1
|
Xu M, Li D, Feng Y, Yuan Y, Wu Y, Zhao H, Kumar RV, Feng G, Xi K. Microporous Materials in Polymer Electrolytes: The Merit of Order. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405079. [PMID: 38922998 DOI: 10.1002/adma.202405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Solid-state batteries (SSBs) have garnered significant attention in the critical field of sustainable energy storage due to their potential benefits in safety, energy density, and cycle life. The large-scale, cost-effective production of SSBs necessitates the development of high-performance solid-state electrolytes. However, the manufacturing of SSBs relies heavily on the advancement of suitable solid-state electrolytes. Composite polymer electrolytes (CPEs), which combine the advantages of ordered microporous materials (OMMs) and polymer electrolytes, meet the requirements for high ionic conductivity/transference number, stability with respect to electrodes, compatibility with established manufacturing processes, and cost-effectiveness, making them particularly well-suited for mass production of SSBs. This review delineates how structural ordering dictates the fundamental physicochemical properties of OMMs, including ion transport, thermal transfer, and mechanical stability. The applications of prominent OMMs are critically examined, such as metal-organic frameworks, covalent organic frameworks, and zeolites, in CPEs, highlighting how structural ordering facilitates the fulfillment of property requirements. Finally, an outlook on the field is provided, exploring how the properties of CPEs can be enhanced through the dimensional design of OMMs, and the importance of uncovering the underlying "feature-function" mechanisms of various CPE types is underscored.
Collapse
Affiliation(s)
- Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Danyang Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuhe Feng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yu Yuan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yutong Wu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Hongyang Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - R Vasant Kumar
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Guodong Feng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Kai Xi
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
2
|
Ghosh D, Das T, Paul P, Dua TK, Roy S. Zinc-loaded mesoporous silica nanoparticles mitigate salinity stress in wheat seedlings through silica-zinc uptake, osmotic balance, and ROS detoxification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108693. [PMID: 38714130 DOI: 10.1016/j.plaphy.2024.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Abiotic stresses like salinity and micronutrient deficiency majorly affect wheat productivity. Applying mesoporous silica nanoparticles (MSiNPs) as a smart micronutrient delivery system can facilitate better stress management and nutrient delivery. In this purview, we investigated the potential of MSiNPs and Zn-loaded MSiNPs (Zn-MSiNPs) on the growth and physiology of wheat seedlings exposed to salinity stress (200 mM NaCl). Initially, the FESEM, DLS, and BET analysis portrayed nanoparticles' spherical shape, nano-size, and negatively charged mesoporous surface. A sustained release of Zn+2 from Zn-MSiNPs at 30 °C, diffused light, and pH 7 was perceived with a 96.57% release after 10 days. Further, the mitigation of NaCl stress in the wheat seedlings was evaluated with two different concentrations, each of MSiNPs and Zn-MSiNPs (1 g/L and 5 g/L), respectively. A meticulous improvement in the germination and growth of wheat seedlings was observed when treated with both MSiNPs and Zn-MSiNPs. A considerable increase in chlorophyll, total protein, and sugar content was in consort with a substantial decline in MDA, electrolyte leakage, and ROS accumulation, showcasing the nanomaterials' palliating effects. Most importantly, the K+/Na+ ratio in shoots increased significantly by 3.43 and 4.37 folds after being treated with 5 g/L Zn-MSiNPs, compared to their respective control sets (0 and 200 mM NaCl). Therefore, it can be concluded that the Zn-MSiNPs can effectively restrain the effects of salinity stress on wheat seedlings.
