced green fluorescence protein, demonstrated the PDPG specific delivery of siRNA to HuH7 cells, a human cellular model of HCC. GAL-free copolymer (PHEA-DETA-PEG-NH2, PDP) or the chemical block of ASGPR, impaired PDPG targeting effectiveness in vitro. The specificity of PDPG delivery was confirmed in vivo in a mouse dorsal skinfold window chamber assay. Functional studies using siRNAs targeting the mRNAs of HCC-related genes (eEF1A1, eEF1A2 and E2F1) delivered by PDPG, significantly decreased HuH7 vitality/number and down regulated the expression of the target genes. Only minor effectiveness was in contrast observed for PDP. In IHH, a human model of normal hepatocytes with reduced ASGPR expression, PDPG barely reduced cell vitality. In a subcutaneous xenograft mouse model of HCC, PDPG-siRNAs reduced HCC tumor growth compared to controls without significant toxic effects. In conclusion, our study demonstrates the valuable potentials of PDPG for the specific delivery of siRNAs targeting HCC-related genes.
Collapse
Affiliation(s)
- Francesca Perrone
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy
| | - Emanuela Fabiola Craparo
- Department of Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, Palermo 90123, Italy
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana SI-1000, Slovenia; Faculty of Health Sciences, University of Primorska, Polje 42, SI-, Izola 6310, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, Ljubljana SI-1000, Slovenia
| | - Salvatore Emanuele Drago
- Department of Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, Palermo 90123, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, Trieste 447, Italy
| | - Debora Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, Trieste 447, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, Trieste I 34127, Italy
| | - Nhung Truong
- Stem Cell Research and Application Laboratory - VNUHCM - University of Science, Ho Chi Minh city, Viet Nam
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, Trieste 447, Italy
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy.
| | - Gennara Cavallaro
- Department of Scienze e Tecnologie Biologiche, Chimiche, Farmaceutiche (STEBICEF), Lab of Biocompatible Polymers, University of Palermo, via Archirafi 32, Palermo 90123, Italy.
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, Trieste I-34149, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, Trieste 447, Italy
| |
Collapse
|
11
|
Alavi M, Varma RS. Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformulations. Int J Biol Macromol 2020; 164:2197-2203. [PMID: 32763404 DOI: 10.1016/j.ijbiomac.2020.07.274] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Severe side effects and the rapid emergence of drug resistance in cancer cells are major problems in the chemotherapy utilizing anthracyclines, with a difference between cellular response at nano and micro scale levels. Understanding this situation is more complicated issue to attain efficient targeted formulations with low unexpected toxicity in patients. On nano-scale level, considering properties of nano-bio interaction in all relevant parts of the body may offer clue for suitable formulations. Four main strategies comprising PEGylation, surface charging, targeting, and stimuli responsiveness can be deployed to improve the liposomal and polymeric nanoformulations that can efficiently deliver common anthracyclines namely daunorubicin (DAU), doxorubicin (DOX), idarubicin (IDA), and epirubicin (EPI). Herein, the advances and challenges pertaining to the formulations of these anticancer drugs via liposomal and polymeric nanoformulations, are discussed.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
12
|
Giudice V, Mensitieri F, Izzo V, Filippelli A, Selleri C. Aptamers and Antisense Oligonucleotides for Diagnosis and Treatment of Hematological Diseases. Int J Mol Sci 2020; 21:ijms21093252. [PMID: 32375354 PMCID: PMC7246934 DOI: 10.3390/ijms21093252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/14/2022] Open
Abstract
Aptamers or chemical antibodies are single-stranded DNA or RNA oligonucleotides that bind proteins and small molecules with high affinity and specificity by recognizing tertiary or quaternary structures as antibodies. Aptamers can be easily produced in vitro through a process known as systemic evolution of ligands by exponential enrichment (SELEX) or a cell-based SELEX procedure. Aptamers and modified aptamers, such as slow, off-rate, modified aptamers (SOMAmers), can bind to target molecules with less polar and more hydrophobic interactions showing slower dissociation rates, higher stability, and resistance to nuclease degradation. Aptamers and SOMAmers are largely employed for multiplex high-throughput proteomics analysis with high reproducibility and reliability, for tumor cell detection by flow cytometry or microscopy for research and clinical purposes. In addition, aptamers are increasingly used for novel drug delivery systems specifically targeting tumor cells, and as new anticancer molecules. In this review, we summarize current preclinical and clinical applications of aptamers in malignant and non-malignant hematological diseases.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-(0)-89965116
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| | - Viviana Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
- Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (F.M.); (V.I.); (A.F.); (C.S.)
