1
|
Uchida T. Taste Sensor Assessment of Bitterness in Medicines: Overview and Recent Topics. SENSORS (BASEL, SWITZERLAND) 2024; 24:4799. [PMID: 39123846 PMCID: PMC11314865 DOI: 10.3390/s24154799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
In recent decades, taste sensors have been increasingly utilized to assess the taste of oral medicines, particularly focusing on bitterness, a major obstacle to patient acceptance and adherence. This objective and safe method holds promise for enhancing the development of patient-friendly medicines in pharmaceutical companies. This review article introduces its application in measuring the intensity of bitterness in medicine, confirming the achievement of taste masking, distinguishing taste differences between branded and generic medicines, and identifying substances to suppress bitterness in target medicines. Another application of the sensor is to predict a significant increase in bitterness when medicine is taken with certain foods/beverages or concomitant medication. Additionally, to verify the sensor's predictability, a significant correlation has been demonstrated between the output of a bitter-sensitive sensor designed for drug bitterness (BT0) and the bitterness responses of the human taste receptor hT2R14 from BitterDB (huji.ac.il). As a recent advancement, a novel taste sensor equipped with lipid/polymer membranes modified by 3-Br-2,6-dihydroxybenzoic acid (2,6-DHBA), based on the concept of allostery, is introduced. This sensor successfully predicts the bitterness of non-charged pharmaceuticals with xanthine skeletons, such as caffeine or related compounds. Finally, the future prospects of taste sensors are discussed.
Collapse
Affiliation(s)
- Takahiro Uchida
- Food and Health Innovation Center, Nakamura Gakuen University, 5-7-1, Befu, Jonan-ku, Fukuoka 814-0198, Japan;
- Faculty of Pharmaceutical Science, Mukogawa Women’s University, 11-68, Koshien 9-Bancho, Nishinomiya 663-8179, Japan
| |
Collapse
|
2
|
Jacob S, Boddu SHS, Bhandare R, Ahmad SS, Nair AB. Orodispersible Films: Current Innovations and Emerging Trends. Pharmaceutics 2023; 15:2753. [PMID: 38140094 PMCID: PMC10747242 DOI: 10.3390/pharmaceutics15122753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Orodispersible films (ODFs) are thin, mechanically strong, and flexible polymeric films that are designed to dissolve or disintegrate rapidly in the oral cavity for local and/or systemic drug delivery. This review examines various aspects of ODFs and their potential as a drug delivery system. Recent advancements, including the detailed exploration of formulation components, such as polymers and plasticizers, are briefed. The review highlights the versatility of preparation methods, particularly the solvent-casting production process, and novel 3D printing techniques that bring inherent flexibility. Three-dimensional printing technology not only diversifies active compounds but also enables a multilayer approach, effectively segregating incompatible drugs. The integration of nanoparticles into ODF formulations marks a significant breakthrough, thus enhancing the efficiency of oral drug delivery and broadening the scope of the drugs amenable to this route. This review also sheds light on the diverse in vitro evaluation methods utilized to characterize ODFs, ongoing clinical trials, approved marketed products, and recent patents, providing a comprehensive outlook of the evolving landscape of orodispersible drug delivery. Current patient-centric approaches involve developing ODFs with patient-friendly attributes, such as improved taste masking, ease of administration, and enhanced patient compliance, along with the personalization of ODF formulations to meet individual patient needs. Investigating novel functional excipients with the potential to enhance the permeation of high-molecular-weight polar drugs, fragile proteins, and oligonucleotides is crucial for rapid progress in the advancing domain of orodispersible drug delivery.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Richie Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates; (S.H.S.B.); (R.B.)
