1
|
Wu C, Wang Z, Han X, Yu X, Sun CC, Zhou Z. Simultaneously improving tabletability and solubility of diclofenac by cocrystallization with picolinamide. Int J Pharm 2025; 670:125172. [PMID: 39761707 DOI: 10.1016/j.ijpharm.2025.125172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Diclofenac (DIC) is a nonsteroidal anti-inflammatory drug with poor tabletability and water solubility. In the present study, a new diclofenac-picolinamide cocrystal (DIC-PIC) was prepared to simultaneously improve its tabletability and solubility. The cocrystal was characterized using multiple techniques, such as X-ray diffraction, thermal methods and spectral analyses. The tabletability of DIC-PIC was significantly improved over DIC, which is attributed to the larger bonding area between crystals due to the higher plasticity of DIC-PIC, demonstrated by the lower in-die mean yield pressure, Py,i, of DIC-PIC (59.5 ± 0.6 MPa) than DIC (86.6 ± 1.4 MPa). The higher plasticity of DIC-PIC is consistent with the existence of a slip plane (001) in its crystal structure. The solubility of DIC-PIC is significantly higher than that of DIC (112 times higher in water and 22 times higher in pH = 6.8 buffer solution). Hence, the simultaneous improvement in tabletability and solubility of DIC-PIC overcomes two main barriers in developing DIC tablets, which makes it a promising candidate for developing a DIC tablet with improved performance.
Collapse
Affiliation(s)
- Chenyu Wu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zijian Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xu Han
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xinyi Yu
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Zhengzheng Zhou
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Montenegro I, Pérez C, González B, Domínguez Á, Gómez E. Thermal Characterization and Heat Capacities of Seven Polyphenols. Molecules 2025; 30:199. [PMID: 39795255 PMCID: PMC11722974 DOI: 10.3390/molecules30010199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Polyphenolic compounds are key elements in sectors such as pharmaceutics, cosmetics and food; thus, their physicochemical characterization is a vital task. In this work, the thermal behavior of seven polyphenols (trans-resveratrol, trans-polydatin, kaempferol, quercetin, myricetin, hesperidin, and (-)-epicatechin) was investigated with DSC (differential scanning calorimetry) and TGA (thermogravimetric analysis). Melting temperatures, enthalpies of fusion and decomposition temperatures were determined, and heat capacities were measured in the temperature range from 283.15 K to 363.15 K. Results were compared to the scarce experimental data available in the literature, showing a satisfactory agreement. All compounds were found to be thermally stable until melting, upon which they rapidly decomposed. Myricetin was the only polyphenol that presented polymorphic behavior, exhibiting two phase transitions prior to melting. Heat capacities increased minimally with temperature in the studied range. In addition, the group contribution method developed by Marrero and Gani was used to estimate the thermal properties of the polyphenols, achieving high accuracy for melting temperatures.
Collapse
Affiliation(s)
- Iván Montenegro
- FEQx Lab, Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain; (I.M.); (B.G.); (Á.D.)
| | - Carmen Pérez
- CINTECX, ENCOMAT Group, University of Vigo, 36310 Vigo, Spain;
| | - Begoña González
- FEQx Lab, Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain; (I.M.); (B.G.); (Á.D.)
| | - Ángeles Domínguez
- FEQx Lab, Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain; (I.M.); (B.G.); (Á.D.)
| | - Elena Gómez
- FEQx Lab, Department of Chemical Engineering, University of Vigo, 36310 Vigo, Spain; (I.M.); (B.G.); (Á.D.)
| |
Collapse
|
3
|
Samie A, Alavian H. A Perspective on the Permeability of Cocrystals/Organic Salts of Oral Drugs. Mol Pharm 2024; 21:4860-4911. [PMID: 39284012 DOI: 10.1021/acs.molpharmaceut.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
According to the BCS classification system, the differentiation of drugs is based on two essential parameters of solubility and permeability, meaning the latter is as pivotal as the former in creating marketable pharmaceutical products. Nevertheless, the indispensable role of permeability in pharmaceutical cocrystal profiles has not been sufficiently cherished, which can be most probably attributed to two principal reasons. First, responsibility may be on more user-friendly in vitro measurement procedures for solubility compared to permeability, implying the permeability measurement process seems unexpectedly difficult for researchers, whereas they have a complete understanding of solubility concepts and experiments. Besides, it may be ascribed to the undeniable attraction of introducing new crystal-based structures which mostly leaves the importance of improving the function of existing multicomponents behind. Bringing in new crystalline entities, to rephrase it, researchers have a fairly better chance of achieving high-class publications. Although the Food and Drug Administration (FDA) has provided a golden opportunity for pharmaceutical cocrystals to straightforwardly enter the market by simply considering them as derivatives of the existing active pharmaceutical ingredients, inattention to assessing and scaling up permeability which is intimately linked with solubility has resulted in limited numbers of them in the global pharmaceutical market. Casting a glance at the future, it is apprehended that further development in the field of permeability of pharmaceutical cocrystals and organic salts requires a meticulous perception of achievements to date and potentials to come. Thence, this perspective scrutinizes the pathway of permeation assessment making researchers confront their fear upfront through mapping the simplest way of permeability measurement for multicomponents of oral drugs.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
4
|
Ioniţă S, Pătrașcu M, Soare EM, Lincu D, Atkinson I, Rusu A, Pop MM, Iordache C, Ușurelu CD, Baltac AS, Mitran RA, Pandele-Cuşu J, Fruth V. Rapid Synthesis and Evaluation of Resveratrol-Piperazine Cocrystals by Ultrasound and Microwave Methods. Pharm Res 2024; 41:1843-1853. [PMID: 39112777 DOI: 10.1007/s11095-024-03758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/31/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVE Resveratrol-piperazine cocrystals have been obtained by ultrasound (US) and microwave-assisted (MW) techniques, using the solution and slurry-based methods, to study the influence of the synthesis method on the resulting cocrystal properties, and scalability of the processes. The potential of these cocrystals is represented by the unique properties of their components, resveratrol, and piperazine, which could be also used in veterinary practice. Resveratrol has antimicrobial, antiviral and anticarcinogenic properties, while piperazine can be used in the treatment of parasitic infections. METHODS The influence of ultrasound and microwave-assisted treatment was studied by varying synthesis parameters such as reaction time, temperature, and US or MW power. The main advantage of using these methods is represented by shorter synthesis time compared to conventional methods, resulting in the direct formation of the cocrystals. RESULTS All samples were obtained in high purity, above 97%. Cocrystal yield correlated positively with ultrasound reaction time, while temperature was not found to influence the microwave synthesis yield up to 50°C, in the case of solution-based methods. MW and US-assisted solution-based methods lead to yields between 52.9 and 68.1%. In the case of the slurry-based method, a minimum reaction time of 5 min leads to the formation of cocrystals with high purity. The resveratrol-piperazine cocrystal's solubility and in vitro antibacterial activity were also evaluated, showing promising results. CONCLUSIONS Ultrasound and microwave-assisted techniques offer a viable alternative for synthesizing resveratrol-piperazine cocrystals with short reaction times, high yield, and purity, suitable for scalable resveratrol-piperazine cocrystals.
