1
|
Mhaske A, Shukla S, Ahirwar K, Singh KK, Shukla R. Receptor-Assisted Nanotherapeutics for Overcoming the Blood-Brain Barrier. Mol Neurobiol 2024; 61:8702-8738. [PMID: 38558360 PMCID: PMC11496374 DOI: 10.1007/s12035-024-04015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024]
Abstract
Blood-brain barrier (BBB) is a distinguishing checkpoint that segregates peripheral organs from neural compartment. It protects the central nervous system from harmful ambush of antigens and pathogens. Owing to such explicit selectivity, the BBB hinders passage of various neuroprotective drug molecules that escalates into poor attainability of neuroprotective agents towards the brain. However, few molecules can surpass the BBB and gain access in the brain parenchyma by exploiting surface transporters and receptors. For successful development of brain-targeted therapy, understanding of BBB transporters and receptors is crucial. This review focuses on the transporter and receptor-based mechanistic pathway that can be manoeuvred for better comprehension of reciprocity of receptors and nanotechnological vehicle delivery. Nanotechnology has emerged as one of the expedient noninvasive approaches for brain targeting via manipulating the hurdle of the BBB. Various nanovehicles are being reported for brain-targeted delivery such as nanoparticles, nanocrystals, nanoemulsion, nanolipid carriers, liposomes and other nanovesicles. Nanotechnology-aided brain targeting can be a strategic approach to circumvent the BBB without altering the inherent nature of the BBB.
Collapse
Affiliation(s)
- Akshada Mhaske
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Shalini Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
- Biomedical Evidence-based Transdisciplinary Health Research Institute, University of Central Lancashire, Preston, PR1 2HE, UK.
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
2
|
Xu K, Duan S, Wang W, Ouyang Q, Qin F, Guo P, Hou J, He Z, Wei W, Qin M. Nose-to-brain delivery of nanotherapeutics: Transport mechanisms and applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1956. [PMID: 38558503 DOI: 10.1002/wnan.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
The blood-brain barrier presents a key limitation to the administration of therapeutic molecules for the treatment of brain disease. While drugs administered orally or intravenously must cross this barrier to reach brain targets, the unique anatomical structure of the olfactory system provides a route to deliver drugs directly to the brain. Entering the brain via receptor, carrier, and adsorption-mediated transcytosis in the nasal olfactory and trigeminal regions has the potential to increase drug delivery. In this review, we introduce the physiological and anatomical structures of the nasal cavity, and summarize the possible modes of transport and the relevant receptors and carriers in the nose-to-brain pathway. Additionally, we provide examples of nanotherapeutics developed for intranasal drug delivery to the brain. Further development of nanoparticles that can be applied to intranasal delivery systems promises to improve drug efficacy and reduce drug resistance and adverse effects by increasing molecular access to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Kunyao Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Ouyang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Jinghan Hou
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zhang W, Xu H, Li C, Han B, Zhang Y. Exploring Chinese herbal medicine for ischemic stroke: insights into microglia and signaling pathways. Front Pharmacol 2024; 15:1333006. [PMID: 38318134 PMCID: PMC10838993 DOI: 10.3389/fphar.2024.1333006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Ischemic stroke is a prevalent clinical condition affecting the central nervous system, characterized by a high mortality and disability rate. Its incidence is progressively rising, particularly among younger individuals, posing a significant threat to human well-being. The activation and polarization of microglia, leading to pro-inflammatory and anti-inflammatory responses, are widely recognized as pivotal factors in the pathogenesis of cerebral ischemia and reperfusion injury. Traditional Chinese herbal medicines (TCHMs) boasts a rich historical background, notable efficacy, and minimal adverse effects. It exerts its effects by modulating microglia activation and polarization, suppressing inflammatory responses, and ameliorating nerve injury through the mediation of microglia and various associated pathways (such as NF-κB signaling pathway, Toll-like signaling pathway, Notch signaling pathway, AMPK signaling pathway, MAPK signaling pathway, among others). Consequently, this article focuses on microglia as a therapeutic target, reviewing relevant pathway of literature on TCHMs to mitigate neuroinflammation and mediate IS injury, while also exploring research on drug delivery of TCHMs. The ultimate goal is to provide new insights that can contribute to the clinical management of IS using TCHMs.