| |
Collapse
|
13
|
Dapas B, Pozzato G, Zorzet S, Capolla S, Macor P, Scaggiante B, Coan M, Guerra C, Gnan C, Gattei V, Zanconati F, Grassi G. Effects of eEF1A1 targeting by aptamer/siRNA in chronic lymphocytic leukaemia cells. Int J Pharm 2020; 574:118895. [PMID: 31862491 DOI: 10.1016/j.ijpharm.2019.118895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The effectiveness of therapies for chronic lymphocytic leukemia (CLL), the most common leukemia in Western countries adults, can be improved via a deeper understanding of its molecular abnormalities. Whereas the isoforms of the eukaryotic elongation factor 1A (eEF1A1 and eEF1A2) are implicated in different tumors, no information are available in CLL. METHODS eEF1A1/eEF1A2 amounts were quantitated in the lymphocytes of 46 CLL patients vs normal control (real time PCR, western blotting). eEF1A1 role in CLL was investigated in a cellular (MEC-1) and animal model of CLL via its targeting by an aptamer (GT75) or a siRNA (siA1) delivered by electroporation (in vitro) or lipofection (in vivo). RESULTS eEF1A1/eEF1A2 were elevated in CLL lymphocytes vs control. eEF1A1 but not eEF1A2 levels were higher in patients which died during the study compared to those surviving. eEF1A1 targeting (GT75/siA1) resulted in MEC-1 viability reduction/autophagy stimulation and in vivo tumor growth down-regulation. CONCLUSIONS The increase of eEF1A1 in dead vs surviving patients may confer to eEF1A1 the role of a prognostic marker for CLL and possibly of a therapeutic target, given its involvement in MEC-1 survival. Specific aptamer/siRNA released by optimized delivery systems may allow the development of novel therapeutic options.
Collapse
Affiliation(s)
- Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Sonia Zorzet
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Sara Capolla
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Michela Coan
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Chiara Guerra
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Chiara Gnan
- Institute for Maternal and Child Health - "IRCCS Burlo Garofolo", Via dell'Istria, 65, 34137 Trieste, Italy
| | - Valter Gattei
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Via Franco Gallini, 2, 33081 Aviano, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, 34149 Trieste, Italy.
| |
Collapse
|
14
|
Bosutti A, Kalaja O, Zanconati F, Dapas B, Grassi G, Passamonti S, Scaggiante B. A rapid and specific method to simultaneously quantify eukaryotic elongation factor 1A1 and A2 protein levels in cancer cells. J Pharm Biomed Anal 2019; 176:112814. [PMID: 31450069 DOI: 10.1016/j.jpba.2019.112814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND The two isoforms of the eukaryotic Elongation Factor 1A (eEF1A1 and eEF1A2), sustain the progression/aggressiveness of cancer cells. Thus, they are considered promising therapeutic targets and prognostic markers. It follows that their precise quantification is of utmost relevance in research and development. The simultaneous quantification of A1 and A2 proteins in the cells helps the comprehension of cancer biology mechanisms and response to drug treatments. However, the high homology at the amino-acidic level (92%) can cause antibodies cross-reaction. Moreover, the commonly employed western blotting just gives semi-quantitative data and does not allow the detection of both protein targets within the same cell. Thus, we developed an in cell western (ICW) technique to bypass the above limitations. METHODS Firstly, relevant antibodies cross-reaction was excluded by immunohistochemistry on normal pancreatic tissue; then eEF1A1-A2 protein levels were quantitated by ICW in prostate and colorectal cancer cell lines in 96 well plates under different conditions, which include: 1) drug treatment, 2) siRNA silencing, 3) cell seeding density. RESULTS We show that: 1) eEF1A1-A2 levels vary depending on the cell type following drug treatment, 2) ICW can accurately detect eEF1A1-A2 protein levels following siRNA silencing, 3) cell seeding density influences eEF1A1-A2 levels, depending on cell type. CONCLUSIONS ICW is a valuable tool to specifically determine the intracellular level of eEF1A1-A2 proteins thus contributing to better define their role as potential therapeutic targets and prognostic markers in human tumors as well as for drug effects screening.