Collapse
Affiliation(s)
- Simona Ioniţă
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Mariana Pătrașcu
- Research & Development Department, Primosal Srl, Str. Dreptății Nr. 6, 060886, Bucharest, Romania
| | - Elena Mirabela Soare
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Daniel Lincu
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Irina Atkinson
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Adriana Rusu
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | | | - Coca Iordache
- TeraCrystal SRL, Donat, no. 67 - 103, 400293, Cluj-Napoca, Romania
| | - Cătălina-Diana Ușurelu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Andreea Simona Baltac
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
- Horia Hulubei" National Institute of Physics and Nuclear Engineering, Centre of Technological Irradiation IRASM, Magurele, Ilfov County, Romania
| | - Raul-Augustin Mitran
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Jeanina Pandele-Cuşu
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania
| | - Victor Fruth
- "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Independentei, 060021, Bucharest, Romania.
| |
Collapse
|
5
|
Jiang Y, Xing M, Sun J, Zeng XA, Brennan C, Chandrapala J, Majzoobi M, Sun B. Construction of resveratrol and quercetin nanoparticles based on folic acid targeted Maillard products between Jiuzao glutelin isolate and carboxymethyl chitosan: Improved stability and function. Food Chem 2024; 450:139296. [PMID: 38636381 DOI: 10.1016/j.foodchem.2024.139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Advanced targeted nanoparticles (NPs) were designed to enhance the targeted delivery of resveratrol (RES) and quercetin (QUE) by utilizing carboxymethyl chitosan (CTS) and Jiuzao glutelin isolate (JGI) conjugates. Briefly, RES and QUE were encapsuled within CTS-JGI-2 (CTS/JGI, m/m, 2:1). The carrier's targeting properties were further improved through the incorporation of folic acid (FA) and polyethylenimine (PEI). Moreover, the stability against digestion was enhanced by incorporating baker yeast cell walls (BYCWs) to construct RES-QUE/FA-PEI/CTS-JGI-2/MAT/BYCW NPs. The results demonstrated that FA-PEI/CTS-JGI-2/MAT/BYCW NPs could improve cellular uptake and targeting property of RES and QUE through endocytosis of folic acid receptors (FOLRs). Additionally, RES-QUE successfully alleviated LPS- and DSS-induced inflammation by regulating NF-κB/IkBa/AP-1 and AMPK/SIRT1signaling pathways and reducing the secretion of inflammatory mediators and factors. These findings indicate FA-PEI/CTS-JGI-2/MAT/BYCW NPs hold promise as an oral drug delivery system with targeted delivery capacities for functional substances prone to instability in dietary supplements.
Collapse
Affiliation(s)
- Yunsong Jiang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China; School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China; School of Science, RMIT, Melbourne, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Department of Pharmaceutical Research Institute, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China
| | - Jinyuan Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Charles Brennan
- School of Science, RMIT, Melbourne, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Jayani Chandrapala
- School of Science, RMIT, Melbourne, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Mahsa Majzoobi
- School of Science, RMIT, Melbourne, Bundoora West Campus, Plenty Road, Melbourne, VIC 3083, Australia
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, People's Republic of China
| |
Collapse
|
6
|
Mitran RA, Ioniţă S, Lincu D, Soare EM, Atkinson I, Rusu A, Pandele-Cuşu J, Iordache C, Pongratz I, Pop MM, Fruth V. Mechanochemical Synthesis of Resveratrol-Piperazine Cocrystals. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3145. [PMID: 38998228 PMCID: PMC11242635 DOI: 10.3390/ma17133145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
The 1:1 resveratrol-piperazine cocrystal was successfully synthesized and scaled-up to 300 g scale with the mechanochemical method, as a result of investigating key process parameters, namely the solvent and the grinding time. The use of water, ethanol or ethanol-water mixtures and reaction times up to 50 min were evaluated relative to the dry grinding process. Cocrystal formation and purity were monitored through X-ray diffraction and calorimetry measurements. The dry grinding resulted in an incomplete cocrystal formation, while the use of water or water-ethanol mixture yielded a monohydrate solid phase. Pure ethanol was found to be the optimal solvent for large-scale cocrystallization, as it delivered cocrystals with high crystallinity and purity after 10-30 min grinding time at the laboratory scale. Notably, a relatively fast reaction time (30-60 min) was sufficient for the completion of cocrystallization at larger scales, using a planetary ball mill and a plant reactor. Also, the obtained cocrystal increases the aqueous solubility of resveratrol by 6%-16% at pH = 6.8. Overall, this study highlights the potential of solvent-assisted mechanochemical synthesis as a promising new approach for the efficient production of pure resveratrol-piperazine cocrystals.
Collapse
Affiliation(s)
- Raul-Augustin Mitran
- “Ilie Murgulescu” Institute of Physical Chemistry Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (R.-A.M.); (S.I.); (D.L.); (E.M.S.); (I.A.); (A.R.); (J.P.-C.)
| | - Simona Ioniţă
- “Ilie Murgulescu” Institute of Physical Chemistry Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (R.-A.M.); (S.I.); (D.L.); (E.M.S.); (I.A.); (A.R.); (J.P.-C.)
| | - Daniel Lincu
- “Ilie Murgulescu” Institute of Physical Chemistry Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (R.-A.M.); (S.I.); (D.L.); (E.M.S.); (I.A.); (A.R.); (J.P.-C.)
| | - Elena Mirabela Soare
- “Ilie Murgulescu” Institute of Physical Chemistry Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (R.-A.M.); (S.I.); (D.L.); (E.M.S.); (I.A.); (A.R.); (J.P.-C.)
| | - Irina Atkinson
- “Ilie Murgulescu” Institute of Physical Chemistry Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (R.-A.M.); (S.I.); (D.L.); (E.M.S.); (I.A.); (A.R.); (J.P.-C.)
| | - Adriana Rusu
- “Ilie Murgulescu” Institute of Physical Chemistry Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (R.-A.M.); (S.I.); (D.L.); (E.M.S.); (I.A.); (A.R.); (J.P.-C.)
| | - Jeanina Pandele-Cuşu
- “Ilie Murgulescu” Institute of Physical Chemistry Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (R.-A.M.); (S.I.); (D.L.); (E.M.S.); (I.A.); (A.R.); (J.P.-C.)
| | - Coca Iordache
- TeraCrystal SRL, Donat, No. 67-103, 400293 Cluj Napoca, Romania;
| | | | | | - Victor Fruth
- “Ilie Murgulescu” Institute of Physical Chemistry Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania; (R.-A.M.); (S.I.); (D.L.); (E.M.S.); (I.A.); (A.R.); (J.P.-C.)
| |
Collapse
|
7
|
Wang Y, Jiang Y, Zhou Y, He H, Tang J, Luo A, Liu Z, Ma C, Xiao Q, Guan T, Dai C. Cocrystal Prediction of Nifedipine Based on the Graph Neural Network and Molecular Electrostatic Potential Surface. AAPS PharmSciTech 2024; 25:133. [PMID: 38862767 DOI: 10.1208/s12249-024-02846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/20/2024] [Indexed: 06/13/2024] Open
Abstract
Nifedipine (NIF) is a dihydropyridine calcium channel blocker primarily used to treat conditions such as hypertension and angina. However, its low solubility and low bioavailability limit its effectiveness in clinical practice. Here, we developed a cocrystal prediction model based on Graph Neural Networks (CocrystalGNN) for the screening of cocrystals with NIF. And scoring 50 coformers using CocrystalGNN. To validate the reliability of the model, we used another prediction method, Molecular Electrostatic Potential Surface (MEPS), to verify the prediction results. Subsequently, we performed a second validation using experiments. The results indicate that our model achieved high performance. Ultimately, cocrystals of NIF were successfully obtained and all cocrystals exhibited better solubility and dissolution characteristics compared to the parent drug. This study lays a solid foundation for combining virtual prediction with experimental screening to discover novel water-insoluble drug cocrystals.