Collapse
Affiliation(s)
| | | | | | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Jiang K, Yu Y, Qiu W, Tian K, Guo Z, Qian J, Lu H, Zhan C. Protein corona on brain targeted nanocarriers: Challenges and prospects. Adv Drug Deliv Rev 2023; 202:115114. [PMID: 37827336 DOI: 10.1016/j.addr.2023.115114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Safe and efficient medical therapy for brain diseases is still an unmet clinical need due to various barriers represented by the blood-brain barrier. Well-designed brain targeted nanocarriers are potential solutions for enhanced brain drug delivery; however, the complicated in vivo process attenuates performance of nanocarriers, which severely hampers clinical translation. The formation of protein corona (PC) is inevitable for nanocarriers circulation and transport in biofluids, acting as an important factor to regulate in vivo performance of nanocarriers. In this review, the reported strategies have been retrospected for better understanding current situation in developing brain targeted nanocarriers. The interplay between brain targeted nanocarriers and plasma proteins is emphasized to comprehend how the nanocarriers adsorb proteins by certain synthetic identity, and following regulations on in vivo performance of nanocarriers. More importantly, the mainstream methods to promote efficiency of nanocarriers by regulating PC, defined as in vitro functionalization and in vivo functionalization strategies, are also discussed. Finally, viewpoints about future development of brain targeted nanocarriers according to the understanding on nanocarriers-PC interaction are proposed.
Collapse
Affiliation(s)
- Kuan Jiang
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Yifei Yu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Wei Qiu
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Kaisong Tian
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Zhiwei Guo
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China
| | - Jun Qian
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201399, PR China
| | - Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201399, PR China.
| | - Changyou Zhan
- Eye Institute and Department of Ophthalmology, Eye and ENT Hospital & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, PR China; Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center & School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201399, PR China.
| |
Collapse
|
5
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
6
|
Kaya S, Callan B, Hawthorne S. Non-Invasive, Targeted Nanoparticle-Mediated Drug Delivery across a Novel Human BBB Model. Pharmaceutics 2023; 15:pharmaceutics15051382. [PMID: 37242623 DOI: 10.3390/pharmaceutics15051382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) is a highly sophisticated system with the ability to regulate compounds transporting through the barrier and reaching the central nervous system (CNS). The BBB protects the CNS from toxins and pathogens but can cause major issues when developing novel therapeutics to treat neurological disorders. PLGA nanoparticles have been developed to successfully encapsulate large hydrophilic compounds for drug delivery. Within this paper, we discuss the encapsulation of a model compound Fitc-dextran, a large molecular weight (70 kDa), hydrophilic compound, with over 60% encapsulation efficiency (EE) within a PLGA nanoparticle (NP). The NP surface was chemically modified with DAS peptide, a ligand that we designed which has an affinity for nicotinic receptors, specifically alpha 7 nicotinic receptors, found on the surface of brain endothelial cells. The attachment of DAS transports the NP across the BBB by receptor-mediated transcytosis (RMT). Assessment of the delivery efficacy of the DAS-conjugated Fitc-dextran-loaded PLGA NP was studied in vitro using our optimal triculture in vitro BBB model, which successfully replicates the in vivo BBB environment, producing high TEER (≥230 ) and high expression of ZO1 protein. Utilising our optimal BBB model, we successfully transported fourteen times the concentration of DAS-Fitc-dextran-PLGA NP compared to non-conjugated Fitc-dextran-PLGA NP. Our novel in vitro model is a viable method of high-throughput screening of potential therapeutic delivery systems to the CNS, such as our receptor-targeted DAS ligand-conjugated NP, whereby only lead therapeutic compounds will progress to in vivo studies.
Collapse
Affiliation(s)
- Shona Kaya
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, N. Ireland BT52 1SA, UK
| | - Bridgeen Callan
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, N. Ireland BT52 1SA, UK
| | - Susan Hawthorne
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, N. Ireland BT52 1SA, UK
| |
Collapse
|
7
|
Karakus OO, Godugu K, Salaheldin T, Fujioka K, Mousa SA. Norepinephrine transporter analog benzylguanidine-conjugated nanoparticles for the delivery of paclitaxel in neuroblastoma. Nanomedicine (Lond) 2021; 16:2331-2342. [PMID: 34651508 DOI: 10.2217/nnm-2021-0230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We previously synthesized a polyethylene glycol-based norepinephrine transporter-targeted agent, BG-P-TAT, which has a benzylguanidine and a triazolyl-tetrac group. This targeted conjugate showed suppression of neuroblastoma tumor progression. In this study we aimed to synthesize nanoparticles to encapsulate the chemotherapeutic agent paclitaxel for targeting neuroblastoma tumors by using benzylguanidine so that it can compete with norepinephrine for uptake by neuroendocrine cells. Methods: Biocompatible poly(lactide-co-glycolic acid)-polyethylene glycol was chosen to prepare targeted nanoparticles for safe delivery of the chemotherapy agent paclitaxel. Result: Paclitaxel concentration was 60% higher in neuroblastoma tumors of mice treated with paclitaxel encapsulated in targeted nanoparticles than with non-targeted nanoparticles. Conclusion: These findings support the targeted delivery of paclitaxel as a chemotherapeutic agent for neuroblastoma.