Collapse
Affiliation(s)
- Alessandra Bosutti
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Odeta Kalaja
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Gabriele Grassi
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Giorgeri 1, 34127, Trieste, Italy.
| |
Collapse
|
15
|
Giudici F, Petracci E, Nanni O, Bottin C, Pinamonti M, Zanconati F, Scaggiante B. Elevated levels of eEF1A2 protein expression in triple negative breast cancer relate with poor prognosis. PLoS One 2019; 14:e0218030. [PMID: 31220107 PMCID: PMC6586289 DOI: 10.1371/journal.pone.0218030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/23/2019] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic elongation factor 1 alpha 2 (eEF1A2) is a translation factor selectively expressed by heart, skeletal muscle, nervous system and some specialized cells. Its ectopic expression relates with tumorigenesis in several types of human cancer. No data are available about the role of eEF1A2 in Triple Negative Breast Cancers (TNBC). This study investigated the relation between eEF1A2 protein levels and the prognosis of TNBC. A total of 84 TNBC diagnosed in the period 2002-2011 were included in the study. eEF1A2 protein level was measured in formalin-fixed paraffin-embedded tissues by immunohistochemistry in a semi-quantitative manner (sum of the percentage of positive cells x staining intensity) on a scale from 0 to 300. Cox regression assessed the association between eEF1A2 levels and disease-free survival (DFS) and breast cancer-specific survival (BCSS). Elevated values of eEF1A2 were associated with older age at diagnosis (p = 0.003), and androgen receptors positivity (p = 0.002). At univariate Cox analysis, eEF1A2 levels were not significantly associated with DFS and BCSS (p = 0.11 and p = 0.08, respectively) whereas adjusting for stage of disease, elevated levels of eEF1A2 protein resulted associated with poor prognosis (HR = 1.05, 95% CI: 1.01-1.11, p = 0.04 and HR = 1.07, 95% CI: 1.01-1.14, p = 0.03 for DFS and BCSS, respectively). This trend was confirmed analyzing negative versus positive samples by using categorized scores. Our data showed a negative prognostic role of eEF1A2 protein in TNBC, sustaining further investigations to confirm this result by wider and independent cohorts of patients.
Collapse
Affiliation(s)
- Fabiola Giudici
- Biostatistics Unit, Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Oriana Nanni
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori, Meldola, Italy
| | - Cristina Bottin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Maurizio Pinamonti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Academic Hospital, Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
16
|
Huang IT, Dhungel B, Shrestha R, Bridle KR, Crawford DHG, Jayachandran A, Steel JC. Spotlight on Bortezomib: potential in the treatment of hepatocellular carcinoma. Expert Opin Investig Drugs 2018; 28:7-18. [PMID: 30474444 DOI: 10.1080/13543784.2019.1551359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION This study reviews the evidence for the use of Bortezomib (BZB), a first-in-class proteasome inhibitor in advanced Hepatocellular carcinoma (HCC). This review aims to delineate the role of BZB within the management of non-surgical and metastatic HCC, either as an alternative or as an adjunct to the current treatment paradigm. AREAS COVERED In addition to BZB pharmacology and mechanism of action, safety and tolerance profiles of the drug obtained from clinical trials are explored. The utility of BZB as a therapeutic agent either alone or in combination with other therapies against HCC, including its application in both preclinical and clinical settings has been reviewed. In particular, we highlight the importance of preclinical evaluation of BZB as a combinatorial agent in synergism with other therapies for the use in the management of HCC. EXPERT OPINION There has been much interest surrounding the use of BZB, a first-in-class proteasome inhibitor for HCC therapy. The discernment of outcomes of BZB clinical trials for HCC need to take into consideration the disease-specific factors that can affect survival outcomes including patient selection and aetiological differences. Further preclinical testing of BZB in combination with other therapeutic modalities can be important for eliciting enhanced anti-HCC effects.