Collapse
Affiliation(s)
- Yuting Wang
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Yanling Jiang
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Yu Zhou
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Huai He
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Jincao Tang
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Anqing Luo
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Zeng Liu
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Chi Ma
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Qin Xiao
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Tianbing Guan
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China
| | - Chuanyun Dai
- Chongqing Key Laboratory of Digitalization of Pharmaceutical Processes and Equipment, College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, No. 20, University City East Road, Chongqing, 401331, China.
| |
Collapse
|
8
|
Pandey N, Kumari N, Roy P, Mondal SK, Thakur A, Sun CC, Ghosh A. Tuning Caco-2 permeability by cocrystallization: Insights from molecular dynamics simulation. Int J Pharm 2024; 650:123666. [PMID: 38065346 DOI: 10.1016/j.ijpharm.2023.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Emerging evidence suggests that intestinal permeability can be potentially enhanced through cocrystallization. However, a mechanism for this effect remains to be established. In this study, we first demonstrate the enhancement in intestinal permeability, evaluated by the Caco-2 cell permeability assay, of acetazolamide (ACZ) in the presence of a conformer, p-aminobenzoic acid (PABA), delivered in the form of a 1:1 cocrystal. The binding strength of ACZ and PABA with the Pgp efflux transporter, either alone or as a mixture, was calculated using molecular dynamics simulation. Results show that PABA weakens the binding of ACZ with Pgp, which leads to a lower efflux ratio and elevated permeability of ACZ. This work provides molecular-level insights into a potentially effective strategy to improve the intestinal permeability of drugs. If the same cocrystal also exhibits higher solubility, oral bioavailability of BCS IV drugs can likely be improved by forming a cocrystal with a Pgp inhibitor.
Collapse
Affiliation(s)
- Noopur Pandey
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Nimmy Kumari
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Parag Roy
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Susanta Kumar Mondal
- TCG Life Sciences Pvt. Ltd, Block-EP & GP, BIPL, Tower-B, Salt Lake, Sector-V, Kolkata, 700091, India
| | - Abhishek Thakur
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, United States.
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, United States.
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.
| |
Collapse
|
9
|
Tran TM, Atanasova V, Tardif C, Richard-Forget F. Stilbenoids as Promising Natural Product-Based Solutions in a Race against Mycotoxigenic Fungi: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5075-5092. [PMID: 36951872 DOI: 10.1021/acs.jafc.3c00407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exposure to mycotoxins can pose a variety of adverse health effects to mammals. Despite dozens of mycotoxin decontamination strategies applied from pre- to postharvest stages, it is always challenging to guarantee a safe level of these natural toxic compounds in food and feedstuffs. In the context of the increased occurrence of drug-resistance strains of mycotoxin-producing fungi driven by the overuse of fungicides, the search for new natural-product-based solutions is a top priority. This review aims to shed a light on the promising potential of stilbenoids extracted from renewable agricultural wastes (e.g., grape canes and forestry byproducts) as antimycotoxin agents. Deeper insights into the mode of actions underlying the bioactivity of stilbenoid molecules against fungal pathogens, together with their roles in plant defense responses, are provided. Safety aspects of these natural compounds on humans and ecology are discussed. Perspectives on the development of stilbenoid-based formulations using encapsulation technology, which allows the bypassing of the limitations related to stilbenoids, particularly low aqueous solubility, are addressed. Optimistically, the knowledge gathered in the present review supports the use of currently underrated agricultural byproducts to produce stilbenoid-abundant extracts with a high efficiency in the mitigation of mycotoxins in food and feedstuffs.
Collapse
Affiliation(s)
- Trang Minh Tran
- RU 1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d'Ornon, France
| | - Vessela Atanasova
- RU 1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d'Ornon, France
| | - Charles Tardif
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Univ. Bordeaux, 33882 Villenave d'Ornon, France
| | | |
Collapse
|
10
|
Lu Z, Chen H, Mo J, Yuan X, Wang D, Zheng X, Zhu W. Cocrystal of phloretin with isoniazid: preparation, characterization, and evaluation. RSC Adv 2023; 13:10914-10922. [PMID: 37033443 PMCID: PMC10077513 DOI: 10.1039/d3ra00750b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
Phloretin (Phl) is a natural flavonoid compound with wide range of biological activities but demonstrates poor water solubility and limited pharmacological effects. In this study, one cocrystal of phloretin-isoniazid (Phl-Inz) was prepared successfully using the solvent evaporation method. The physical properties of cocrystal were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), powder X-ray diffraction (PXRD), Fourier-transform infrared (FT-IR) and single crystal X-ray diffraction (SCXRD). The Hirshfeld surface analysis explained further interactions in the cocrystal. The solubility test showed that the solubility of the cocrystal was increased at pH 1.2 and pH 6.8 compared to that of the pure drug. The test in vitro simulated gastrointestinal digestion showed that the release of phloretin in the cocrystal was better than that in the pure phloretin. The results of the DPPH and ABTS scavenging activity showed that the in vitro antioxidant activity of the cocrystal was improved. The anticancer assay exhibited improved cytotoxicity in the Phl-Inz cocrystal as compared with the pure Phl.
Collapse
Affiliation(s)
- Zhongyu Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Hankun Chen
- Research and Development Department, Guangzhou Qinglan Biotechnology Company Limited Guangzhou China
| | - Jiaxin Mo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiaohong Yuan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Dawei Wang
- ShunDe Hospital, Guangzhou University of Chinese Medicine Foshan China
| | - Xianhui Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| | - Wei Zhu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
11
|
Bogdan C, Hales D, Cornilă A, Casian T, Iovanov R, Tomuță I, Iurian S. Texture analysis – a versatile tool for pharmaceutical evaluation of solid oral dosage forms. Int J Pharm 2023; 638:122916. [PMID: 37019322 DOI: 10.1016/j.ijpharm.2023.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
In the past few decades, texture analysis (TA) has gained importance as a valuable method for the characterization of solid oral dosage forms. As a result, an increasing number of scientific publications describe the textural methods that evaluate the extremely diverse category of solid pharmaceutical products. Within the current work, the use of texture analysis in the characterization of solid oral dosage forms is summarised with a focus on the evaluation of intermediate and finished oral pharmaceutical products. Several texture methods are reviewed regarding the applications in mechanical characterization, and mucoadhesion testing, but also in estimating the disintegration time and in vivo specific features of oral dosage forms. As there are no pharmacopoeial standards for pharmaceutical products tested through texture analysis, and there are important differences between reported results due to different experimental conditions, the choice of testing protocol and parameters is challenging. Thereby, this work aims to guide the research scientists and quality assurance professionals involved in different stages of drug development into the selection of optimal texture methodologies depending on the product characteristics and quality control needs.
Collapse
Affiliation(s)
- Cătălina Bogdan
- Department of Dermopharmacy and Cosmetics, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania
| | - Dana Hales
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Cornilă
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Rareș Iovanov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Ioan Tomuță
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 V. Babes Street, 400012 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Kumbhar P, Kolekar K, Khot C, Dabhole S, Salawi A, Sabei FY, Mohite A, Kole K, Mhatre S, Jha NK, Manjappa A, Singh SK, Dua K, Disouza J, Patravale V. Co-crystal nanoarchitectonics as an emerging strategy in attenuating cancer: Fundamentals and applications. J Control Release 2023; 353:1150-1170. [PMID: 36566843 DOI: 10.1016/j.jconrel.2022.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Cancer ranks as the second foremost cause of death in various corners of the globe. The clinical uses of assorted anticancer therapeutics have been limited owing to the poor physicochemical attributes, pharmacokinetic performance, and lethal toxicities. Various sorts of co-crystals or nano co-crystals or co-crystals-laden nanocarriers have presented great promise in targeting cancer via improved physicochemical attributes, pharmacokinetic performance, and reduced toxicities. These systems have also demonstrated the controlled cargo release and passive targeting via enhanced permeation and retention (EPR) effect. In addition, regional delivery of co-crystals via inhalation and transdermal route displayed remarkable potential in targeting lung and skin cancer effectively. However, more research is required on the use of co-crystals in cancer and their commercialization. The present review mainly emphasizes co-crystals as emerging avenues in the treatment of various cancers by modulating the physicochemical and pharmacokinetic attributes of approved anticancer therapeutics. The worth of co-crystals in cancer treatment, computational paths in the co-crystals screening, diverse experimental techniques of co-crystals fabrication, and sorts of co-crystals and their noteworthy applications in targeting cancer are also discussed. Besides, the game changer approaches like nano co-crystals and co-crystals-laden nanocarriers, and co-crystals in regional delivery in cancer are also explained with reported case studies. Furthermore, regulatory directives for pharmaceutical co-crystals and their scale-up, and challenges are also highlighted with concluding remarks and future initiatives. In essence, co-crystals and nano co-crystals emerge to be a promising strategy in overwhelming cancers through improving anticancer efficacy, safety, patient compliance, and reducing the cost.