Collapse
Affiliation(s)
- Ozlem Ozen Karakus
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Taher Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Kazutoshi Fujioka
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, Rensselaer, NY 12144, USA
| |
Collapse
|
8
|
Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: a state of the art review. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1985495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sagar R. Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Aniket Nikam
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Priyanka Chandak
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Vijaya Mandale
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| | - Jitendra B. Naik
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, India
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune, India
| |
Collapse
|
9
|
Chiu HI, Samad NA, Fang L, Lim V. Cytotoxicity of targeted PLGA nanoparticles: a systematic review. RSC Adv 2021; 11:9433-9449. [PMID: 35423427 PMCID: PMC8695459 DOI: 10.1039/d1ra00074h] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in nanotechnology have contributed tremendously to the development and revolutionizing of drug delivery systems in the field of nanomedicine. In particular, targeting nanoparticles based on biodegradable poly(lactic-co-glycolic acid) (PLGA) polymers have gained much interest. However, PLGA nanoparticles remain of concern for their effectiveness against cancer cells and their toxicity to normal cells. The aim of this systematic review is to identify a promising targeting PLGA nanoformulation based on the comparison study of their cytotoxicity potency in different cell lines. A literature search was conducted through the databases of Google Scholar, PubMed, ScienceDirect, Scopus and SpringerLink. The sources studied were published between 2009 and 2019, and a variety of keywords were utilized. In total, 81 manuscripts that met the inclusion and exclusion criteria were selected for analysis based on their cytotoxicity, size, zeta potential, year of publication, type of ligand, active compounds and cell line used. The half maximal inhibitory concentration (IC50) for cytotoxicity was the main measurement in this data extraction, and the SI units were standardized to μg mL-1 for a better view of comparison. This systematic review also identified that cytotoxicity potency was inversely proportional to nanoparticle size. The PLGA nanoparticles predominantly exhibited a size of less than 300 nm and absolute zeta potential ∼20 mV. In conclusion, more comprehensive and critical appraisals of pharmacokinetic, pharmacokinetic, toxicokinetic, in vivo and in vitro tests are required for the investigation of the full value of targeting PLGA nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Hock Ing Chiu
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| |
Collapse
|
10
|
Garcia-Chica J, D Paraiso WK, Tanabe S, Serra D, Herrero L, Casals N, Garcia J, Ariza X, Quader S, Rodriguez-Rodriguez R. An overview of nanomedicines for neuron targeting. Nanomedicine (Lond) 2020; 15:1617-1636. [PMID: 32618490 DOI: 10.2217/nnm-2020-0088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Medical treatments of neuron-related disorders are limited due to the difficulty of targeting brain cells. Major drawbacks are the presence of the blood-brain barrier and the lack of specificity of the drugs for the diseased cells. Nanomedicine-based approaches provide promising opportunities for overcoming these limitations. Although many previous reviews are focused on brain targeting with nanomedicines in general, none of those are concerned explicitly on the neurons, while targeting neuronal cells in central nervous diseases is now one of the biggest challenges in nanomedicine and neuroscience. We review the most relevant advances in nanomedicine design and strategies for neuronal drug delivery that might successfully bridge the gap between laboratory and bedside treatment in neurology.