Collapse
Affiliation(s)
- Dibakar Ghosh
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Tapas Das
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Paramita Paul
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O.- NBU, District- Darjeeling, West Bengal, 734013, India
| | - Tarun Kumar Dua
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, P.O.- NBU, District- Darjeeling, West Bengal, 734013, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Raja Rammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
3
|
Zhao M, Zhou M, Lu P, Wang Y, Zeng R, Liu L, Zhu S, Kong L, Zhang J. Local anesthetic delivery systems for the management of postoperative pain. Acta Biomater 2024; 181:1-18. [PMID: 38679404 DOI: 10.1016/j.actbio.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/29/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs), including amide-type LAs, ester-type LAs, and other potential ion-channel blockers, are emerging as drugs for POP management because of their effectiveness and affordability. However, LAs typically exhibit short durations of action and prolonging the duration by increasing their dosage or concentration may increase the risk of motor block or systemic local anesthetic toxicity. In addition, techniques using LAs, such as intrathecal infusion, require professional operation and are prone to catheter displacement, dislodgement, infection, and nerve damage. With the development of materials science and nanotechnology, various LAs delivery systems have been developed to compensate for these disadvantages. Numerous delivery systems have been designed to continuously release a safe dose in a single administration to ensure minimal systemic toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia according to changes in the external trigger conditions, achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this review, we summarize POP pathways, animal models and methods for POP testing, and highlight LAs delivery systems for POP management. STATEMENT OF SIGNIFICANCE: Postoperative pain (POP) is a major clinical challenge. Local anesthetics (LAs) are emerging as drugs for POP management because of their effectiveness and affordability. However, they exhibit short durations and toxicity. Various LAs delivery systems have been developed to compensate for these disadvantages. They have been designed to continuously release a safe dose in a single administration to ensure minimal toxicity and prolong pain relief. LAs delivery systems can also be designed to control the duration and intensity of analgesia to achieve on-demand analgesia, and significantly improve pain relief and patient satisfaction. In this paper, we summarize POP pathways, animal models, and methods for POP testing and highlight LAs delivery systems for POP management.
Collapse
Affiliation(s)
- Mingxu Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China; Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Mengni Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Pengcheng Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Ying Wang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Rong Zeng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Lifang Liu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Shasha Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Lingsuo Kong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China.
| | - Jiqian Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Kozakiewicz-Latała M, Marciniak D, Krajewska K, Złocińska A, Prusik K, Karolewicz B, Nartowski KP, Pudło W. Hierarchical Macro-Mesoporous Silica Monolithic Tablets as a Novel Dose-Structure-Dependent Delivery System for the Release of Confined Dexketoprofen. Mol Pharm 2023; 20:641-649. [PMID: 36533661 PMCID: PMC9811460 DOI: 10.1021/acs.molpharmaceut.2c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study reports the application of hierarchical porous monoliths as carriers for controlled and dose-adjustable release of model pharmaceutical (dexketoprofen, DEX). The synthesis and detailed characterization of the hierarchical porous scaffolds are provided before and after the adsorption of three doses of DEX─a widely used nonsteroidal anti-inflammatory drug. The drug incorporated in the mesopores of silica was stabilized in an amorphous state, while the presence of macropores provided sufficient space for drug crystallization as we demonstrated via a combination of powder X-ray diffraction, differential scanning calorimetry, and imaging techniques (scanning electron microscopy and EDX analysis). Drug release from silica matrices was tested, and a mechanistic model of this release based on the Fick diffusion equation was proposed. The hierarchical structure of the carrier, due to the presence of micrometric macropores and nanometric mesopores, turned out to be critical for the control of the drug phase and drug release from the monoliths. It was found that at low drug content, the presence of an amorphous component in the pores promoted the rapid release of the drug, while at higher drug contents, the presence of macropores favored the crystallization of DEX, which naturally slowed down its release. Both the hierarchical porous structure and the control of the drug phase (amorphous and/or crystalline) were proven important for adjustable (fast or prolonged) release kinetics, desirable for effective pharmacotherapy and patient compliance. Therefore, the developed materials may serve as a versatile formulation platform for the smart manipulation of drug release kinetics.