Collapse
Affiliation(s)
- Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Kaustubh Kolekar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Chinmayee Khot
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Swati Dabhole
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Ahmad Salawi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Fahad Y Sabei
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Akshay Mohite
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Kapil Kole
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Susmit Mhatre
- Department of Pharmacy Sciences, School of Pharmacy and Health Professionals, Creighton University, Omaha, NE 68178, USA
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, 201310, Uttar Pradesh, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Arehalli Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra 416113, India.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra 400019, India.
| |
Collapse
|
13
|
Liu H, Stephen Chan H, Zhang L, Lu Y, Li J, Li J, Li L, Zhou Z. The molecular mechanisms of plasticity in crystal forms of theophylline. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Li J, Huang Y, An Q, Li W, Li J, Liu H, Yang D, Lu Y, Zhou Z. Discovered two polymorphs and two solvates of lamotrigine-tolfenamic acid salt: Thermal behavior and crystal morphological differences. Int J Pharm 2022; 628:122310. [DOI: 10.1016/j.ijpharm.2022.122310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
|
15
|
Virtual Cocrystal Screening of Adefovir Dipivoxyl: Identification of New Solid Forms with Improved Dissolution and Permeation Profiles. Pharmaceutics 2022; 14:pharmaceutics14112310. [DOI: 10.3390/pharmaceutics14112310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
The application of a computational screening methodology based on the calculation of intermolecular interaction energies has guided the discovery of new multicomponent solid forms of the oral antiviral Adefovir Dipivoxyl. Three new cocrystals with resorcinol, orcinol and hydroquinone have been synthesized and thoroughly characterized. They show improved dissolution profiles with respect to the single solid form, particularly the cocrystals of orcinol and resorcinol, which have 3.2- and 2-fold faster dissolution rates at stomach conditions (pH 1.5). Moreover, dynamic dissolution experiments that simultaneously mimic both the pH variation along the gastrointestinal tract and the partition into biological membranes show that, in addition to the faster initial dissolution, Adefovir Dipivoxyl also penetrates faster into the organic membranes in the form of resorcinol and orcinol cocrystals.
Collapse
|
16
|
Chauhan V, Mardia R, Patel M, Suhagia B, Parmar K. Technical and Formulation Aspects of Pharmaceutical Co‐Crystallization: A Systematic Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202202588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vishva Chauhan
- Affiliation: a-ROFEL Shri G.M. Bilakhia College of Pharmacy Namdha campus Vapi Gujarat India 396191
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Rajnikant Mardia
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Mehul Patel
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Bhanu Suhagia
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Komal Parmar
- Affiliation: a-ROFEL Shri G.M. Bilakhia College of Pharmacy Namdha campus Vapi Gujarat India 396191
| |
Collapse
|
17
|
An outlook on permeability escalation through cocrystallization for developing pharmaceuticals with improved biopharmaceutical properties. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Synthesis and structural characterization of two novel olanzapine cocrystals with decreased or enhanced dissolution rate. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Chaudhari KR, Savjani JK, Savjani KT, Shah H. Improved Pharmaceutical Properties of Ritonavir through Co-crystallization Approach with Liquid Assisted Grinding Method. Drug Dev Ind Pharm 2022; 47:1633-1642. [PMID: 35156497 DOI: 10.1080/03639045.2022.2042553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ritonavir is a BCS class II antiretroviral agent which shows poor aqueous solubility and low oral bioavailability. The cocrystallization approach was selected to overcome these problems and to improve the physicochemical and mechanical properties of Ritonavir. The novel pharmaceutical Ritonavir-L-tyrosine cocrystals (RTC at a molar ratio of 1:1) were synthesized using the liquid assisted grinding (LAG) method. The possibility of molecular interactions between drug and coformer were studied using Gold software version 5.2. The newly formed crystalline solid phase was characterized through Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Solid-State Nuclear magnetic resonance (SSNMR). The improved pharmaceutical properties were confirmed by solubility, dissolution, and powder compaction study. The prepared cocrystals exhibited an 11.24-fold increase in solubility and a 3.73-fold increase in % of drug release at 1 h compared to pure drug. Tabletability and compaction behaviour of the pure drug and cocrystal with added excipients assessed. The tabletability profile of cocrystals showed enhanced tabletting performance as compared to pure drug. The stability studies revealed that cocrystals were stable for at least one month when stored at 40 °C/75% RH and 25 °C/60% RH conditions. The cocrystallization approach was found to be very promising and showed an overall improved performance of Ritonavir.
Collapse
Affiliation(s)
| | - Jignasa K Savjani
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | | | - Harsh Shah
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York, 11201, USA
| |
Collapse
|
20
|
Lattice water provides hydrogen atom donor to form hydrate: A case study of chlorbipram: m-hydroxybenzoic acid (1:1) cocrystal. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Guan D, Xuan B, Wang C, Long R, Jiang Y, Mao L, Kang J, Wang Z, Chow SF, Zhou Q. Improving the Physicochemical and Biopharmaceutical Properties of Active Pharmaceutical Ingredients Derived from Traditional Chinese Medicine through Cocrystal Engineering. Pharmaceutics 2021; 13:2160. [PMID: 34959440 PMCID: PMC8704577 DOI: 10.3390/pharmaceutics13122160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023] Open
Abstract
Active pharmaceutical ingredients (APIs) extracted and isolated from traditional Chinese medicines (TCMs) are of interest for drug development due to their wide range of biological activities. However, the overwhelming majority of APIs in TCMs (T-APIs), including flavonoids, terpenoids, alkaloids and phenolic acids, are limited by their poor physicochemical and biopharmaceutical properties, such as solubility, dissolution performance, stability and tabletability for drug development. Cocrystallization of these T-APIs with coformers offers unique advantages to modulate physicochemical properties of these drugs without compromising the therapeutic benefits by non-covalent interactions. This review provides a comprehensive overview of current challenges, applications, and future directions of T-API cocrystals, including cocrystal designs, preparation methods, modifications and corresponding mechanisms of physicochemical and biopharmaceutical properties. Moreover, a variety of studies are presented to elucidate the relationship between the crystal structures of cocrystals and their resulting properties, along with the underlying mechanism for such changes. It is believed that a comprehensive understanding of cocrystal engineering could contribute to the development of more bioactive natural compounds into new drugs.