Collapse
Affiliation(s)
- Jesus Garcia-Chica
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
| | - West Kristian D Paraiso
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa, 210-0821, Japan
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety & Research, National Institute of Health Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Dolors Serra
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry & Physiology, School of Pharmacy & Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Núria Casals
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Jordi Garcia
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Xavier Ariza
- Department of Inorganic & Organic Chemistry, Faculty of Chemistry, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029, Madrid, Spain
| | - Sabina Quader
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa, 210-0821, Japan
| | - Rosalia Rodriguez-Rodriguez
- Department of Basic Sciences, Faculty of Medicine & Health Sciences, Universitat Internacional de Catalunya, 08195, Sant Cugat del Vallès, Spain
| |
Collapse
|
11
|
Karakus OO, Godugu K, Rajabi M, Mousa SA. Dual Targeting of Norepinephrine Transporter (NET) Function and Thyrointegrin αvβ3 Receptors in the Treatment of Neuroblastoma. J Med Chem 2020; 63:7653-7662. [DOI: 10.1021/acs.jmedchem.0c00537] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ozlem Ozen Karakus
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive (Room 238), Rensselaer, New York 12144, United States
| |
Collapse
|
12
|
Teleanu RI, Gherasim O, Gherasim TG, Grumezescu V, Grumezescu AM, Teleanu DM. Nanomaterial-Based Approaches for Neural Regeneration. Pharmaceutics 2019; 11:E266. [PMID: 31181719 PMCID: PMC6630326 DOI: 10.3390/pharmaceutics11060266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanical, thermal, chemical, or ischemic injury of the central or peripheral nervous system results in neuron loss, neurite damage, and/or neuronal dysfunction, almost always accompanied by sensorimotor impairment which alters the patient's life quality. The regenerative strategies for the injured nervous system are currently limited and mainly allow partial functional recovery, so it is necessary to develop new and effective approaches for nervous tissue regenerative therapy. Nanomaterials based on inorganic or organic and composite or hybrid compounds with tunable physicochemical properties and functionality proved beneficial for the transport and delivery/release of various neuroregenerative-relevant biomolecules or cells. Within the following paragraphs, we will emphasize that nanomaterial-based strategies (including nanosized and nanostructured biomaterials) represent a promising alternative towards repairing and regenerating the injured nervous system.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania.
| | - Tudor George Gherasim
- National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania.
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
13
|
Aparicio-Blanco J, Romero IA, Male DK, Slowing K, García-García L, Torres-Suárez AI. Cannabidiol Enhances the Passage of Lipid Nanocapsules across the Blood-Brain Barrier Both in Vitro and in Vivo. Mol Pharm 2019; 16:1999-2010. [PMID: 30865462 DOI: 10.1021/acs.molpharmaceut.8b01344] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diseases affecting the central nervous system (CNS) should be regarded as a major health challenge due to the current lack of effective treatments given the hindrance to brain drug delivery imposed by the blood-brain barrier (BBB). Since efficient brain drug delivery should not solely rely on passive targeting, active targeting of nanomedicines into the CNS is being explored. The present study is devoted to the development of lipid nanocapsules (LNCs) decorated with nonpsychotropic cannabinoids as pioneering nonimmunogenic brain-targeting molecules and to the evaluation of their brain-targeting ability both in vitro and in vivo. Noticeably, both the permeability experiments across the hCMEC/D3 cell-based in vitro BBB model and the biodistribution experiments in mice consistently demonstrated that the highest brain-targeting ability was achieved with the smallest-sized cannabinoid-decorated LNCs. Importantly, the enhancement in brain targeting achieved with the conjugation of cannabidiol to LNCs outperformed by 6-fold the enhancement observed for the G-Technology (the main brain active strategy that has already entered clinical trials for the treatment of CNS diseases). As the transport efficiency across the BBB certainly determines the efficacy of the treatments for brain disorders, small cannabinoid-decorated LNCs represent auspicious platforms for the design and development of novel therapies for CNS diseases.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- School of Life, Health and Chemical Sciences, Faculty of Science , The Open University , Milton Keynes MK7 6AA , United Kingdom
| | - Ignacio A Romero
- School of Life, Health and Chemical Sciences, Faculty of Science , The Open University , Milton Keynes MK7 6AA , United Kingdom
| | - David K Male
- School of Life, Health and Chemical Sciences, Faculty of Science , The Open University , Milton Keynes MK7 6AA , United Kingdom
| | | | | | | |
Collapse
|
14
|
Huey R, Rathbone D, McCarron P, Hawthorne S. Design, stability and efficacy of a new targeting peptide for nanoparticulate drug delivery to SH-SY5Y neuroblastoma cells. J Drug Target 2019; 27:959-970. [DOI: 10.1080/1061186x.2019.1567737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rachel Huey
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Dan Rathbone
- Aston Pharmacy School, Aston University, Aston Triangle, Birmingham, UK
| | - Paul McCarron
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
15
|
Zhao M, Zhao M, Fu C, Yu Y, Fu A. Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes. Int J Nanomedicine 2018; 13:1601-1610. [PMID: 29588587 PMCID: PMC5858816 DOI: 10.2147/ijn.s157019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Glioma is the most aggressive and lethal brain tumor in humans, it comprises about 30 per cent of all brain tumors and central nervous system tumors. Purpose The objective of this study was to create novel brain-targeting nanoliposomes to encapsulate curcumin as a promising option for glioma therapy. Patients and methods Human glioma cells (U251MG) were used to determine cell uptake efficiency and possible internalization mechanism of the curcumin-loaded nanoliposomes modified by a brain-targeting peptide RDP. In addition, intracranial glioma mice model was prepared by transplantation of U251MG cells into the mice striatum, and then the liposomes were intravenously administered into the glioma-bearing mice to evaluate the anti-glioma activity. Results RDP-modified liposomes (RCL) could enter the brain and glioma region, and were internalized by the glioma cells perhaps through acetylcholine receptor-mediated endocytosis pathway. Furthermore, the RCL prolonged the survival time of the glioma-bearing mice from 23 to 33 days, and the inhibition mechanism of the RCL on glioma cell was partly due to cell cycle arrest at the S phase and induction of cell apoptosis. Conclusion This study would provide a potential approach for targeted delivery of drug-loaded liposomes for glioma treatment.