Collapse
Affiliation(s)
- Marta Kozakiewicz-Latała
- Department
of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland
| | - Dominik Marciniak
- Department
of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland
| | - Karolina Krajewska
- Department
of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland
| | - Adrianna Złocińska
- Laboratory
of Elemental Analysis Structural Research, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland
| | - Krystian Prusik
- Institute
of Materials Engineering, University of
Silesia in Katowice, 75 Pulku Piechoty 1A, Chorzow40-007, Poland,Silesian
Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, Chorzow40-007, Poland
| | - Bożena Karolewicz
- Department
of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland
| | - Karol P. Nartowski
- Department
of Drug Forms Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, Wroclaw50-556, Poland,
| | - Wojciech Pudło
- Department
of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice44-100, Poland,
| |
Collapse
|
5
|
Mukundan LM, Nirmal S R, Kumar N, Dhara S, Chattopadhyay S. Engineered nanostructures within sol-gel bioactive glass for enhanced bioactivity and modulated drug delivery. J Mater Chem B 2022; 10:10112-10127. [PMID: 36468610 DOI: 10.1039/d2tb01692c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The engineering of nanocrystalline phase in amorphous oxide materials such as bioactive glass is emerging as a new area of great technological and scientific interest in the field of biomaterials. This study reports for the first time the infusion of apatite nanocrystals in sol-gel-derived bioactive glass using P123 as the structure-directing agent. The synthesis of a multicomponent 80SiO2-15CaO-5P2O5 bioactive glass material having a hierarchically ordered mesoporous structure with uniformly grown nanocrystals of apatite was achieved through a sono-assisted surfactant-templated sol-gel method. The bulk crystallographic analysis together with microstructural characterizations shows that the nanocrystalline apatite domains are uniformly dispersed as well as embedded along the mesopores. These nanocrystalline domains were found to influence the textural properties. In addition, macroscopic evidence for higher signs of bonelike matrix formation was observed by the biomineralization study in simulated body fluids. Osteostimulatory effects of these glass samples were evident by cultures in a osteogenic and non-osteogenic mediums with human osteosarcoma cells and a higher osteopromotive potential was authenticated by the alkaline phosphatase activity and alizarin red staining. Further, this study shows a new strategy to prolong the drug release period on account of the nanocrystalline phase and hierarchically positioned mesopores, thus making it a better drug delivery matrix as well.
Collapse
Affiliation(s)
- Lakshmi M Mukundan
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. .,School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Remya Nirmal S
- Division of Toxicology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, 695012, India
| | - Nikhil Kumar
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal, 721302, India. .,School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Santanu Dhara
- Division of Toxicology, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, 695012, India
| | - Santanu Chattopadhyay
- Rubber Technology Center, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
6
|
Singh S, Prasad SM, Sharma S, Dubey NK, Ramawat N, Prasad R, Singh VP, Tripathi DK, Chauhan DK. Silicon and nitric oxide-mediated mechanisms of cadmium toxicity alleviation in wheat seedlings. PHYSIOLOGIA PLANTARUM 2022; 174:e13065. [PMID: 31916585 DOI: 10.1111/ppl.13065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/03/2019] [Accepted: 01/06/2020] [Indexed: 05/12/2023]
Abstract
The individual impact of silicon (Si) and nitric oxide (NO, as sodium nitroprusside) on metal toxicity in various plant species has been well documented; however, their combined action in the regulation of metal stress has never been tested yet. Therefore, this study investigates the effects of the combined application of Si and NO in the mitigation of Cd toxicity in wheat seedlings. Seedlings grown on Cd has a significantly declined growth due to an increased accumulation of Cd and oxidative stress markers (due to downregulation of antioxidant defense system particularly ascorbate-glutathione cycle) and a decreased accumulation of NO and Si. Additionally, the altered leaf and root structures resulted into a declined photosynthetic efficiency. However, the addition of Si and NO alone as well as combined significantly alleviated Cd toxicity in wheat seedlings by lowering the accumulation of Cd and oxidative stress markers and improving leaf and root structures, which are collectively responsible for a better photosynthetic rate under Cd toxicity, and hence an improved growth was noticed. Particularly, the application of Si and NO in combination lowered the oxidative stress markers via upregulating the antioxidant defense system (particularly AsA-GSH cycle) suggesting the increased efficacy of Si + NO against the Cd toxicity in wheat seedlings as compared to their alone treatments.
