1
|
Parisi C, Laneri F, Fraix A, Sortino S. Multifunctional Molecular Hybrids Photoreleasing Nitric Oxide: Advantages, Pitfalls, and Opportunities. J Med Chem 2024; 67:16932-16950. [PMID: 39009572 DOI: 10.1021/acs.jmedchem.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The multifaceted role nitric oxide (NO) plays in human physiology and pathophysiology has opened new scenarios in biomedicine by exploiting this free radical as an unconventional therapeutic against important diseases. The difficulties in handling gaseous NO and the strict dependence of the biological effects on its doses and location have made the light-activated NO precursors, namely NO photodonors (NOPDs), very appealing by virtue of their precise spatiotemporal control of NO delivery. The covalent integration of NOPDs and additional functional components within the same molecular skeleton through suitable linkers can lead to an intriguing class of multifunctional photoactivatable molecular hybrids. In this Perspective, we provide an overview of the recent advances in these molecular constructs, emphasizing those merging NO photorelease with targeting, fluorescent reporting, and phototherapeutic functionalities. We will highlight the rational design behind synthesizing these molecular hybrids and critically describe the advantages, drawbacks, and opportunities they offer in biomedical research.
Collapse
Affiliation(s)
- Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Francesca Laneri
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, I-95125 Catania, Italy
| |
Collapse
|
2
|
Wei H, Xie M, Chen M, Jiang Q, Wang T, Xing P. Shedding light on cellular dynamics: the progress in developing photoactivated fluorophores. Analyst 2024; 149:689-699. [PMID: 38180167 DOI: 10.1039/d3an01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photoactivated fluorophores (PAFs) are highly effective imaging tools that exhibit a removal of caging groups upon light excitation, resulting in the restoration of their bright fluorescence. This unique property allows for precise control over the spatiotemporal aspects of small molecule substances, making them indispensable for studying protein labeling and small molecule signaling within live cells. In this comprehensive review, we explore the historical background of this field and emphasize recent advancements based on various reaction mechanisms. Additionally, we discuss the structures and applications of the PAFs. We firmly believe that the development of more novel PAFs will provide powerful tools to dynamically investigate cells and expand the applications of these techniques into new domains.
Collapse
Affiliation(s)
- Huihui Wei
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Qinhong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Tenghui Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
3
|
Qian Y, Kumar R, Chug MK, Massoumi H, Brisbois EJ. Therapeutic Delivery of Nitric Oxide Utilizing Saccharide-Based Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52250-52273. [PMID: 34714640 PMCID: PMC9050970 DOI: 10.1021/acsami.1c10964] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
As a gasotransmitter, nitric oxide (NO) regulates physiological pathways and demonstrates therapeutic effects such as vascular relaxation, anti-inflammation, antiplatelet, antithrombosis, antibacterial, and antiviral properties. However, gaseous NO has high reactivity and a short half-life, so NO delivery and storage are critical questions to be solved. One way is to develop stable NO donors and the other way is to enhance the delivery and storage of NO donors from biomaterials. Most of the researchers studying NO delivery and applications are using synthetic polymeric materials, and they have demonstrated significant therapeutic effects of these NO-releasing polymeric materials on cardiovascular diseases, respiratory disease, bacterial infections, etc. However, some researchers are exploring saccharide-based materials to fulfill the same tasks as their synthetic counterparts while avoiding the concerns of biocompatibility, biodegradability, and sustainability. Saccharide-based materials are abundant in nature and are biocompatible and biodegradable, with wide applications in bioengineering, drug delivery, and therapeutic disease treatments. Saccharide-based materials have been implemented with various NO donors (like S-nitrosothiols and N-diazeniumdiolates) via both chemical and physical methods to deliver NO. These NO-releasing saccharide-based materials have exhibited controlled and sustained NO release and demonstrated biomedical applications in various diseases (respiratory, Crohn's, cardiovascular, etc.), skin or wound applications, antimicrobial treatment, bone regeneration, anticoagulation, as well as agricultural and food packaging. This review aims to highlight the studies in methods and progress in developing saccharide-based NO-releasing materials and investigating their potential applications in biomedical, bioengineering, and disease treatment.
