1
|
Cho HJ, Kim JS, Jin SG, Choi HG. Development of Novel Tamsulosin Pellet-Loaded Oral Disintegrating Tablet Bioequivalent to Commercial Capsule in Beagle Dogs Using Microcrystalline Cellulose and Mannitol. Int J Mol Sci 2023; 24:15393. [PMID: 37895073 PMCID: PMC10607519 DOI: 10.3390/ijms242015393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In this study, we developed a tamsulosin pellet-loaded orally disintegrating tablet (ODT) that is bioequivalent to commercially available products and has improved patient compliance using microcrystalline cellulose (MCC) and mannitol. Utilizing the fluid bed technique, the drug, sustained release (SR) layer, and enteric layer were sequentially prepared by coating MCC pellets with the drug, HPMC, Kollicoat, and a mixture of Eudragit L and Eudragit NE, respectively, resulting in the production of tamsulosin pellets. The tamsulosin pellet, composed of the MCC pellet, drug layer, SR layer, and enteric layer at a weight ratio of 20:0.8:4.95:6.41, was selected because its dissolution was equivalent to that of the commercial capsule. Tamsulosin pellet-loaded ODTs were prepared using tamsulosin pellets and various co-processed excipients. The tamsulosin pellet-loaded ODT composed of tamsulosin pellets, mannitol-MCC mixture, silicon dioxide, and magnesium stearate at a weight ratio of 32.16:161.84:4.0:2.0 gave the best protective effect on the coating process and a dissolution profile similar to that of the commercial capsule. Finally, no significant differences in beagle dogs were observed in pharmacokinetic parameters, suggesting that they were bioequivalent. In conclusion, tamsulosin pellet-loaded ODTs could be a potential alternative to commercial capsules, improving patient compliance.
Collapse
Affiliation(s)
- Hyuk Jun Cho
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
- Pharmaceutical Research Centre, Hanmi Pharmaceutical Co., Ltd., Paltan-Myeon, Hwaseong 18536, Republic of Korea
| | - Jung Suk Kim
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| |
Collapse
|
2
|
de Andrade RP, Caldeira TG, Vasques BV, Morais Ruela AL, de Souza J. Biopharmaceutics considerations for direct oral anticoagulants. Drug Dev Ind Pharm 2022; 47:1881-1894. [PMID: 35377263 DOI: 10.1080/03639045.2022.2062377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Vitamin K antagonists (VKA) and direct oral anticoagulants (DOACs) have been clinically used in the treatment of coagulation disorders. There are four DOACs approved since 2010 (dabigatran etexilate, rivaroxaban, apixaban, and edoxaban), and they were designed to overcome the practical limitations of VKA. This review summarized biopharmaceutics considerations about DOACs, which are critically discussed, applying risk analyses to subside the further classification of these drugs according to the Biopharmaceutics Classification System (BCS). These discussions included data compiled about physicochemical properties, equilibrium solubility, permeability, and drug dissolution of DOACs. From the biopharmaceutics characteristics is possible to identify critical variables related to the absorption process, which can help in the design of new formulations. The data were compared with the criteria recommended by regulatory agencies for the biopharmaceutics classification according to the BCS. From that, these data may be used to discuss the approval of generic medicines by the BCS-based biowaiver, and the clinical risks arising from novel formulations with DOACs. However, although there are indications of biopharmaceutics classifications for DOACs, conclusive information to classify these compounds according to the BCS is lacking, requiring more experimental studies to achieve this aim. Conclusive information is essential for a safe decision about the biowaiver, as well as to guide the development of new formulations containing the DOACs.