Collapse
Affiliation(s)
- Swati Singh
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Prayagraj, India
| | - Sheo Mohan Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Prayagraj, India
| | - Nawal Kishore Dubey
- Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
| | - Naleeni Ramawat
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Rajendra Prasad
- Department of Horticulture, Kulbhasker Ashram Post Graduate College, Prayagraj, Uttar Pradesh, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree Collage, A Constituent Post Graduate College of University of Allahabad, Prayagraj, India
| | | | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Prayagraj, India
| |
Collapse
|
7
|
Mild hyperthermia-enhanced chemo-photothermal synergistic therapy using doxorubicin-loaded gold nanovesicles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Drača D, Edeler D, Saoud M, Dojčinović B, Dunđerović D, Đmura G, Maksimović-Ivanić D, Mijatović S, Kaluđerović GN. Antitumor potential of cisplatin loaded into SBA-15 mesoporous silica nanoparticles against B16F1 melanoma cells: in vitro and in vivo studies. J Inorg Biochem 2021; 217:111383. [PMID: 33582397 DOI: 10.1016/j.jinorgbio.2021.111383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/22/2022]
Abstract
CP (cisplatin) and mesoporous silica SBA-15 (Santa Barbara amorphous 15) loaded with CP (→SBA-15|CP) were tested in vitro and in vivo against low metastatic mouse melanoma B16F1 cell line. SBA-15 only, as drug carrier, is found to be not active, while CP and SBA-15|CP revealed high cytotoxicity in lower μM range. The activity of SBA-15|CP was found similar to the activity of CP alone. Both CP and SBA-15|CP induced inhibition of cell proliferation (carboxyfluorescein succinimidyl ester - CFSE assay) along with G2/M arrest (4',6-diamidino-2-phenylindole - DAPI assay). Apoptosis (Annexin V/ propidium iodide - PI assay), through caspase activation (apostat assay) and nitric oxide (NO) production (diacetate(4-amino-5-methylamino-2',7'-difluorofluorescein-diacetat) - DAF FM assay), was identified as main mode of cell death. However, slight elevated autophagy (acridine orange - AO assay) was detected in treated B16F1 cells. CP and SBA-15|CP did not affect production of ROS (reactive oxygen species) in B16F1 cells. Both SBA-15|CP and CP induced in B16F1 G2 arrest and subsequent senescence. SBA-15|CP, but not CP, blocked the growth of melanoma in C57BL/6 mice. Moreover, hepato- and nephrotoxicity in SBA-15|CP treated animals were diminished in comparison to CP confirming multiply improved antitumor potential of immobilized CP. Outstandingly, SBA-15 boosted in vivo activity and diminished side effects of CP.
Collapse
Affiliation(s)
- Dijana Drača
- Department of Immunology, Institute for Biological Research"Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - David Edeler
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany
| | - Mohamad Saoud
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany
| | - Biljana Dojčinović
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoševa 12, 11000 Belgrade, Serbia
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine, University of Belgrade, dr Subotića 1, 11000 Belgrade, Serbia
| | - Goran Đmura
- Animal Facility, Institute for Biological Research"Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research"Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research"Siniša Stanković" National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Goran N Kaluđerović
- Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Weinberg 3, D 06120 Halle (Saale), Germany; Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, DE-06217 Merseburg, Germany.
| |
Collapse
|
9
|
Daniyal M, Jian Y, Xiao F, Sheng W, Fan J, Xiao C, Wang Z, Liu B, Peng C, Yuhui Q, Wang W. Development of a nanodrug-delivery system camouflaged by erythrocyte membranes for the chemo/phototherapy of cancer. Nanomedicine (Lond) 2020; 15:691-709. [PMID: 32043430 DOI: 10.2217/nnm-2019-0454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: Development of a new drug-delivery system using a compound derived from Pronephrium penangianum (J5) for the treatment of cervical cancer. Materials & methods: The delivery system was developed using Prussian blue nanoparticles, camouflaged by red blood cell membrane and with folic acid surface modifications. Results: Our results showed the successful development of a nanodrug-delivery system, which increases the half-life and immune evasion ability of the drug. The mechanism of this system was through suppressing B-cell lymphoma 2 and increasing B-cell lymphoma 2-associated X protein and the cleaved caspase level. An in vivo study also confirmed good antitumor activity without any side effects to normal tissue. Conclusion: This drug-delivery system provides a good alternative for the treatment of cervical cancer using J5.