Collapse
Affiliation(s)
- Yun Qian
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Rajnish Kumar
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hamed Massoumi
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth J Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
4
|
Fraix A, Parisi C, Seggio M, Sortino S. Nitric Oxide Photoreleasers with Fluorescent Reporting. Chemistry 2021; 27:12714-12725. [PMID: 34143909 DOI: 10.1002/chem.202101662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO) plays a multifaceted role in human physiology and pathophysiology, and its controlled delivery has great prospects in therapeutic applications. The light-activated uncaging of NO from NO caging compounds allows this free radical to be released with accurate control of site and dosage, which strictly determine its biological effects. Molecular constructs able to activate fluorescence concomitantly to NO release offer the important advantage of easy and real-time tracking of the amount of NO uncaged in a non-invasive fashion even in the cell environment. This contribution provides an overview of the advances in photoactivatable NO releasers bearing fluorescent reporting functionalities achieved in our and other laboratories, highlighting the rationale design and their potential therapeutic applications.
Collapse
Affiliation(s)
- Aurore Fraix
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Cristina Parisi
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Mimimorena Seggio
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| | - Salvatore Sortino
- PhotoChemLab, Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
| |
Collapse
|
5
|
Programmed Synthesis of Hepta‐Differentiated β‐Cyclodextrin: 1 out of 117655 Arrangements. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Liu J, Wang B, Przybylski C, Bistri-Aslanoff O, Ménand M, Zhang Y, Sollogoub M. Programmed Synthesis of Hepta-Differentiated β-Cyclodextrin: 1 out of 117655 Arrangements. Angew Chem Int Ed Engl 2021; 60:12090-12096. [PMID: 33650730 DOI: 10.1002/anie.202102182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 01/23/2023]
Abstract
Cyclodextrin poly-functionalization has fueled progress in their use in multiple applications such as enzyme mimicry, but also in the polymer sciences, luminescence, as sensors or for biomedical applications. However, regioselective access to a given pattern of functions on β-cyclodextrin is still very limited. We uncover a new orienting group, the thioacetate, that expands the toolbox available for cyclodextrin poly-hetero-functionalization using diisobutylaluminum hydride (DIBAL-H) promoted debenzylation. The usefulness of this group is illustrated in the first synthesis of a precisely hepta-hetero-functionalized β-cyclodextrin. By way of comparison, a random hepta-functionalization would give 117655 different molecules. This synthesis is not simply the vain quest for the Holy Grail of CD hetero-functionalization, but it illustrates the versatility of the DIBAL-H oriented hetero-functionalization strategy, opening the way to a multitude of useful functionalization patterns for new practical applications.
Collapse
Affiliation(s)
- Jiang Liu
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Bo Wang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Cédric Przybylski
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Olivia Bistri-Aslanoff
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Mickaël Ménand
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005, Paris, France
| |
Collapse
|
7
|
Seggio M, Payamifar S, Fraix A, Kalydi E, Kasal P, Catanzano O, Conte C, Quaglia F, Sortino S. Visible light-activatable cyclodextrin-conjugates for the efficient delivery of nitric oxide with fluorescent reporter and their inclusion complexes with betaxolol. NEW J CHEM 2021. [DOI: 10.1039/d1nj00039j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Water-soluble β-CD conjugates release NO with high performances with blue and green light, liberate a fluorescent co-products useful for the real-time monitoring of the NO concentration and encapsulate additional guests within the hydrophobic cavity.