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Samiullah Shabbir Ahmad
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman P.O. Box 4184, United Arab Emirates;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
3
|
Yu JY, Kim HW, Park HJ. Customized oral mucosal adhesive film-based functional-substance delivery system using embedded 3D printing method. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Javed S, Hussain A, Shah PA, Raza SA, Anwer UU, Shamim R, Rasool F, Hafiz MA, Bukhari NI. Development of Optimized Sumatriptan-Prochlorperazine Combined Orodispersible Films Without Disintegrant: in vitro, ex vivo and in vivo Characterization. AAPS PharmSciTech 2022; 23:156. [PMID: 35655105 DOI: 10.1208/s12249-022-02307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/15/2022] [Indexed: 11/30/2022] Open
Abstract
Sumatriptan succinate and prochlorperazine maleate are a clinically proven combination for treating migraine and associated nausea and vomiting. Classical oral dosage forms are not frequently workable in migraine because of the associated nausea/vomiting, and no effective fixed dose combination is available. Thus, the aim of the study was to optimize a combined sumatriptan-prochlorperazine orodispersible film for rapid release of drugs. Orodispersible films were prepared by solvent casting method using varied amounts of polyvinyl alcohol and glycerol as film former and plasticizer, respectively, along with fixed levels of other ingredients employing central composite design. The optimum film (VF) demonstrated disintegration and total dispersion times as 21 s and 2.3 min, respectively. Tensile strength and Young's modulus were 8.86 ± 0.37 MPa and 24.15 ± 0.07 MPa, respectively. The in vitro T80% of both drugs from the ODF was achieved within 4 min. The film was palatable and disintegrated in 2 min in buccal cavity of human volunteers. Permeation study through goat mucosa demonstrated 100% permeation of both drugs within 15 min. X-Ray diffraction and differential scanning calorimetry supported drugs being amorphous and Fourier transform infrared demonstrated drug-excipient compatibility in optimized film. A judicious combination of sumatriptan succinate and prochlorperazine maleate could be prepared in orodispersible films for the possible relief of migraine.
Collapse
|
5
|
Abdelhakim HE, Coupe A, Tuleu C, Edirisinghe M, Craig DQM. Utilising Co-Axial Electrospinning as a Taste-Masking Technology for Paediatric Drug Delivery. Pharmaceutics 2021; 13:1665. [PMID: 34683958 PMCID: PMC8540992 DOI: 10.3390/pharmaceutics13101665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022] Open
Abstract
The present study describes the use of two taste-masking polymers to fabricate a formulation of chlorpheniramine maleate for paediatric administration. Co-axial electrospinning was utilized to create layered nanofibres; the two polymers, Eudragit® E PO and Kollicoat® Smartseal, were alternated between the core and the shell of the system in order to identify the optimum taste-masked formulation. The drug was loaded in the core on all occasions. It was found that the formulation with Kollicoat® Smartseal in the core with the drug, and Eudragit® E PO in the shell showed the most effective taste-masking compared to the other formulations. These fibres were in the nano-range and had smooth morphology as verified by scanning electron microscopy. Solid-state characterization and thermal analysis confirmed that amorphous solid dispersions were formed upon electrospinning. The Insent E-tongue was used to assess the taste-masking efficiency of the samples, and it was found that this formulation was undetectable by the bitter sensor, indicating successful taste-masking compared to the raw version of the drug. The E-tongue also confirmed the drug's bitterness threshold as compared to quinine HCl dihydrate, a parameter that is useful for formulation design and taste-masking planning.
Collapse
Affiliation(s)
- Hend E. Abdelhakim
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (H.E.A.); (C.T.)
| | - Alastair Coupe
- Pfizer Limited, Global R&D, Discovery Park, Ramsgate Road, Sandwich, Kent CT13 9ND, UK;
| | - Catherine Tuleu
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (H.E.A.); (C.T.)
| | - Mohan Edirisinghe
- UCL Department of Mechanical Engineering, Faculty of Engineering Sciences, University College London, London WC1E 7JE, UK;
| | - Duncan Q. M. Craig
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (H.E.A.); (C.T.)
| |
Collapse
|
6
|
Formulation and evaluation of bitter taste-masked orally disintegrating tablets of high memantine hydrochloride loaded granules coated with polymer via layering technique. Int J Pharm 2021; 604:120725. [PMID: 34029663 DOI: 10.1016/j.ijpharm.2021.120725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 01/03/2023]
Abstract
Orally disintegrating tablets (ODTs) improve patient adherence as they can easily disintegrate in the presence of small amount of saliva. However, the bitter taste of the active pharmaceutical ingredient in ODTs reduces patient compliance. The present study aimed to formulate bitter taste-masked ODTs containing high-dose of memantine hydrochloride (MTN) to achieve a balance between bitterness suppression and dissolution rate or disintegration time and mechanical strength. The high MTN-loaded granules were prepared using a fluidized bed granulator. Taste-masking granules coated with the selected polymer were prepared using the layering technique. Three ODTs, composed of granules coated with different polymers, were prepared. The ODT prepared using granules coated with enteric polymers showed the fastest collapse time (>20 s). Dissolution rates of ODTs composed of enteric polymers were reduced by 5 min compared with ODTs composed of non-coated or coated with water-insoluble polymer granules. X-ray computed tomography analysis revealed that low density distribution of ODTs with enteric polymer granules may result in faster disintegration time. Although ODT prepared using enteric polymers had the fastest collapse time, its change in membrane potential caused by adsorption (CPA), corresponding to aftertaste, was the lowest among formulations. This CPA value was lower than the bitterness threshold.