Collapse
Affiliation(s)
- Muhammad Daniyal
- TCM & Ethnomedicine Innovative & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan ,410208, PR China
| | - YuQing Jian
- TCM & Ethnomedicine Innovative & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan ,410208, PR China
| | - Feng Xiao
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Wenbing Sheng
- TCM & Ethnomedicine Innovative & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan ,410208, PR China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Chang Xiao
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Zhou Wang
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, PR China
| | - Caiyun Peng
- TCM & Ethnomedicine Innovative & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan ,410208, PR China
| | - Qin Yuhui
- TCM & Ethnomedicine Innovative & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan ,410208, PR China
| | - Wei Wang
- TCM & Ethnomedicine Innovative & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan ,410208, PR China
| |
Collapse
|
10
|
Nurhidayah D, Maruf A, Zhang X, Liao X, Wu W, Wang G. Advanced drug-delivery systems: mechanoresponsive nanoplatforms applicable in atherosclerosis management. Nanomedicine (Lond) 2019; 14:3105-3122. [PMID: 31823682 DOI: 10.2217/nnm-2019-0172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nanoplatforms have been used extensively as advanced carriers to enhance the effectiveness of drug delivery, mostly through passive aggregation provided by the enhanced permeability and retention effect. Mechanical stimuli provide a robust strategy to bolster drug delivery performance by increasing the accumulation of nanoplatforms at the lesion sites, facilitating on-demand cargo release and providing theranostic aims. In this review, we focus on recent advances of mechanoresponsive nanoplatforms that can accomplish targeted drug delivery, and subsequent drug release, under specific stimuli, either endogenous (shear stress) or exogenous (magnetic field and ultrasound), to synergistically combat atherosclerosis at the molecular level.
Collapse
Affiliation(s)
- Deti Nurhidayah
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Ali Maruf
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaojuan Zhang
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Xiaoling Liao
- Chongqing Engineering Laboratory of Nano/Micro Biological Medicine Detection Technology, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Wei Wu
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science & Technology of Ministry of Education, State & Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
11
|
Sun D, Chen J, Wang Y, Ji H, Peng R, Jin L, Wu W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics 2019; 9:6885-6900. [PMID: 31660075 PMCID: PMC6815958 DOI: 10.7150/thno.36510] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer remains a daunting and cureless disease, which is responsible for one-sixth of human deaths worldwide. These mortality rates have been expected to rise in the future due to the side effects of conventional treatments (chemotherapy, radiotherapy, and surgery), which can be addressed by applying nanomedicine. In order to escape from biological barriers, such nanomedicine should be mimicked and designed to be stealthy while navigating in the bloodstream. To achieve this, scientists take advantage of erythrocytes (red blood cells; RBCs) as drug carriers and develop RBC membrane (RBCm) coating nanotechnology. Thanks to the significant advances in nanoengineering, various facile surface functionalization methods can be applied to arm RBCm with not only targeting moieties, but also imaging agents, therapeutic agents, and nanoparticles, which are useful for theranostic nanomedicine. This review focuses on refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery.
Collapse
Affiliation(s)
- Da Sun
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
| | - Jia Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yuan Wang
- Chongqing Business Vocational College, Chongqing, 401331, China
| | - Hao Ji
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Biomedical Collaborative Innovation Center of Zhejiang Province & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou, Zhejiang, 325035, China
| | - Wei Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
12
|
Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis Treatment with Stimuli-Responsive Nanoagents: Recent Advances and Future Perspectives. Adv Healthc Mater 2019; 8:e1900036. [PMID: 30945462 DOI: 10.1002/adhm.201900036] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Atherosclerosis is the root of approximately one-third of global mortalities. Nanotechnology exhibits splendid prospects to combat atherosclerosis at the molecular level by engineering smart nanoagents with versatile functionalizations. Significant advances in nanoengineering enable nanoagents to autonomously navigate in the bloodstream, escape from biological barriers, and assemble with their nanocohort at the targeted lesion. The assembly of nanoagents with endogenous and exogenous stimuli breaks down their shells, facilitates intracellular delivery, releases their cargo to kill the corrupt cells, and gives imaging reports. All these improvements pave the way toward personalized medicine for atherosclerosis. This review systematically summarizes the recent advances in stimuli-responsive nanoagents for atherosclerosis management and its progress in clinical trials.