Collapse
Affiliation(s)
- Danyingzi Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Chengguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ruitao Long
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Yaqin Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Jinbing Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Ziwen Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| |
Collapse
|
22
|
Photoinstability in active pharmaceutical ingredients: Crystal engineering as a mitigating measure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Zhou H, Wang Y, Li S, Lu M. Improving chemical stability of resveratrol in hot melt extrusion based on formation of eutectic with nicotinamide. Int J Pharm 2021; 607:121042. [PMID: 34450224 DOI: 10.1016/j.ijpharm.2021.121042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
Hot melt extrusion (HME) is a technique applied in the preparation of pharmaceutical amorphous solid dispersions (ASD). Notably it is important to prevent thermal degradation of heat-sensitive drugs during HME. In this study, we present a new strategy to improve chemical stability of pharmaceutical compounds during HME through the formation of eutectics with small molecules. Resveratrol (RES) was selected as the model compound because it is a heat-liable natural product with a very high melting point of 267 °C. When heated at its melting point for 3 min, it degrades by 40%. RES can co-crystallize with nicotinamide (NIC) in solution, however, it can only form a eutectic with NIC during heating. HPMCAS was selected as the polymer matrix and the drug loading of RES was fixed as 20% (weight ratio). The lowest extrusion temperature that can result to RES-HPMCAS ASD is 215 °C. At this temperature, RES shows 7.36% degradation during extrusion. Replacement of 21.4% HPMCAS with NIC decreased the melting temperature of NIC and thus lowered the minimal extrusion temperature to 155 °C. This effectively prevented thermal degradation of RES without negatively affecting non-sink dissolution. The only extra cost for this method is stricter storage conditions (low temperature and low humidity) due to the low glass transition temperature of NIC. Similar strategy may be applied to other heat-liable drugs in similar ways. This study demonstrates the use of eutectic formation for preventing thermal degradation of drug during extrusion of ASD.
Collapse
Affiliation(s)
- Huanyue Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuting Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
24
|
Bergenin-isonicotinamide (1:1) cocrystal with enhanced solubility and investigation of its solubility behavior. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
In-silico methods of cocrystal screening: A review on tools for rational design of pharmaceutical cocrystals. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021; 13:790. [PMID: 34070646 PMCID: PMC8228148 DOI: 10.3390/pharmaceutics13060790] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.
Collapse
Affiliation(s)
- Mizraín Solares-Briones
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - José C. Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Miriam R. Zermeño-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Carmen Myriam de la O Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, C.P. 56230, Mexico;
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Ciudad de México, C.P. 11340, Mexico;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Juan M. Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| |
Collapse
|
27
|
An Overview on Dietary Polyphenols and Their Biopharmaceutical Classification System (BCS). Int J Mol Sci 2021; 22:ijms22115514. [PMID: 34073709 PMCID: PMC8197262 DOI: 10.3390/ijms22115514] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Polyphenols are natural organic compounds produced by plants, acting as antioxidants by reacting with ROS. These compounds are widely consumed in daily diet and many studies report several benefits to human health thanks to their bioavailability in humans. However, the digestion process of phenolic compounds is still not completely clear. Moreover, bioavailability is dependent on the metabolic phase of these compounds. The LogP value can be managed as a simplified measure of the lipophilicity of a substance ingested within the human body, which affects resultant absorption. The biopharmaceutical classification system (BCS), a method used to classify drugs intended for gastrointestinal absorption, correlates the solubility and permeability of the drug with both the rate and extent of oral absorption. BCS may be helpful to measure the bioactive constituents of foods, such as polyphenols, in order to understand their nutraceutical potential. There are many literature studies that focus on permeability, absorption, and bioavailability of polyphenols and their resultant metabolic byproducts, but there is still confusion about their respective LogP values and BCS classification. This review will provide an overview of the information regarding 10 dietarypolyphenols (ferulic acid, chlorogenic acid, rutin, quercetin, apigenin, cirsimaritin, daidzein, resveratrol, ellagic acid, and curcumin) and their association with the BCS classification.
Collapse
|
28
|
Phase solubility investigation and theoretical calculations on drug-drug cocrystals of carbamazepine with Emodin, Paeonol. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115604] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
A Review of Pharmaceutical Nano-Cocrystals: A Novel Strategy to Improve the Chemical and Physical Properties for Poorly Soluble Drugs. CRYSTALS 2021. [DOI: 10.3390/cryst11050463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, many commercial drugs have poor solubility and bioavailability. Cocrystals are formulated to modulate active pharmaceutical ingredients’ properties with improved solubility, dissolution, and bioavailability compared to their pristine individual components in the pharmaceutical industry. Nano-cocrystals, crystals in the nano range, can further enhance these properties because of not only the cocrystal structure, but also the large surface to volume ratio of nanocrystals. Even though there are many studies on cocrystals, the research of pharmaceutical nano-cocrystals is still in the initial stage. Thus, it is necessary to conduct a systematic study on pharmaceutical nano-cocrystals. In this review, the possible preparation approaches of nano-cocrystals have been reported. To have a comprehensive understanding of nano-cocrystals, some analytical techniques and characterizations will be discussed in detail. In addition, the feasible therapeutic application of nano-cocrystals will be presented. This work is expected to provide guidance to develop new nano-cocrystals with commercial value in the pharmaceutical industry.
Collapse
|
30
|
Liu W, Ma R, Liang F, Duan C, Zhang G, Chen Y, Hao C. New Cocrystals of Antipsychotic Drug Aripiprazole: Decreasing the Dissolution through Cocrystallization. Molecules 2021; 26:molecules26092414. [PMID: 33919175 PMCID: PMC8122301 DOI: 10.3390/molecules26092414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
Cocrystallization is an important route to tuning the solubility in drugs development, including improving and reducing. Five cocrystals of aripiprazole (ARI) with resveratrol (RSV) and kaempferol (KAE), ARI-RSV, ARI2-RSV1·MeOH, ARI-KAE, ARI-KAE·EtOH, ARI-KAE·IPA, were synthesized and characterized. The single crystal of ARI2-RSV1·MeOH, ARI-KAE·EtOH, and ARI-KAE·IPA were analyzed by single crystal X-ray diffraction (SCXRD). The SCXRD showed multiple intermolecular interactions between API and the coformers, including hydrogen bond, halogen bond, and π-π interactions. Dissolution rate of the two nonsolvate ARI-RSV and ARI-KAE cocrystals were investigated through powder dissolution experiment in pH = 4.0 acetate buffer and pH = 6.8 phosphate buffer. The result showed that RSV could reduce the dissolution rate and solubility of ARI in both medium through cocrystallization. However, KAE improved the dissolution rate and solubility of ARI in pH = 4.0 medium, on the contrary, the two solubility indicators of ARI were both reduced for ARI-KAE cocrystal.
Collapse
Affiliation(s)
- Wenwen Liu
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (W.L.); (R.M.); (F.L.); (C.D.); (G.Z.)
| | - Ru Ma
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (W.L.); (R.M.); (F.L.); (C.D.); (G.Z.)
| | - Feifei Liang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (W.L.); (R.M.); (F.L.); (C.D.); (G.Z.)
| | - Chenxin Duan
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (W.L.); (R.M.); (F.L.); (C.D.); (G.Z.)
| | - Guisen Zhang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (W.L.); (R.M.); (F.L.); (C.D.); (G.Z.)
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yin Chen
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (W.L.); (R.M.); (F.L.); (C.D.); (G.Z.)
- Correspondence: (Y.C.); (C.H.); Tel.: +86-27-87792235 (C.H.)
| | - Chao Hao
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China; (W.L.); (R.M.); (F.L.); (C.D.); (G.Z.)