Collapse
Affiliation(s)
- Mimimorena Seggio
- PhotoChemLab
- Department of Drug and Health Sciences
- University of Catania
- Catania
- Italy
| | - Sara Payamifar
- PhotoChemLab
- Department of Drug and Health Sciences
- University of Catania
- Catania
- Italy
| | - Aurore Fraix
- PhotoChemLab
- Department of Drug and Health Sciences
- University of Catania
- Catania
- Italy
| | - Eszter Kalydi
- CycloLab Ltd
- H-1097 Budapest
- Hungary
- Department of Pharmacognosy
- Semmelweis University
| | - Petr Kasal
- Department of Organic Chemistry
- Charles University in Prague
- Prague 2
- Czech Republic
| | - Ovidio Catanzano
- Institute for Polymers
- Composites and Biomaterials, CNR
- 80078 Pozzuoli
- Italy
| | - Claudia Conte
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | - Fabiana Quaglia
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | - Salvatore Sortino
- PhotoChemLab
- Department of Drug and Health Sciences
- University of Catania
- Catania
- Italy
| |
Collapse
|
8
|
Neva T, Carmona T, Benito JM, Przybylski C, Ortiz Mellet C, Mendicuti F, García Fernández JM. Dynamic Control of the Self-Assembling Properties of Cyclodextrins by the Interplay of Aromatic and Host-Guest Interactions. Front Chem 2019; 7:72. [PMID: 30873399 PMCID: PMC6401617 DOI: 10.3389/fchem.2019.00072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
The presence of a doubly-linked naphthylene clip at the O-2I and O-3II positions in the secondary ring of β-cyclodextrin (βCD) derivatives promoted their self-assembly into head-to-head supramolecular dimers in which the aromatic modules act either as cavity extension walls (if the naphthalene moiety is 1,8-disubstituted) or as folding screens that separate the individual βCD units (if 2,3-disubstituted). Dimer architecture is governed by the conformational properties of the monomer constituents, as determined by NMR, fluorescence, circular dichroism, and computational techniques. In a second supramolecular organization level, the topology of the assembly directs host-guest interactions and, reciprocally, guest inclusion impacts the stability of the supramolecular edifice. Thus, inclusion of adamantane carboxylate, a well-known βCD cavity-fitting guest, was found to either preserve the dimeric arrangement, leading to multicomponent species, or elicit dimer disruption. The ensemble of results highlights the potential of the approach to program self-organization and external stimuli responsiveness of CD devices in a controlled manner while keeping full diastereomeric purity.
Collapse
Affiliation(s)
- Tania Neva
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Sevilla, Spain
| | - Thais Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Sevilla, Spain
| | - Cédric Przybylski
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, Paris, France
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | |
Collapse
|
9
|
Fraix A, Sortino S. Combination of PDT photosensitizers with NO photodononors. Photochem Photobiol Sci 2018; 17:1709-1727. [PMID: 30141820 DOI: 10.1039/c8pp00272j] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Combination of photodynamic therapy (PDT) with other treatment modalities is emerging as one of the most suitable strategies to increase the effectiveness of therapeutic action on cancer and bacterial diseases and to minimize side effects. This approach aims at exploiting the additive/synergistic effects arising from multiple therapeutic species acting on different mechanistic pathways. The coupling of PDT with photocontrolled release of nitric oxide (NO) through the appropriate assembly of PDT photosensitizers (PSs) and NO photodonors (NOPDs) may open up intriguing avenues towards new and still underexplored multimodal therapies not based on "conventional" drugs but entirely controlled by light stimuli. In this contribution, we present an overview of the most recent advances in this field, illustrating several strategies to assemble PSs and NOPDs allowing them to operate independently without reciprocal interferences and describing the potential applications with particular emphasis on their impact in anticancer and antibacterial research.