Collapse
Affiliation(s)
- Rafael Pereira de Andrade
- Laboratório de Controle de Qualidade, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Tamires Guedes Caldeira
- Laboratório de Controle de Qualidade, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Bárbara Vasconcelos Vasques
- Laboratório de Controle de Qualidade, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - André Luís Morais Ruela
- Laboratório de Controle de Qualidade, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Jacqueline de Souza
- Laboratório de Controle de Qualidade, Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
3
|
Cho HJ, Woo MR, Cho JH, Kim YI, Choi HG. Novel dapagliflozin di-L-proline cocrystal-loaded tablet: Preparation, physicochemical characterization, and pharmacokinetics in beagle dogs and mini-pigs. Pharm Dev Technol 2022; 27:331-340. [PMID: 35264063 DOI: 10.1080/10837450.2022.2052320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dapagliflozin base and a commercial dapagliflozin propanediol hydrate cocrystal (DPF-PDHC) were highly hygroscopic and thermally unstable. In this study, to address this limitation, we prepared a novel dapagliflozin di-L-proline cocrystal (DPF-LPC) and evaluated its physicochemical characterization compared with DPF-PDHC. After the preparation of the DPF-LPC-loaded tablet, its dissolution, stability and bioequivalence in beagle dogs and mini-pigs were assessed. DPF-LPC was well prepared with a dapagliflozin base and L-proline in a molar ratio of 1:2. Similar to DPF-PDHC, DPF-LPC was highly lipophilic and crystalline in nature. However, these two cocrystals exhibited different melting points and crystalline structures, indicating their different cocrystal forms. Moreover, DPF-LPC exhibited less hygroscopicity and lower water content than DPF-PDHC. The DPF-LPC-loaded tablet composed of DPF-LPC, Comprecel M102, lactose monohydrate, crospovidone, magnesium stearate, and Opadry (coating) at a weight ratio of 15.6:104.4:100.0:8.0:2.0:7.0, was dissolution-equivalent to the commercial tablet. Moreover, it provided lower impurities than the commercial tablet, indicating its better stability. In the two animals, there were no significant differences in the plasma concentrations, AUC, Cmax, and Tmax values, suggesting that they were bioequivalent. Therefore, the novel DPF-LPC-loaded tablet with excellent stability and bioequivalence may be used as a potential alternative to the commercial DPF-PDHC-loaded tablet.
Collapse
Affiliation(s)
- Hyuk Jun Cho
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea.,Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea
| | - Jung Hyun Cho
- Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea
| | - Yong Il Kim
- Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea
| |
Collapse
|
4
|
Cho CH, Kim JY, Park ES. Utilization of a compaction simulator to formulate mini-tablets containing high dose of acyclovir. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Ko DW, Cho JH, Choi HG. Development of rebamipide-loaded spray-dried microsphere using distilled water and meglumine: physicochemical characterization and pharmacokinetics in rats. Pharm Dev Technol 2021; 26:701-708. [PMID: 33938359 DOI: 10.1080/10837450.2021.1924781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, a novel rebamipide-loaded spray-dried microsphere (RSM) with enhanced drug solubility and oral bioavailability has been developed utilizing meglumine, an alkalizing agent. The influence of carriers on the drug solubility alone, and the solubility and dissolution of the drug in the RSM was investigated. Among the alkalizing agents and hydrophilic polymers tested, meglumine and polyvinyl alcohol (PVA) showed the highest drug solubility and dissolution rate, respectively. Many RSMs were manufactured with various amounts of meglumine and PVA using distilled water, and their drug solubility and dissolution were determined. The physicochemical properties, dissolution and pharmacokinetics of the chosen RSM in rats were assessed compared to the rebamipide powder and commercial tablet. Among the RSMs tested, the one composed of rebamipide, meglumine and PVA at a weight ratio of 3:1.75:6 showed the highest drug solubility and dissolution. This RSM with a smooth spherical form significantly decreased the particle size and modified the amorphous rebamipide. Furthermore, the drug solubility, dissolution, plasma concentrations, AUC and Cmax values of RSM were significantly higher than those of drug powder and commercial tablet. Thus, this RSN system developed with distilled water and meglumine is recommended as an oral water-soluble rebamipide-loaded pharmaceutical product.