Collapse
|
7
|
Pacheco MS, Barbieri D, da Silva CF, de Moraes MA. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. Int J Biol Macromol 2021; 178:504-513. [PMID: 33647337 DOI: 10.1016/j.ijbiomac.2021.02.180] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/18/2022]
Abstract
In recent years, orally disintegrating films (ODFs) have been studied as alternative ways for drug administration. They can easily be applied into the mouth and quickly disintegrate, releasing the drug with no need of water ingestion and enabling absorption through the oral mucosa. The ODFs matrices are typically composed of hydrophilic polymers, in which the natural polymers are highlighted since they are polymers extracted from natural sources, non-toxic, biocompatible, biodegradable, and have favorable properties for this application. Besides that, natural polymers such as polysaccharides and proteins can be applied either alone or blended with other synthetic, semi-synthetic, or natural polymers to achieve better mechanical and mucoadhesive properties and fast disintegration. In this review, we analyzed ODFs developed using natural polymers or blends involving natural polymers, such as maltodextrin, pullulan, starch, gelatin, collagen, alginate, chitosan, pectin, and others, to overview the recent publications and discuss how natural polymers can influence ODFs properties.
Collapse
Affiliation(s)
- Murilo Santos Pacheco
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Douglas Barbieri
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Classius Ferreira da Silva
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil
| | - Mariana Agostini de Moraes
- Department of Chemical Engineering, Federal University of São Paulo - UNIFESP, Diadema, São Paulo 09913-030, Brazil.
| |
Collapse
|
8
|
Oliveira Filho JGD, Braga ARC, Oliveira BRD, Gomes FP, Moreira VL, Pereira VAC, Egea MB. The potential of anthocyanins in smart, active, and bioactive eco-friendly polymer-based films: A review. Food Res Int 2021; 142:110202. [PMID: 33773677 DOI: 10.1016/j.foodres.2021.110202] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022]
Abstract
Among the bioactive compounds that are considered important for the food industry, anthocyanins, which are flavonoid compounds presenting antioxidant activity and are responsible for beneficial health effects, have received researchers' attention in the last decades. In addition, anthocyanins are highly reactive and can be used as indicators of foodstuff quality conditions, particularly as a packaging ingredient. Considering this line of work, the eco-friendly film is a novel packaging technology that arose from the concern to reduce non-renewable resources and their impact on the environment. These films can be vehicles for loading bioactive compounds such as anthocyanins. Among the contribution of films in the food industry, we can highlight several potential applications: i) smart film: assess food quality and safety, transmitting food information to consumers and increasing the reliability of their consumption without breaking the packaging; ii) active film: use to preserve food quality through the release of active agents; and iii) bioactive film: carry substances in desired concentrations until their controlled or rapid diffusion within the gastrointestinal tract so that they can promote its benefit to human health. Thus, this review presents anthocyanin extract's potential as a powerful tool to improve the development of eco-friendly films, directing its purpose to the application as smart, active, and bioactive films.
Collapse
Affiliation(s)
| | | | - Bianca Ribeiro de Oliveira
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| | - Francileni Pompeu Gomes
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| | - Virgínia Lopes Moreira
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| | | | - Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde, Goiás, Brazil.