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Correspondence: (Y.C.); (C.H.); Tel.: +86-27-87792235 (C.H.)
| |
Collapse
|
31
|
Liu G, Li J, Deng S. Applications of Supercritical Anti-Solvent Process in Preparation of Solid Multicomponent Systems. Pharmaceutics 2021; 13:475. [PMID: 33915815 PMCID: PMC8067079 DOI: 10.3390/pharmaceutics13040475] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 01/17/2023] Open
Abstract
Solid multicomponent systems (SMS) are gaining an increasingly important role in the pharmaceutical industry, to improve the physicochemical properties of active pharmaceutical ingredients (APIs). In recent years, various processes have been employed for SMS manufacturing. Control of the particle solid-state properties, such as size, morphology, and crystal form is required to optimize the SMS formulation. By utilizing the unique and tunable properties of supercritical fluids, supercritical anti-solvent (SAS) process holds great promise for the manipulation of the solid-state properties of APIs. The SAS techniques have been developed from batch to continuous mode. Their applications in SMS preparation are summarized in this review. Many pharmaceutical co-crystals and solid dispersions have been successfully produced via the SAS process, where the solid-state properties of APIs can be well designed by controlling the operating parameters. The underlying mechanisms on the manipulation of solid-state properties are discussed, with the help of on-line monitoring and computational techniques. With continuous researching, SAS process will give a large contribution to the scalable and continuous manufacturing of desired SMS in the near future.
Collapse
Affiliation(s)
- Guijin Liu
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | - Junjian Li
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou 570228, China;
| | | |
Collapse
|
32
|
Liu H, Nie J, Stephen Chan HC, Zhang H, Li L, Lin H, Tong HHY, Ma A, Zhou Z. Phase solubility diagrams and energy surface calculations support the solubility enhancement with low hygroscopicity of Bergenin: 4-Aminobenzamide (1: 1) cocrystal. Int J Pharm 2021; 601:120537. [PMID: 33781883 DOI: 10.1016/j.ijpharm.2021.120537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 01/22/2023]
Abstract
Herein, we reported a new bergenin: 4-aminobenzamide (BGN-4AM) cocrystal with significantly enhanced solubility and low hygroscopicity probed from two aspects such as phase solubility diagrams and theoretical calculations. Compared with anhydrous BGN, BGN-4AM solubilities in water and different buffer solutions (pH = 1.2, 4.5, 6.8) increase significantly. It is noted that BGN-4AM solubility in pH = 6.8 buffer solution presents 32.7 times higher than anhydrous BGN. Interestingly, BGN-4AM (0.31 ± 0.07%) showcases lower hygroscopicity than anhydrous BGN (9.31 ± 0.16%). The predicted and experimental solubilities agree with each other when considering solubility product (Ksp) and solution binding constant (K11) in phase solubility diagrams, indicating the solution complexes formation occurs. Further crystal surface-water interactions and Bravais, Friedel, Donnay-Harker (BFDH) analyses based on Density Functional Theory with dispersion correction (DFT-d) methods support the enhanced solubility. The water probe demonstrates an average interaction energy of -6.48 kcal/mol on the 002 plane of BGN-4AM, and only -5.47 kcal/mol on the 011 plane of BGN monohydrate. The lower lattice energy of BGN-4AM guarantees its lower hygroscopicity than BGN monohydrate. BGN-4AM with enhanced solubility and low hygroscopicity can be a potential candidate for further formulation development.
Collapse
Affiliation(s)
- Hongji Liu
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinju Nie
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong, 264000, China
| | - H C Stephen Chan
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hailu Zhang
- Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liang Li
- Department of Forensic Toxicological Analysis, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Hongqing Lin
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Henry H Y Tong
- School of Health Sciences, Macao Polytechnic Institute, Macao, China
| | - Ande Ma
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhengzheng Zhou
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
33
|
Gołdyn MR, Larowska D, Bartoszak-Adamska E. Novel Purine Alkaloid Cocrystals with Trimesic and Hemimellitic Acids as Coformers: Synthetic Approach and Supramolecular Analysis. CRYSTAL GROWTH & DESIGN 2021; 21:396-413. [PMID: 36466627 PMCID: PMC9714640 DOI: 10.1021/acs.cgd.0c01242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this work, benzene-1,3,5-tricarboxylic (trimesic acid, TMSA) and benzene-1,2,3-tricarboxylic acid (hemimellitic acid, HMLA) were used as coformers for cocrystal synthesis with chosen purine alkaloids. Theobromine (TBR) forms cocrystals TBR·TMSA and TBR·HMLA with these acids. Theophylline (TPH) forms cocrystals TPH·TMSA and TPH·HMLA, the cocrystal hydrate TPH·TMSA·2H2O and the salt hydrate (TPH)+·(HMLA)-·2H2O. Caffeine (CAF) forms the cocrystal CAF·TMSA and the cocrystal hydrate CAF·HMLA·H2O. The purine alkaloid derivatives were obtained by solution crystallization and by neat or liquid-assisted grinding. The powder X-ray diffraction method was used to confirm the synthesis of the novel substances. All of these solids were structurally characterized, and all synthons formed by purine alkaloids and carboxylic acids were recognized using a single-crystal X-ray diffraction method. The Cambridge Structural Database was used to determine the frequency of occurrence of analyzed supramolecular synthons, which is essential at the crystal structure design stage. Determining the influence of structural causes on the various synthon formations and molecular arrangements in the crystal lattice was possible using structurally similar purine alkaloids and two isomers of benzenetricarboxylic acid. Additionally, UV-vis measurements were made to determine the effect of cocrystallization on purine alkaloid solubility.
Collapse
|
34
|
Wu Y, Hao X, Li J, Guan A, Zhou Z, Guo F. New insight into improving the solubility of poorly soluble drugs by preventing the formation of their hydrogen-bonds: a case of dapsone salts with camphorsulfonic and 5-sulfosalicylic acid. CrystEngComm 2021. [DOI: 10.1039/d1ce00847a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The improved solubility of two salts of dapsone (DAP) was investigated from the view point of structures and hydrogen bonding.
Collapse
Affiliation(s)
- Yanhui Wu
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xiujia Hao
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Jianting Li
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Aiying Guan
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhengzheng Zhou
- Department of Hygiene Inspection & Quarantine Science, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Guo
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
35
|
Wong SN, Chen YCS, Xuan B, Sun CC, Chow SF. Cocrystal engineering of pharmaceutical solids: therapeutic potential and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00825k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This highlight presents an overview of pharmaceutical cocrystal production and its potential in reviving problematic properties of drugs in different dosage forms. The challenges and future outlook of its translational development are discussed.
Collapse
Affiliation(s)
- Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
| | - Yu Chee Sonia Chen
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
- Department of Pharmacy, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| |
Collapse
|
36
|
Jeong HM, Lee Y, Shin YJ, Woo SH, Kim JS, Jeong DW, Shin S, Jeon SH, Shim JH. Development of an enzymatic encapsulation process for a cycloamylose inclusion complex with resveratrol. Food Chem 2020; 345:128777. [PMID: 33321347 DOI: 10.1016/j.foodchem.2020.128777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/29/2022]
Abstract
Cyclodextrin glucanotransferase (CGTase; EC 2.4.1.19) produces cycloamyloses (CAs), which are large cyclic glucans, and subsequently transforms them to α-, β-, and γ-cyclodextrins. We developed a novel encapsulation process based on the cyclization activity of CGTase and applied it to the formation of CA inclusion complexes with resveratrol (RVT), which has limited bioavailability due to its low water solubility. The encapsulated RVT (CA-RVT) was purified using preparative high-performance liquid chromatography. The water solubility of CA-RVT was 6,000-fold higher than that of RVT. CA-RVT in water demonstrated 98% stability for 1 week at 4 °C. According to radical scavenging activity and anti-inflammatory assays, CA-RVT in aqueous solution exhibited similar activities as an equal amount of RVT in dimethyl sulfoxide, suggesting the limited solubility of RVT can be overcome through CA encapsulation by CGTase, thus enhancing its nutraceutical value as a functional ingredient in the food industry.