Collapse
Affiliation(s)
- Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Tieyin Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Nan Wang
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Colm Durkan
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Youhua Tan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic University Hong Kong SAR 999077 China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| |
Collapse
|
13
|
Bai A, Wu C, Liu X, Lv H, Xu X, Cao Y, Shang W, Hu L, Liu Y. Development of a tin oxide carrier with mesoporous structure for improving the dissolution rate and oral relative bioavailability of fenofibrate. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2129-2138. [PMID: 30022811 PMCID: PMC6044342 DOI: 10.2147/dddt.s166989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Biopharmaceutics classification system class II drugs have low solubility, which limits their extent and speed of absorption after oral administration. Over the years, mesoporous materials have been widely used to increase the dissolution rate and oral relative bioavailability of poorly water-soluble drugs. Objectives In order to improve the dissolution rate and increase oral relative bioavailability of the poorly water-soluble drugs, a tin oxide carrier (MSn) with a mesoporous structure was successfully synthesized. Methods In this study, MSn was synthesized using mesoporous silica material (SBA-15) as the template. Fenofibrate (FNB) was adsorbed into the channels of MSn by an adsorption method. Characterizations of the pure FNB, MSn, physical mixture of the drug and MSn (PM; 1:1) and FNB-loaded MSn (FNB-MSn) samples were carried out by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption/desorption, powder X-ray diffractometer (PXRD), differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) spectroscopy. Cytotoxicity assay (MTT) was used to evaluate the cytotoxicity of MSn. In vitro dissolution studies were performed to investigate the dissolution rate of FNB-MSn. In vivo pharmacokinetic studies were used to investigate the changes of plasma drug concentrations of FNB-MSn tablets and commercial FNB tablets in rabbits. Results Detailed characterization showed that FNB in the channels of MSn was present in an amorphous state. The in vitro release tests demonstrated that MSn with a good biocompatibility could effectively enhance the dissolution rate of FNB. Pharmacokinetic results indicated that MSn significantly increased the oral relative bioavailability of FNB. Conclusion MSn can be regarded as a promising carrier for an oral drug delivery system.
Collapse
Affiliation(s)
- Andi Bai
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Chao Wu
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Xuan Liu
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Huiling Lv
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Xiaoyan Xu
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Yue Cao
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Wenjing Shang
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Lili Hu
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| | - Ying Liu
- Department of Pharmaceutics, School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China,
| |
Collapse
|
14
|
Organo-bridged silsesquioxane incorporated mesoporous silica as a carrier for the controlled delivery of ibuprofen and fluorouracil. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
15
|
Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018; 8:3038-3058. [PMID: 29896301 PMCID: PMC5996358 DOI: 10.7150/thno.23459] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process. For pH-responsive nanocarriers with programmable size, changes in pH (~6.5 for tumor tissue, ~5.5 for endosomes, and ~5.0 for lysosomes) may serve as an endogenous stimulus improving the safety and therapeutic efficacy of antitumor drugs. This review focuses on current advanced pH-responsive nanocarriers with programmable size changes for anticancer drug delivery. In particular, pH-responsive mechanisms for nanocarrier retention at tumor sites, size reduction for penetrating into tumor parenchyma, escaping from endo/lysosomes, and swelling or disassembly for drug release will be highlighted. Additional trends and challenges of employing these nanocarriers in future clinical applications are also addressed.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qi Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Han-Bin Dai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jian-Shu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Gui-Xue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
16
|
Edeler D, Arlt S, Petković V, Ludwig G, Drača D, Maksimović-Ivanić D, Mijatović S, Kaluđerović GN. Delivery of [Ru(η6-p-cymene)Cl2{Ph2P(CH2)3SPh-κP}] using unfunctionalized and mercapto functionalized SBA-15 mesoporous silica: Preparation, characterization and in vitro study. J Inorg Biochem 2018; 180:155-162. [DOI: 10.1016/j.jinorgbio.2017.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
17
|
Abstract
With the rapid expansion of nanoscience and nanotechnology in interdisciplinary fields, multifunctional nanomaterials have attracted particular attention. Recent advances in nanotherapeutics for cancer applications provided diverse groups of synthetic particles with defined cellular and biological functions. The advance of nanotechnology significantly increased the number of possibilities for the construction of diverse biological tools. Such materials are destined to be of great importance because of the opportunity to combine the biotechnological potential of nanoparticles together with the recognition, sensitivity and modulation of cellular pathways or genes when applied to living organisms. In this mini review three main types of Si-based nanomaterials are highlighted in the area of their application for therapy and imaging: porous silicon nanoparticles (pSiNPs), mesoporous silica nanoparticles (MSNs), focusing on their nanoconstructs containing coordination compounds, and periodic mesoporous silica nanoparticles (PMONPs). Moreover, a critical discussion on the research efforts in the construction of nanotheranostics is presented.