Collapse
Affiliation(s)
- Ming Zhao
- School of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| | - Mengnan Zhao
- School of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| | - Chen Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| | - Yang Yu
- School of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Mullis AS, Schlichtmann BW, Narasimhan B, Cademartiri R, Mallapragada SK. Ligand-cascading nano-delivery devices to enable multiscale targeting of anti-neurodegenerative therapeutics. Biomed Mater 2018; 13:034102. [DOI: 10.1088/1748-605x/aaa778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Xiao Y, Zhang E, Fu A. Promotion of SH-SY5Y Cell Growth by Gold Nanoparticles Modified with 6-Mercaptopurine and a Neuron-Penetrating Peptide. NANOSCALE RESEARCH LETTERS 2017; 12:641. [PMID: 29288282 PMCID: PMC5747560 DOI: 10.1186/s11671-017-2417-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 12/15/2017] [Indexed: 06/01/2023]
Abstract
Much effort has been devoted to the discovery of effective biomaterials for nerve regeneration. Here, we reported a novel application of gold nanoparticles (AuNPs) modified with 6-mercaptopurine (6MP) and a neuron-penetrating peptide (RDP) as a neurophic agent to promote proliferation and neurite growth of human neuroblastoma (SH-SY5Y) cells. When the cells were treated with 6MP-AuNPs-RDP conjugates, they showed higher metabolic activity than the control. Moreover, SH-SY5Y cells were transplanted onto the surface coated with 6MP-AuNPs-RDP to examine the effect of neurite development. It can be concluded that 6MP-AuNPs-RDP attached to the cell surface and then internalized into cells, leading to a significant increase of neurite growth. Even though 6MP-AuNPs-RDP-treated cells were recovered from frozen storage, the cells still maintained constant growth, indicating that the cells have excellent tolerance to 6MP-AuNPs-RDP. The results suggested that the 6MP-AuNPs-RDP had promising potential to be developed as a neurophic nanomaterial for neuronal growth.
Collapse
Affiliation(s)
- Yaruo Xiao
- College of Bioengineering, Chongqing University, Chongqing, 400044 People’s Republic of China
| | - Enqi Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715 People’s Republic of China
| |
Collapse
|
18
|
Fu C, Xiang Y, Li X, Fu A. Targeted transport of nanocarriers into brain for theranosis with rabies virus glycoprotein-derived peptide. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 87:155-166. [PMID: 29549945 DOI: 10.1016/j.msec.2017.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/10/2017] [Accepted: 12/26/2017] [Indexed: 12/20/2022]
Abstract
For successful theranosis of brain diseases, limited access of therapeutic molecules across blood-brain barrier (BBB) needs be overcome in brain delivery. Currently, peptide derivatives of rabies virus glycoprotein (RVG) have been exploited as delivery ligands to transport nanocarriers across BBB and specifically into the brain. The targeting peptides usually conjugate to the nanocarrier surface, and the cargoes, including siRNA, miRNA, DNA, proteins and small molecular chemicals, are complexed or encapsulated in the nanocarriers. The peptide ligand of the RVG-modified nanocarriers introduces the conjugated targeted-delivery into the brain, and the cargoes are involved in disease theranosis. The peptide-modified nanocarriers have been applied to diagnose and treat various brain diseases, such as glioma, Alzheimer's disease, ischemic injury, protein misfolding diseases etc. Since the targeting delivery system has displayed good biocompatibility and desirable therapeutic effect, it will raise a potential application in treating brain diseases.
Collapse
Affiliation(s)
- Chen Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yonggang Xiang
- College of Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiaorong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Ailing Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|