Collapse
Affiliation(s)
- Dae Woong Ko
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-Do, South Korea
| | - Jung Hyun Cho
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-Do, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-Do, South Korea
| |
Collapse
|
6
|
Kim JS, Choi YJ, Woo MR, Kim KS, Jin SG, Choi H. Development of Novel
d
‐Cycloserine Tablet with Improvement of Drug Stability and Dissolution‐Equivalence to the
d
‐Cycloserine‐Loaded Commercial Hard Capsule. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang University Ansan 15588 Republic of Korea
| | - Yoo Jin Choi
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang University Ansan 15588 Republic of Korea
| | - Mi Ran Woo
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang University Ansan 15588 Republic of Korea
| | - Kyeong Soo Kim
- Department of Pharmaceutical EngineeringGyeongnam National University of Science and Technology Jinju Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical EngineeringDankook University Cheonan 31116 Republic of Korea
| | - Han‐Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang University Ansan 15588 Republic of Korea
| |
Collapse
|
7
|
Cho CH, Kim JY, Park ES. Effects of process parameters of rotary tablet press on die filling behavior during mini-tablet production: Comparison with conventional tablet. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.11.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Kim JS, Lee SM, Kim DS, Kim DW, Kim KS, Cho KH, Li DX, Jin SG, Choi H. Enhanced Chemical Stability of D‐Cycloserine via Tablet Form Containing Magnesium Oxide as an Alkali Stabilizer. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jung Suk Kim
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang University Ansan 15588 South Korea
| | - Sang Min Lee
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang University Ansan 15588 South Korea
| | - Dong Shik Kim
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang University Ansan 15588 South Korea
| | - Dong Wuk Kim
- College of Pharmacy & Research Institute of Pharmaceutical SciencesKyungpook National University Daegu South Korea
| | - Kyeong Soo Kim
- Department of Pharmaceutical EngineeringGyeongnam National University of Science and Technology Jinju South Korea
| | - Kwan Hyung Cho
- College of PharmacyInje University Gimhae 621‐749 South Korea
| | - Dong Xun Li
- National Pharmaceutical Engineering Centre for Solid Preparation in Chinese Herbal MedicineJiangxi University of Traditional Chinese Medicine Nanchang 330006 China
| | - Sung Giu Jin
- Department of Pharmaceutical EngineeringDankook University Cheonan 31116 South Korea
| | - Han‐Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and TechnologyHanyang University Ansan 15588 South Korea
| |
Collapse
|
9
|
Cho JH, Choi HG. Development of novel tenofovir disoproxil phosphate salt with stability enhancement and bioequivalence to the commercial tenofovir disoproxil fumarate salt in rats and beagle dogs. Int J Pharm 2019; 576:118957. [PMID: 31843551 DOI: 10.1016/j.ijpharm.2019.118957] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/08/2019] [Accepted: 12/12/2019] [Indexed: 11/19/2022]
Abstract
Tenofovir disoproxil (TD) is very unstable in the solid state under storage conditions. Moreover, tenofovir disoproxil fumarate (TDF), a commercial salt, is chemically unstable in alkaline solution. In this study, a novel tenofovir disoproxil phosphate (TDP), with stability enhancement and bioequivalence to commercial TDF in rats and beagle dogs, has been developed as an alternative. The TDP and its tablets were easily manufactured, and its physicochemical properties, such as morphology, crystallinity, solubility, lipophilicity and stability were investigated and compared to TD and TDF. Its dissolution and pharmacokinetics were investigated in rats and beagle dogs in comparison to TD and TDF. TDP appeared as an irregularly-shaped crystalline powder with a rough surface, like TDF. However, TDP significantly improved the solubility (7.4 ± 1.3 vs. 28.6 ± 1.0 mg/ml), hydrophilicity (Log P, 0.58 ± 0.03 vs. 0.47 ± 0.04), and aqueous stability (drug concentration over 12 h at pH 6.8 84.0 ± 2.0% vs. 88.2 ± 1.5%) of TD compared to TDF. The TDP gave no significant different plasma concentrations, AUC and Cmax compared to TDF in rats (AUC, 1242.1 ± 584.9 vs. 825.9 ± 79.5 h·ng/ml; Cmax, 154.8 ± 25.4 vs. 210.9 ± 70.3 ng/ml). Moreover, the TDP-loaded tablets were stable for at least six months and provided similar dissolution and bioequivalence to the TDF-loaded commercial product in beagle dogs (AUC, 26,832.7 ± 4093.0 vs. 26,605.3 ± 2530.1 h·ng/ml; Cmax, 4364.0 ± 2061.9 vs. 4186.3 ± 2616.5 ng/ml). Therefore, as an alternative salt, the TDP would be a recommendable candidate with stability enhancement and bioequivalence to the commercial TDF.
Collapse
Affiliation(s)
- Jung Hyun Cho
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea; Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5, Hwaseong, Gyeonggi-Do 445-913, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Republic of Korea.
| |
Collapse
|