Collapse
Affiliation(s)
- Nikola Ž Knežević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia.
| | | |
Collapse
|
18
|
Chen J, Wu Q, Luo L, Wang Y, Zhong Y, Dai HB, Sun D, Luo ML, Wu W, Wang GX. Dual tumor-targeted poly(lactic- co-glycolic acid)-polyethylene glycol-folic acid nanoparticles: a novel biodegradable nanocarrier for secure and efficient antitumor drug delivery. Int J Nanomedicine 2017; 12:5745-5760. [PMID: 28848351 PMCID: PMC5557624 DOI: 10.2147/ijn.s136488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Further specific target-ability development of biodegradable nanocarriers is extremely important to promote their security and efficiency in antitumor drug-delivery applications. In this study, a facilely prepared poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG)-folic acid (FA) copolymer was able to self-assemble into nanoparticles with favorable hydrodynamic diameters of around 100 nm and negative surface charge in aqueous solution, which was expected to enhance intracellular antitumor drug delivery by advanced dual tumor-target effects, ie, enhanced permeability and retention induced the passive target, and FA mediated the positive target. Fluorescence-activated cell-sorting and confocal laser-scanning microscopy results confirmed that doxorubicin (model drug) loaded into PLGA-PEG-FA nanoparticles was able to be delivered efficiently into tumor cells and accumulated at nuclei. In addition, all hemolysis, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, and zebrafish-development experiments demonstrated that PLGA-PEG-FA nanoparticles were biocompatible and secure for biomedical applications, even at high polymer concentration (0.1 mg/mL), both in vitro and in vivo. Therefore, PLGA-PEG-FA nanoparticles provide a feasible controlled-release platform for secure and efficient antitumor drug delivery.
Collapse
Affiliation(s)
- Jia Chen
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing
- Institute of Laboratory Animals, Sichuan Academy of Medical Science, Sichuan Provincial People’s Hospital, Chengdu
| | - Qi Wu
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing
| | - Han-Bin Dai
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing
| | - Da Sun
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing
- Institute of Life Sciences, Wenzhou University, Wenzhou
| | - Mao-Ling Luo
- School of Medicine, Wuhan University, Wuhan, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing
| | - Gui-Xue Wang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Chongqing University, Chongqing
| |
Collapse
|
19
|
Balaure PC, Boarca B, Popescu RC, Savu D, Trusca R, Vasile BȘ, Grumezescu AM, Holban AM, Bolocan A, Andronescu E. Bioactive mesoporous silica nanostructures with anti-microbial and anti-biofilm properties. Int J Pharm 2017; 531:35-46. [PMID: 28797969 DOI: 10.1016/j.ijpharm.2017.08.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/25/2017] [Accepted: 08/04/2017] [Indexed: 01/10/2023]
Abstract
The increasing rate of antibiotic resistant bacteria associated with nosocomial infections in severely ill patients has urged the need for new antibacterial therapies. Nanostructured materials represent emerging innovative approaches to controlled delivery of different antimicrobial drugs. Delivery systems encapsulating natural compounds with antibacterial effects, such as essential oils have shown a great potential. Herein we report the development of SiO2 mesoporous nanosystems loaded with eucalyptus (EUC), orange (ORA), and cinnamon (CIN) essential oils. These systems were characterized with respect to morphology (using scanning electron microscopy, SEM, and transmission electron microscopy, TEM), porosity (by BET and TEM analysis), chemical composition (by X-ray diffraction, XRD, and Fourier transform infrared spectrometry, FTIR) and loading capacity (by thermogravimetric analysis, TGA). The anti-bacterial and anti-adherence effects were tested against clinically relevant microbial species (Staphylococcus aureus ATCC 25923; Escherichia coli ATCC 25922; and Candida albicans ATCC 10231), while the biocompatibility was evaluated by in vitro tests with L929 mouse fibroblast cells.