Collapse
Affiliation(s)
- I-Tao Huang
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Bijay Dhungel
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Ritu Shrestha
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Kim R Bridle
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Darrell H G Crawford
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Aparna Jayachandran
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,b Gallipoli Medical Research Institute , Greenslopes Private Hospital , Brisbane , Australia
| | - Jason C Steel
- a School of Clinical Medicine , The University of Queensland , Brisbane , Australia.,c School of Health, Medical and Applied Sciences , CQ University , Rockhampton , Australia
| |
Collapse
|
17
|
Xu C, Luo L, Yu Y, Zhang Z, Zhang Y, Li H, Cheng Y, Qin H, Zhang X, Ma H, Li Y. Screening therapeutic targets of ribavirin in hepatocellular carcinoma. Oncol Lett 2018; 15:9625-9632. [PMID: 29805683 PMCID: PMC5958667 DOI: 10.3892/ol.2018.8552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 10/13/2017] [Indexed: 12/16/2022] Open
Abstract
The objective of the present study was to screen the key genes of ribavirin in hepatocellular carcinoma (HCC) and provide novel therapeutic targets for HCC treatment. The mRNA expression datasets of GSE23031 and GSE74656, as well as the microRNA (miRNA) expression dataset of GSE22058 were downloaded from the Gene Expressed Omnibus database. In the GSE23031 dataset, there were three HCC cell lines treated with PBS and three HCC cell lines treated with ribavirin. In the GSE74656 dataset, five HCC tissues and five carcinoma adjacent tissues were selected. In the GSE22058 dataset, 96 HCC tissues and 96 carcinoma adjacent tissues were selected. The differentially expressed genes (DEGs) and differentially expressed miRNAs were identified via the limma package of R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed with the Database for Annotation, Visualization and Integrated Discovery. The target mRNAs of DEMs were obtained with TargetScan. A total of 559 DEGs (designated DEG-Ribavirin) were identified in HCC cells treated with ribavirin compared with PBS and 632 DEGs (designated DEG-Tumor) were identified in HCC tissues compared with carcinoma adjacent tissues. A total of 220 differentially expressed miRNAs were identified in HCC tissues compared with carcinoma adjacent tissues. In addition, 121 GO terms and three KEGG pathways of DEG-Ribavirin were obtained, and 383 GO terms and 25 KEGG pathways of DEG-Tumor were obtained. A total of five key miRNA-mRNA regulated pairs were identified, namely miR-183→CCNB1, miR-96→DEPDC1, miR-96→NTN4, miR-183→NTN4 and miR-145→NTN4. The present study indicated that certain miRNAs (including miR-96, miR-145 and miR-183) and mRNAs (including NAT2, FBXO5, CCNB1, DEPDC1 and NTN4) may be associated with the effects of ribavirin on HCC. Furthermore, they may provide novel therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Liyun Luo
- Department of Cardiology, The Fifth Affiliated Hospital of Sun Yan-Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Zhao Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yi Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Haimei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yue Cheng
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Hai Qin
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xipeng Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Hongmei Ma
- Department of Nursing, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
18
|
Vandghanooni S, Eskandani M, Barar J, Omidi Y. Recent advances in aptamer-armed multimodal theranostic nanosystems for imaging and targeted therapy of cancer. Eur J Pharm Sci 2018; 117:301-312. [PMID: 29499349 DOI: 10.1016/j.ejps.2018.02.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/24/2018] [Accepted: 02/25/2018] [Indexed: 01/17/2023]
Abstract
The side effects of chemotherapeutics during the course of cancer treatment limit their clinical outcomes. The most important mission of the modern cancer therapy modalities is the delivery of anticancer drugs specifically to the target cells/tissue in order to avoid/reduce any inadvertent non-specific impacts on the healthy normal cells. Nanocarriers decorated with a designated targeting ligand such as aptamers (Aps) and antibodies (Abs) are able to deliver cargo molecules to the target cells/tissue without affecting other neighboring cells, resulting in an improved treatment of cancer. For targeted therapy of cancer, different ligands (e.g., protein, peptide, Abs, Aps and small molecules) have widely been used in the development of different targeting drug delivery systems (DDSs). Of these homing agents, nucleic acid Aps show unique targeting potential with high binding affinity to a variety of biological targets (e.g., genes, peptides, proteins, and even cells and organs). Aps have widely been used as the targeting agent, in large part due to their unique 3D structure, simplicity in synthesis and functionalization, high chemical flexibility, low immunogenicity and toxicity, and cell/tissue penetration capability in some cases. Here, in this review, we provide important insights on Ap-decorated multimodal nanosystems (NSs) and discuss their applications in targeted therapy and imaging of cancer.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
eEF1A1 Overexpression Enhances Tumor Progression and Indicates Poor Prognosis in Hepatocellular Carcinoma. Transl Oncol 2017; 11:125-131. [PMID: 29248802 PMCID: PMC6002347 DOI: 10.1016/j.tranon.2017.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 12/12/2022] Open
Abstract
Liver is a major contributor of protein production physiologically. The aberrant state of protein synthesis leads to tumor progression. Eukaryotic elongation factor 1 alpha 1 (eEF1A1) is a major member of the eukaryotic elongation factor family that regulates protein synthesis. Although eEF1A1 plays an essential role in controlling the cell fate, its clinical significance in tumor development and progression has not been reported. Here, we aimed to uncover the expression and prognostic significance of eEF1A1 in hepatocellular carcinoma (HCC). Our data indicated that eEF1A1 expression was elevated in HCC cell lines and clinical samples at both the mRNA and protein levels. Immunohistochemistry revealed that eEF1A1 expression was upregulated in HCC samples compared with corresponding non-tumorous tissues. In 50 HCC cases with portal vein embolus, higher eEF1A1 immunoreactivity was detected in tumor metastases compared with the primary lesions. Kaplan–Meier analysis indicated that increased eEF1A1 expression was closely associated with unfavorable post-surgical overall and disease-free survival in 453 HCC patients. Moreover, multivariate analysis indicated eEF1A1 as an independent predictor for overall and disease-free survival. Collectively, our study suggests eEF1A1 as a novel prognostic biomarker and potential therapeutic target for HCC patients.