Collapse
Affiliation(s)
- Hyun-Mo Jeong
- Department of Food Science and Nutrition, and the Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, South Korea.
| | - Yeontaek Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gangwon-do 24252, South Korea
| | - Yu-Jeong Shin
- Department of Food Science and Nutrition, and the Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, South Korea.
| | - Seung-Hye Woo
- Department of Food Science and Nutrition, and the Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, South Korea.
| | - Ji-Soo Kim
- Department of Food Science and Nutrition, and the Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, South Korea.
| | - Da-Woon Jeong
- Department of Food Science and Nutrition, and the Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, South Korea.
| | - Sooyong Shin
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gangwon-do 24252, South Korea.
| | - Sung Ho Jeon
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gangwon-do 24252, South Korea.
| | - Jae-Hoon Shim
- Department of Food Science and Nutrition, and the Korean Institute of Nutrition, Hallym University, Hallymdaehak-gil 1, Chuncheon, Gwangwon-do 24252, South Korea.
| |
Collapse
|
37
|
Khan FM, Ahmad M, Idrees HA. Simvastatin-Nicotinamide Co-Crystals: Formation, Pharmaceutical Characterization and in vivo Profile. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4303-4313. [PMID: 33116417 PMCID: PMC7584516 DOI: 10.2147/dddt.s270742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/25/2020] [Indexed: 11/23/2022]
Abstract
Purpose To enhance the solubility and dissolution profile of simvastatin (SIM) through co-crystallization with varying ratios of nicotinamide (NIC) using various co-methods. Materials and Methods Twelve SIM:NIC co-crystal formulations (F01–F12) were prepared using dry grinding, slurry, liquid-assisted grinding, and solvent-evaporation methods, and their properties compared. Optimized formulations were selected on the basis of dissolution profiles and solubility for in vivo studies. The angle of repose, Carr Index and Hausner ratio were calculated to evaluate flow properties. Differential light scattering (DLS) was used to estimate particle-size distribution. Scanning electron microscopy (SEM) was employed to evaluate surface morphology. Thermal analyses and Fourier-transform infrared (FTIR) spectroscopy were used to determine the ranges of thermal stability and physical interaction of formulated co-crystals. X-ray powder diffraction (XPD) spectroscopy was used to determine the crystalline nature. Solubility and dissolution studies were undertaken to determine in vitro drug-release behaviors. Results Micromeritic analyses revealed the good flow properties of formulated co-crystals. DLS showed the particle size of co-crystals to be in the nanometer range. SEM revealed that the co-crystals were regular cubes. Thermal studies showed the stability of co-crystals at >300°C. FTIR spectroscopy revealed minor shifts of various peaks. XPD spectroscopy demonstrated co-crystal formation. The formulations exhibited an improved dissolution profile with marked improvements in solubility. In vivo studies showed a 2.4-fold increase in Cmax whereas total AUC(0–∞) was increased 4.75-fold as compared with that of SIM tablets. Conclusion Co-crystallization with NIC improved the solubility and dissolution profile and, hence, the bioavailability of the poorly water-soluble drug SIM.
Collapse
Affiliation(s)
- Fahad Mehmood Khan
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Mahmood Ahmad
- Faculty of Pharmacy, University of Central Punjab, Punjab 54000, Pakistan
| | - Hafiz Arfat Idrees
- Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| |
Collapse
|
38
|
Bonifacio MA, Cochis A, Cometa S, Gentile P, Scalzone A, Scalia AC, Rimondini L, De Giglio E. From the sea to the bee: Gellan gum-honey-diatom composite to deliver resveratrol for cartilage regeneration under oxidative stress conditions. Carbohydr Polym 2020; 245:116410. [DOI: 10.1016/j.carbpol.2020.116410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 01/22/2023]
|
39
|
Ouiyangkul P, Tantishaiyakul V, Hirun N. Exploring potential coformers for oxyresveratrol using principal component analysis. Int J Pharm 2020; 587:119630. [DOI: 10.1016/j.ijpharm.2020.119630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 01/27/2023]
|
40
|
Araya-Sibaja AM, Fandaruff C, Wilhelm K, Vega-Baudrit JR, Guillén-Girón T, Navarro-Hoyos M. Crystal Engineering to Design of Solids: From Single to Multicomponent Organic Materials. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190430153231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primarily composed of organic molecules, pharmaceutical materials, including drugs and
excipients, frequently exhibit physicochemical properties that can affect the formulation, manufacturing
and packing processes as well as product performance and safety. In recent years, researchers
have intensively developed Crystal Engineering (CE) in an effort to reinvent bioactive molecules
with well-known, approved pharmacological effects. In general, CE aims to improve the physicochemical
properties without affecting their intrinsic characteristics or compromising their stability.
CE involves the molecular recognition of non-covalent interactions, in which organic materials are
responsible for the regular arrangement of molecules into crystal lattices. Modern CE, encompasses
all manipulations that result in the alteration of crystal packing as well as methods that disrupt crystal
lattices or reduce the size of crystals, or a combination of them. Nowadays, cocrystallisation has been
the most explored strategy to improve solubility, dissolution rate and bioavailability of Active Pharmaceutical
Ingredients (API). However, its combinatorial nature involving two or more small organic
molecules, and the use of diverse crystallisation processes increase the possible outcomes. As a result,
numerous organic materials can be obtained as well as several physicochemical and mechanical
properties can be improved. Therefore, this review will focus on novel organic solids obtained when
CE is applied including crystalline and amorphous, single and multicomponent as well as nanosized
ones, that have contributed to improving not only solubility, dissolution rate, bioavailability permeability
but also, chemical and physical stability and mechanical properties.
Collapse
Affiliation(s)
| | | | - Krissia Wilhelm
- Escuela de Quimica, Universidad de Costa Rica, San Jose 11501-2060, Costa Rica
| | | | - Teodolito Guillén-Girón
- Escuela de Ciencia e Ingenieria de los Materiales, Tecnologico de Costa Rica, Cartago 159-7050, Costa Rica
| | | |
Collapse
|
41
|
Crystal structures, dissolution and pharmacokinetic study on a novel phosphodiesterase-4 inhibitor chlorbipram cocrystals. Int J Pharm 2020; 576:118984. [DOI: 10.1016/j.ijpharm.2019.118984] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
|
42
|
Lv WT, Liu XX, Dai XL, Long XT, Chen JM. A 5-fluorouracil–kaempferol drug–drug cocrystal: a ternary phase diagram, characterization and property evaluation. CrystEngComm 2020. [DOI: 10.1039/d0ce01289k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A drug–drug cocrystal of 5-fluorouracil and kaempferol was comprehensively investigated and exhibits optimized solubility behavior in comparison with individual APIs.
Collapse
Affiliation(s)
- Wen-Ting Lv
- Tianjin Key Laboratory of Drug Targeting and Bioimaging
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Xiao-Xu Liu
- Tianjin Key Laboratory of Drug Targeting and Bioimaging
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Xia-Lin Dai
- Tianjin Key Laboratory of Drug Targeting and Bioimaging
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Xiang-Tian Long
- Tianjin Hankang Pharmaceutical Biotechnology Co. Ltd
- Tianjin 300409
- China
| | - Jia-Mei Chen
- Tianjin Key Laboratory of Drug Targeting and Bioimaging
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- Tianjin 300384
- China
| |
Collapse
|
43
|
Chaves Júnior JV, Dos Santos JAB, Lins TB, de Araújo Batista RS, de Lima Neto SA, de Santana Oliveira A, Nogueira FHA, Gomes APB, de Sousa DP, de Souza FS, Aragão CFS. A New Ferulic Acid-Nicotinamide Cocrystal With Improved Solubility and Dissolution Performance. J Pharm Sci 2019; 109:1330-1337. [PMID: 31821823 DOI: 10.1016/j.xphs.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
Among the various strategies for increasing aqueous solubility of pharmaceutical substances, cocrystals have been emerging as a promising alternative. The ferulic acid (FEA) is a molecule with limited aqueous solubility, but with an interesting pharmacological activity, highlighting its antitumor potential. This study presents the characterization and physicochemical properties of a new cocrystal based on FEA and nicotinamide (NIC). The FEA-NIC cocrystal was obtained by solvent evaporation technique and physicochemically characterized by differential scanning calorimetry, powder X-ray diffraction, Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance and scanning electron microscopy. The content determination and dissolution profile in different media were analyzed by high-performance liquid chromatography. The results obtained with the characterization techniques indicated the obtainment of an anhydrous cocrystal of FEA and NIC at a 1:1 molar ratio. The method was reproducible and obtained a high yield, of approximately 99%. In addition, a 70% increase in the FEA solubility in the cocrystal and a better dissolution performance than the physical mixture in pH 6.8 were achieved.