| |
Collapse
|
9
|
Banerjee S, Joshi U, Singh A, Saharan VA. Lipids for Taste masking and Taste assessment in pharmaceutical formulations. Chem Phys Lipids 2020; 235:105031. [PMID: 33352198 DOI: 10.1016/j.chemphyslip.2020.105031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/30/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Pharmaceutical products often have drawbacks of unacceptable taste and palatability which makes it quite difficult for oral administration to some special populations like pediatrics and geriatrics. To curb this issue different approaches like coating, granulation, extrusion, inclusion complexation, ion-exchange resins, etc for taste masking are employed and among them use of lipids have drawn special attention of researchers. Lipids have a lower melting point which is ideal for incorporating drugs in some of these methods like hot-melt extrusion, melt granulation, spray drying/congealing and emulsification. Lipids play a significant role as a barrier to sustain the release of drugs and biocompatible nature of lipids increases their acceptability by the human body. Further, lipids provide vast opportunities of altering pharmacokinetics of the active ingredients by modulating release profiles. In taste sensors, also known as electronic tongue or e-tongue, lipids are used in preparing taste sensing membranes which are subsequently used in preparing taste sensors. Lipid membrane taste sensors have been widely used in assessing taste and palatability of pharmaceutical and food formulations. This review explores applications of lipids in masking the bitter taste in pharmaceutical formulations and significant role of lipids in evaluation of taste and palatability.
Collapse
Affiliation(s)
- Surojit Banerjee
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Ujjwal Joshi
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Anupama Singh
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India
| | - Vikas Anand Saharan
- School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala, Dehradun, Uttarakhand, 248001, India.
| |
Collapse
|
10
|
Ekweremadu CS, Abdelhakim HE, Craig DQM, Barker SA. Development and Evaluation of Feline Tailored Amlodipine Besylate Mini-Tablets Using L-lysine as a Candidate Flavouring Agent. Pharmaceutics 2020; 12:E917. [PMID: 32987962 PMCID: PMC7600910 DOI: 10.3390/pharmaceutics12100917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
Felines may find orally administered medicines unpalatable, thus presenting a problem in the treatment of chronic conditions such as hypertension, a commonly diagnosed condition in felines requiring daily administration of medication. A pertinent example is amlodipine besylate, formulations of which are known to be poorly tolerated by cats. There is therefore a need to develop feline-specific delivery approaches that are both simple to administer and mask the taste of the drug, thereby enhancing the owner's commitment to treatment and the associated therapeutic outcome for the companion animal. In addition, it is helpful to develop accessible and reproducible means of assessing taste for pre-clinical selection, hence the use of recently developed taste biosensor systems for veterinary applications is an area of interest. This study focuses on developing feline-specific amlodipine besylate formulations by improving the taste using a suitable flavouring agent while reducing dosage form size to a 2 mm diameter mini-tablet. The choice of L-lysine as a flavouring agent was based on the dietary and taste preference of cats. The impact of L-lysine on the taste perception of the formulation was evaluated using a biosensor system (E-tongue) fitted with sensors sensitive to bitter tastes. The results showed L-lysine successfully masked bitterness, while the drug release studies suggest that it has no impact on drug dissolution. In addition, tableting parameters such as tablet mass uniformity, content uniformity, tablet diameter, thickness and hardness were all satisfactory. The present study suggests that amlodipine besylate mini-tablets containing L-lysine could improve the palatability and in turn support product acceptability and ease of administration. These data could have an impact on orally administered medicines for cats and other veterinary species through product differentiation and competitive advantage in the companion animal market sector. The study also outlines the use of the electronic tongue as a tool for formulation selection in the veterinary field.
Collapse
Affiliation(s)
- Chinedu S. Ekweremadu
- Department of Pharmaceutics, University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.S.E.); (H.E.A.); (D.Q.M.C.)
| | - Hend E. Abdelhakim
- Department of Pharmaceutics, University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.S.E.); (H.E.A.); (D.Q.M.C.)
| | - Duncan Q. M. Craig
- Department of Pharmaceutics, University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.S.E.); (H.E.A.); (D.Q.M.C.)
| | - Susan A. Barker
- Department of Pharmaceutics, University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK; (C.S.E.); (H.E.A.); (D.Q.M.C.)
- Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham, Kent ME4 4TB, UK
| |
Collapse
|
11
|
Takeuchi H. [Particle Design Strategies for Developing Patient Centric Dosage Form Preparations]. YAKUGAKU ZASSHI 2020; 140:1013-1024. [PMID: 32741859 DOI: 10.1248/yakushi.20-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel dosage form designs aiming at patient centric drug therapy are summarized here based on my carrier research in this field. The common key word for this research is particle design. The topics will be divided into two parts, based on the type of particle: coarse particles (powder) and colloidal particles. The former includes the preparation and characterization of functional particles prepared using a spray dryer. Solid dispersions, solvent deposition particles and dry emulsion systems are described. Polymer coated liposomes are described as a useful drug delivery carrier in several administration routes. As chitosan, a mucoadhesive polymer, was used as a coating polymer, the resultant chitosan-coated liposome was found to work as a good carrier for peptide drugs such as insulin and calcitonin in the gastrointestinal tract after oral administration. In another administration route (inhalation), polymer-coated liposomes enhanced the absorption of the drugs. Liposomal carriers applied to the surface of the eye as eye drops are able to deliver drugs to the posterior part of the eye, such as the retina. As a typical example of patient centric dosage form design, particle designs for the preparation of orally disintegrating tablets and films were introduced in one of our recent studies on oral dosage form design.
Collapse
Affiliation(s)
- Hirofumi Takeuchi
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University
| |
Collapse
|
12
|
Novel use of insoluble particles as disintegration enhancers for orally disintegrating films. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Okubo Y, Takeuchi Y, Mizuno H, Matoba H, Tahara K, Takeuchi H. Statistical analyses for the preparation of taste-masking granules using a pH-dependent polymer. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Takeuchi Y, Kawamoto M, Tahara K, Takeuchi H. Design of a new disintegration test system for the evaluation of orally disintegrating films. Int J Pharm 2018; 553:281-289. [PMID: 30366069 DOI: 10.1016/j.ijpharm.2018.10.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/01/2018] [Accepted: 10/21/2018] [Indexed: 11/27/2022]
Abstract
In the design of the orally disintegrating films (ODFs), it is important to determine the disintegration time (DT) precisely and properly. These films' DTs are usually assessed by a disintegration test defined in the pharmacopoeias, but under the conditions of such tests, a much larger volume of water is used and a stronger up-down movement is applied compared to the conditions of the human oral cavity. Here we developed and tested our new disintegration test system for ODFs. We chose a disintegration test device (the Tricorptester®, Okada Seiko, Tokyo) for orally disintegrating tablets. This device enabled the mechanical dropping of the test medium. We designed an exclusive fixture for ODFs, made an opening in the center of the fixture, and optimized the size of the opening (i.e., the cell). We also investigated that test conditions including the types of test media, the dropping height, flow rate, dropping methods, and medium holding methods. With a passage sensor attached to the Tricorptester, the device was able to automatically detect the DTs of ODFs. We thus successfully developed a new disintegration test system and optimized the operating conditions. Using this system, model ODFs and the commercial ODFs can be properly evaluated.
Collapse
Affiliation(s)
- Yoshiko Takeuchi
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | - Misaki Kawamoto
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hirofumi Takeuchi
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
15
|
Takeuchi Y, Umemura K, Tahara K, Takeuchi H. Formulation design of hydroxypropyl cellulose films for use as orally disintegrating dosage forms. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Shang R, Liu C, Quan P, Zhao H, Fang L. Effect of drug-ion exchange resin complex in betahistine hydrochloride orodispersible film on sustained release, taste masking and hygroscopicity reduction. Int J Pharm 2018; 545:163-169. [PMID: 29729403 DOI: 10.1016/j.ijpharm.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/05/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023]
Abstract
Orodispersible film (ODF) is a widely used oral solid dosage form. However, it's not suitable for drugs with short half-life, bitterness and strong hygroscopicity. The present study aims to develop a sustained release and stable betahistine hydrochloride ODF without bitterness. Drug-resin complex (IRDC) was prepared using batch method. In vitro dissolution experiment, e-Tongue and hygroscopicity experiment were conducted to compare the differences between ODF containing IRDC and ODF containing betahistine hydrochloride. Drug release kinetics showed that the diffusion of drug in IRDC was the rate-limiting step of drug release. DSC and FT-IR were conducted to explore the molecular mechanism of taste masking and hygroscopicity reduction. It turned out that taste masking was attributed to the ionic interaction between drug and resin and the slow dissolution of drug from IRDC. The site where drug form hydrogen bonds with water molecular was occupied by drug-resin interaction leading to hygroscopicity reduction. In summary, in this study we not only developed a betahistine hydrochloride ODF with good properties but also explored the effect of drug-resin interaction on sustained release, taste masking and hygroscopicity reduction.
Collapse
Affiliation(s)
- Rui Shang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Hanqing Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|