Collapse
|
20
|
Ladju RB, Pascut D, Massi MN, Tiribelli C, Sukowati CHC. Aptamer: A potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget 2017; 9:2951-2961. [PMID: 29416827 PMCID: PMC5788695 DOI: 10.18632/oncotarget.23359] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a high mortality rate. Late diagnosis and poor prognosis are still a major drawback since curative therapies such as liver resection and liver transplantation are effective only for an early stage HCC. Development of novel molecular targeting therapies against HCC may provide new options that will improve the efficiency of the diagnosis and the success of the therapy, thus ameliorating the life expectancy of the patients. The aptamer is an oligonucleotide nanomedicine that has high binding affinity and specificity to small and large target molecules in the intracellular and extracellular environment with agonist or antagonist function. Currently, several aptamers for diagnostic and therapeutic purposes are under development to recognize different molecules of HCC. In in vitro models, the aptamer has been shown to be able to reduce the growth of HCC cells and increase the sensitivity to conventional chemotherapies. In in vivo mouse models, aptamer could induce cell apoptosis with antitumor activity. Overall data had shown that aptamer has limited toxicity and might be safe in clinical application. This review summarizes recent information of aptamer as a potential oligonucleotide nanomedicine tool, in diagnostics, targeted therapy, and as drug delivery nano-vehicles.
Collapse
Affiliation(s)
- Rusdina Bte Ladju
- Fondazione Italiana Fegato, AREA Science Park Basovizza, Trieste, Italy.,Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Devis Pascut
- Fondazione Italiana Fegato, AREA Science Park Basovizza, Trieste, Italy
| | | | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park Basovizza, Trieste, Italy
| | | |
Collapse
|
21
|
Farra R, Scaggiante B, Guerra C, Pozzato G, Grassi M, Zanconati F, Perrone F, Ferrari C, Trotta F, Grassi G, Dapas B. Dissecting the role of the elongation factor 1A isoforms in hepatocellular carcinoma cells by liposome-mediated delivery of siRNAs. Int J Pharm 2017; 525:367-376. [PMID: 28229942 DOI: 10.1016/j.ijpharm.2017.02.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
Abstract
Eukaryotic elongation factor 1A (eEF1A), a protein involved in protein synthesis, has two major isoforms, eEF1A1 and eEF1A2. Despite the evidences of their involvement in hepatocellular carcinoma (HCC), the quantitative contribution of each of the two isoforms to the disease is unknown. We depleted the two isoforms by means of siRNAs and studied the effects in three different HCC cell lines. Particular care was dedicated to select siRNAs able to target each of the two isoform without affecting the other one. This is not a trivial aspect due to the high sequence homology between eEF1A1 and eEF1A2. The selected siRNAs can specifically deplete either eEF1A1 or eEF1A2. This, in turn, results in an impairment of cell vitality, growth and arrest in the G1/G0 phase of the cell cycle. Notably, these effects are quantitatively superior following eEF1A1 than eEF1A2 depletion. Moreover, functional tests revealed that the G1/G0 block induced by eEF1A1 depletion depends on the down-regulation of the transcription factor E2F1, a known player in HCC. In conclusion, our data indicate that the independent targeting of the two eEF1A isoforms is effective in reducing HCC cell growth and that eEF1A1 depletion may result in a more evident effect.
Collapse
Affiliation(s)
- Rossella Farra
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | | | - Chiara Guerra
- Department of Life Sciences, University of Trieste, Italy
| | - Gabriele Pozzato
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | - Mario Grassi
- Department of Industrial Engineering and Information Technology, University of Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Italy
| | | | - Cinzia Ferrari
- Department of Clinic-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia, Italy
| | - Francesco Trotta
- Department of Clinic-Surgical Sciences, Experimental Surgery Laboratory, University of Pavia, Italy; U.O. di Chirurgia Generale e Toracica, Ospedale Maggiore, Lodi, Italy
| | | | - Barbara Dapas
- Department of Life Sciences, University of Trieste, Italy
| |
Collapse
|