Collapse
Affiliation(s)
- José Venâncio Chaves Júnior
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Jonh Anderson Borges Dos Santos
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Taynara Batista Lins
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | | | | | - Artur de Santana Oliveira
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Fernando Henrique Andrade Nogueira
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | - Ana Paula Barreto Gomes
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil
| | | | - Fábio Santos de Souza
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Brazil
| | - Cícero Flávio Soares Aragão
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal 59010-115, Brazil.
| |
Collapse
|
44
|
Peng B, He H, Li M, Wang JR, Mei X. Comparison of the crystal structures and physicochemical properties of novel resveratrol cocrystals. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2019; 75:1186-1196. [DOI: 10.1107/s2052520619013477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022]
Abstract
Resveratrol (RSV) is one of the most extensively investigated natural polyphenol with potential cardioprotective effects and various biological activities. However, the polymorphism and solvates of RSV cocrystals have not been studied comprehensively. In addition, the relationship between the crystal packing modes and their physicochemical properties of RSV cocrystals remains poorly understood. In this paper, seven novel RSV cocrystals were prepared and characterized by powder X-ray diffraction, single-crystal X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, dynamic vapor sorption, Raman and Fourier transform infrared spectroscopy. Five RSV–4,4′-vinylenedipyridine (DPE) cocrystals were synthesized with polymorphs and solvates, such as RSV–DPE (1:2) in form (I) [RSV–2DPE form (I)], RSV–DPE (1:2) in form (II) [RSV–2DPE form (II)], RSV–DPE (1:1) (RSV–DPE), RSV–DPE (2:3)·acetone (RSV–1.5DPE·0.5ACE), RSV–DPE (1:1.5)·MeOH (RSV–1.5DPE·MeOH). However, RSV–4,4′-ethylenedipyridine (BPE) and RSV–4,4′-azobispyridine (AZPY) cocrystals were prepared as their single crystal forms, that is, RSV–BPE (1:1.5) (RSV–1.5BPE) and RSV–AZPY (1:2) (RSV–2AZPY). RSV–2DPE form (II) can be transformed from RSV–2DPE form (I) during the heating process from single crystal to single crystal. The physicochemical properties of RSV cocrystals are closely related to their crystal packing modes. Also, the conformation and molecular packing of RSV among different cocrystals is flexible. The solubility of RSV–1.5BPE and RSV–2DPE form (II) exhibit higher than RSV in the buffer solution of pH 4.6 and 2.0, respectively. This study may provide a valuable insight into the crystal packing modes of cocrystals which may affect their physicochemical properties.
Collapse
|
45
|
Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics 2019; 11:pharmaceutics11100545. [PMID: 31635183 PMCID: PMC6836080 DOI: 10.3390/pharmaceutics11100545] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/25/2022] Open
Abstract
Resveratrol and oxyresveratrol are natural polyphenolic stilbenes with several important pharmacological activities. However, low solubility and aqueous instability are the major limitations in their drug delivery applications. In the present work, we demonstrated the encapsulation of resveratrol and oxyresveratrol with nanosponge to improve solubility and stability. Several characterization techniques were used to confirm the encapsulation of both drug molecules within the nanosponges. The high encapsulation efficiency of resveratrol (77.73%) and oxyresveratrol (80.33%) was achieved within the nanosponges. Transmission electron microscopy suggested uniform spherical size particles of resveratrol and oxyresveratrol loaded nanosponges. Compared to free drugs, better protection against UV degradation was observed for resveratrol-loaded nanosponge (2-fold) and oxyresveratrol-loaded nanosponge (3-fold). Moreover, a higher solubilization of resveratrol- and oxyresveratrol-loaded nanosponges lead to a better antioxidant activity compared to drug molecules alone. Cytotoxicity studies against DU-145 prostate cancer cell lines further suggested improved activity of both resveratrol and oxyresveratrol-loaded nanosponges without any significant toxicity of blank nanosponges.
Collapse
|
46
|
Zhou Z, Calatayud M, Contreras-García J, Li L, Tong HH, Zheng Y. X-Ray Diffraction and Theoretical Calculation–Supported Formation of Polymorphic Cocrystals Discovered Through Thermal Methods: A Case Study. J Pharm Sci 2019; 108:3340-3347. [DOI: 10.1016/j.xphs.2019.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/24/2019] [Accepted: 05/14/2019] [Indexed: 01/14/2023]
|
47
|
Huang Y, Wang Z, Chen Z, Zhang Q. Organic Cocrystals: Beyond Electrical Conductivities and Field‐Effect Transistors (FETs). Angew Chem Int Ed Engl 2019; 58:9696-9711. [DOI: 10.1002/anie.201900501] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Yinjuan Huang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zongrui Wang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zhong Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
48
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Brain targeting of resveratrol through intranasal lipid vesicles labelled with gold nanoparticles: in vivo evaluation and bioaccumulation investigation using computed tomography and histopathological examination. J Drug Target 2019; 27:1127-1134. [PMID: 31094230 DOI: 10.1080/1061186x.2019.1608553] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Resveratrol is a promising neuroprotective agent against neurodegenerative disorders such as Alzheimer's disease. Resveratrol-loaded transferosomes and nanoemulsions were developed and labelled with gold nanoparticles (GNPs). The water maze test was utilised to identify the effect on spatial memory recovery. The treated rats were examined for cellular uptake and bioaccumulation of drug in the brain using computed tomography (CT) and histopathological examination utilising GNPs as a biomarker. Compared with nanoemulsions, transferosomes displayed higher permeation of up to 81.29 ± 2.64% and higher fluorescence intensity with p < .05. Transferosomes significantly enhanced behavioural acquisition and spatial memory function in the amnesic rats compared with both the nanoemulsion formulation and the pure drug. CT effectively demonstrated the accumulation of GNPs in the brains of all treated rats, while superior accumulation of GNPs was observed in the rats that received the transferosome formulation. The histopathology also demonstrated GNP accumulation in the nuclei and cytoplasm in the brain tissues of both the transferosome- and nanoemulsion-treated groups. Therefore, the developed transferosomes may be considered as a well-designed brain targeting system that might further be applied for targeting many drugs to be used in the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Beni-Suef University , Beni-Suef , Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Beni-Suef University , Beni-Suef , Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Nahda University (NUB) , Beni-Suef , Egypt
| | - Demiana M Naguib
- Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy, Nahda University (NUB) , Beni-Suef , Egypt
| |
Collapse
|
49
|
Huang Y, Wang Z, Chen Z, Zhang Q. Organic Cocrystals: Beyond Electrical Conductivities and Field‐Effect Transistors (FETs). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900501] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yinjuan Huang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zongrui Wang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Zhong Chen
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University 50 Nanyang Avenue 639798 Singapore Singapore
| |
Collapse
|
50
|
Luo Y, Chen S, Zhou J, Chen J, Tian L, Gao W, Zhang Y, Ma A, Li L, Zhou Z. Luteolin cocrystals: Characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|