Collapse
Affiliation(s)
- Paul Cătălin Balaure
- Department of Organic Chemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Romania
| | - Bianca Boarca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Romania
| | - Roxana Cristina Popescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Romania; Department of Life and Environmental Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, Magurele, Bucharest, Romania
| | - Diana Savu
- Department of Life and Environmental Physics, "Horia Hulubei" National Institute for Physics and Nuclear Engineering, Magurele, Bucharest, Romania
| | - Roxana Trusca
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Division of Earth, Environmental and Life Sciences, Research Institute of the University of Bucharest (ICUB), Bucharest, Romania.
| | - Alina Maria Holban
- Division of Earth, Environmental and Life Sciences, Research Institute of the University of Bucharest (ICUB), Bucharest, Romania; Microbiology and Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Alexandra Bolocan
- Emergency University Hospital, Bucharest, Romania; "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, Romania
| |
Collapse
|
20
|
Activated carbon as a carrier for amorphous drug delivery: Effect of drug characteristics and carrier wettability. Eur J Pharm Biopharm 2017; 115:197-205. [DOI: 10.1016/j.ejpb.2017.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
|
21
|
Trendafilova I, Szegedi A, Mihály J, Momekov G, Lihareva N, Popova M. Preparation of efficient quercetin delivery system on Zn-modified mesoporous SBA-15 silica carrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 73:285-292. [PMID: 28183610 DOI: 10.1016/j.msec.2016.12.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/16/2016] [Accepted: 12/13/2016] [Indexed: 01/09/2023]
Abstract
Mesoporous silica material type SBA-15 was modified with different amounts of Zn (2 and 4wt.%) by incipient wetness impregnation method in ethanol. The parent, Zn-modified and quercetin loaded samples, were characterized by XRD, N2 physisorption, TEM, thermal gravimetric analysis, UV-vis and FT-IR spectroscopies and in vitro release of quercetin at pH5.5 which is typical of dermal formulations. By this loading method anhydrous quercetin was formed on the silica carrier It was found that the different hydrate forms of quercetin (dihydrate, monohydrate, anhydrite) significantly influence the physico-chemical properties of the delivery system. It was found that hydrate forms of quercetin can be differentiated by XRD and by FT-IR spectroscopic methods. Thus, by evaluating the interaction of the drug with the silica carrier the changes due to its hydration state always have to be taken into account. Formation of Zn-quercetin complex was evidenced on zinc modified SBA-15 silica by FT-IR spectroscopy. High quercetin loading capacity (over 40wt.%) could be achieved on the parent and Zn-containing SBA-15 samples. The in-vitro release process at pH=5.5 showed slower quercetin release from Zn-modified SBA-15 samples compared to the parent one. Additionally, the comparative cytotoxic experiments evidenced that quercetin encapsulated in Zn-modified silica carriers has superior antineoplastic potential against HUT-29 cells compared to free drug. Zn-modified SBA-15 silica particles could be promising carriers for dermal delivery of quercetin.
Collapse
Affiliation(s)
- Ivalina Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Agnes Szegedi
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, 1117 Budapest, Magyar Tudósok Krt. 2, Hungary
| | - Judith Mihály
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Hungarian Academy of Sciences, 1117 Budapest, Magyar Tudósok Krt. 2, Hungary
| | - Georgi Momekov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Nadejda Lihareva
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Margarita Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
| |
Collapse
|
22
|
Edeler D, Kaluđerović MR, Dojčinović B, Schmidt H, Kaluđerović GN. SBA-15 mesoporous silica particles loaded with cisplatin induce senescence in B16F10 cells. RSC Adv 2016. [DOI: 10.1039/c6ra22596a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nanoparticles obtained by loading of cisplatin into mesoporous silica SBA-15 (SBA-15|CP) change the phenotype of surviving B16F10 melanoma cells from malignant to senescent.
Collapse
Affiliation(s)
- David Edeler
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
- D 06120 Halle (Saale)
- Germany
- Institute of Chemistry
| | - Milena R. Kaluđerović
- Department of Oral
- Maxillary, Facial and Reconstructive Plastic Surgery
- University Hospital of Leipzig
- 04103 Leipzig
- Germany
| | - Biljana Dojčinović
- Department of Chemistry
- Institute of Chemistry
- Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
| | - Harry Schmidt
- Institute of Chemistry
- Martin Luther University Halle-Wittenberg
- D-06120 Halle
- Germany
| | - Goran N. Kaluđerović
- Department of Bioorganic Chemistry
- Leibniz Institute of Plant Biochemistry
- D 06120 Halle (Saale)
- Germany
| |
Collapse
|