Collapse
Affiliation(s)
- Aurore Fraix
- Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, I-95125, Catania, Italy.
| | - Salvatore Sortino
- Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, I-95125, Catania, Italy.
| |
Collapse
|
10
|
Mannoside and 1,2-mannobioside β-cyclodextrin-scaffolded NO-photodonors for targeting antibiotic resistant bacteria. Carbohydr Polym 2018; 199:649-660. [PMID: 30143173 DOI: 10.1016/j.carbpol.2018.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 12/26/2022]
Abstract
Two β-cyclodextrin derivatives randomly appended on the primary face with both the nitric oxide (NO) photodonor 4-nitro-3-(trifluoromethyl)aniline and a mannose or α(1→2)mannobioside residue are reported to construct targeted NO photoreleasing nanocarriers. 2D ROESY and PGSE NMR suggested supramolecular homodimerization in water by inclusion of the nitroaniline group into the facing macrocycle cavities. Isothermal titration calorimetry on their concanavalin A lectin binding showed an exothermic binding event to the lectin and an endothermic process during the dilution of the conjugates. Both α(1→2)mannobioside and the nitroaniline moieties significantly enhanced the binding to the lectin. These effects might arise from a better fit within the carbohydrate-recognition site in the former case and a multivalent effect caused by homodimerization in the latter. Direct detection of NO by amperometric technique shows that both β-cyclodextrin derivatives release this radical upon excitation with visible light with higher efficiency than the unfunctionalized NO photodonor.
Collapse
|
11
|
Behara KK, Rajesh Y, Chaudhuri A, Gangopadhyay M, Mandal M, Pradeep Singh ND. NIR fluorescent organic nanoparticles for photoinduced nitric oxide delivery with self monitoring and real time reporting abilities. J Mater Chem B 2018; 6:6042-6046. [DOI: 10.1039/c8tb01209a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitric oxide photodonor (NOD) conjugated perylene tetracarboxylate ester (TPT) based fluorescent organic TPT(NOD)4 nanoparticles (NPs) with aggregation induced NIR emission have shown photoinduced nitric oxide delivery along with a red to green emission transition.
Collapse
Affiliation(s)
- Krishna Kalyani Behara
- Department of Chemistry
- Indian Institute of Technology (IIT) Kharagpur
- Kharagpur–721302
- India
| | - Y. Rajesh
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur–721302
- India
| | - Amrita Chaudhuri
- Department of Chemistry
- Indian Institute of Technology (IIT) Kharagpur
- Kharagpur–721302
- India
| | - Moumita Gangopadhyay
- Department of Chemistry
- Indian Institute of Technology (IIT) Kharagpur
- Kharagpur–721302
- India
| | - Mahitosh Mandal
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur–721302
- India
| | - N. D. Pradeep Singh
- Department of Chemistry
- Indian Institute of Technology (IIT) Kharagpur
- Kharagpur–721302
- India
| |
Collapse
|
12
|
Afonso D, Valetti S, Fraix A, Bascetta C, Petralia S, Conoci S, Feiler A, Sortino S. Multivalent mesoporous silica nanoparticles photo-delivering nitric oxide with carbon dots as fluorescence reporters. NANOSCALE 2017; 9:13404-13408. [PMID: 28813066 DOI: 10.1039/c7nr04832g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amino-terminated mesoporous silica nanoparticles embedding carbon dots (MSCD) formed by calcination were functionalized with a nitric oxide (NO) photodonor (1) to give a robust MSCD-1 conjugate. The intense fluorescence of MSCDs was strongly quenched in MSCD-1 by effective energy transfer. Visible light excitation of MSCD-1 liberates NO, suppresses the energy transfer mechanism and leads to concomitant fluorescence restoration of the MSCD scaffold, which acts as an optical reporter for the released NO. The MSCD-1 hybrid is also able to encapsulate the highly hydrophobic photosensitizer temoporfin, preserving the fluorescence reporting function.
Collapse
Affiliation(s)
- Damien Afonso
- Laboratory of Photochemistry, Department of Drug Sciences, Viale Andrea Doria 6, 95125, Catania, Italy.
| | | | | | | | | | | | | | | |
Collapse
|