1
|
Foscari A, Seiwert B, Zahn D, Schmidt M, Reemtsma T. Leaching of tire particles and simultaneous biodegradation of leachables. WATER RESEARCH 2024; 253:121322. [PMID: 38387267 DOI: 10.1016/j.watres.2024.121322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
The fate of organic compounds released from tire wear particle (TWP) in the aquatic environment is still poorly understood. This is especially true near sources where biotic and abiotic transformation and leaching from TWP are simultaneous and competing processes. To address this knowledge-gap an experiment was performed, allowing for biodegradation (a) during the leaching from a suspension of cryo-milled tire tread (CMTT) and (b) subsequent to leaching. Besides measuring the Dissolved Organic Carbon (DOC) content, 19 tire-related chemicals were quantified, and non-target screening was performed by LC-HRMS. The non-inoculated control experiment exhibited a DOC of up to 4 mg g-1, with up to 700 µg g-1 of 1,3-diphenylguanidine (DPG) as the most prominent compound, followed by three benzothiazoles (2-mercaptobenzothiazole (2-MBT), 2-hydroxybenzothiazole (2-OHBT) and benzothiazole-2-sulfonic acid (BTSA); 50 µg g-1 each) and 4-hydroxydiphenylamine (4-HDPA) (50 µg g-1). Biodegradation reduced the DOC by 88 % and the concentration of most organic compounds by more than 85 %. At the end of the experiment hexamethoxymethylmelamine (HMMM) was the most prominent single compounds (18 µg g-1). Non-target screening showed a more complex picture. Another 25 transformation products (TPs) of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) and 44 TPs and derivatives related to DPG were detected in solution, of which 11 and 28 were still present after or formed by biodegradation, respectively. Of these 39 TPs and derivatives, 31 could be detected in road runoff samples. This study provides a more comprehensive picture of the leachables of tire particles that are of environmental relevance. It also outlines that derivatives of tire additives formed during tire production and use may deserve more attention as leachables. The large extent of biodegradation of tire leachables suggests that settling ponds may be a useful treatment option for road runoff.
Collapse
Affiliation(s)
- Aurelio Foscari
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Daniel Zahn
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Matthias Schmidt
- Department of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany; Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Luo F, Hao M, Zhang L, Xie Y, Hou W, Wang H, Zhang Z. Identification of nonvolatile organic compounds (NVOCs) in biopharmaceuticals through non-target analysis and quantification using complexation-precipitation extraction. J Chromatogr A 2024; 1713:464540. [PMID: 38039624 DOI: 10.1016/j.chroma.2023.464540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Single-use systems in biopharmaceutical manufacturing can potentially release chemical constituents (leachables) into drug products. Prior to conducting toxicological risk assessments, it is crucial to establish the qualitative and quantitative methods for these leachables. In this study, we conducted a comprehensive screening and structure elucidation of 23 leachables (nonvolatile organic compounds, NVOCs) in two antibody drugs using multiple (self-built and public) databases and mass spectral simulation. We identified 7 compounds that have not been previously reported in medical or medicinal extractables and leachables. The confidence levels for identified compounds were classified based on analytical standards, literature references, and fragment assignments. Most of the identified leachables were found to be plasticizers, antioxidants, slip agents or polymer degradants. Polysorbate (namely Tween) is commonly used as an excipient for protein stabilization in biopharmaceutical formulations, but its ionization in liquid chromatography-electrospray ionization mass spectrometry can interfere with compound quantification. To address this, we employed a complexation-precipitation extraction method to reduce polysorbate content and quantify the analytes. The developed quantitative method for target NVOCs demonstrated high sensitivity (limit of quantification: 20 or 50 μg/L), accuracy (recoveries: 77.2 to 109.5 %) and precision (RSD ≤ 8.2 %). Overall, this established method will facilitate the evaluation of NVOC safety in drug products.
Collapse
Affiliation(s)
- Feifei Luo
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China
| | - Mengmeng Hao
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China
| | - Lei Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China.
| | - Yangguo Xie
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China
| | - Wei Hou
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China
| | - Hongya Wang
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China
| | - Zhongli Zhang
- Analytical Science Development, Henlius Biologics Co., Ltd, 5155 Guangfulin Road, Shanghai 201616, China.
| |
Collapse
|
3
|
Sun X, Zhuang J, Ma X, Tang Y, Ali MM, Lu Z, Zheng X, Du Z. Structure elucidation and risk assessment of degradation products in gamma irradiated rubber closures. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Sun X, Zheng X, Tang Y, Debrah AA, Du Z. Supercritical Fluid Extraction Combined with Ultrahigh Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry for Determination of Extractables to Evaluate Compatibility of Drugs with Rubber Closures. AAPS PharmSciTech 2021; 22:50. [PMID: 33458791 DOI: 10.1208/s12249-020-01907-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/18/2020] [Indexed: 01/22/2023] Open
Abstract
Biological activity and pharmacological efficacy of protein drugs may be affected by the compatibility between drug and packaging materials. The compatibility of rubber closures seal cap has become the focus of many studies due to its complicated formulation. Despite of the significance of the issue, currently, there is little available data about organic leachables in drugs which is also not comprehensive. Since the concentration of migrants in drug is usually low and the matrix is complicated, the establishment of overall profile of extractables is crucial for the characterization of leachables. Herein, the supercritical fluid extraction (SFE) method was used because of its great extraction capacity and efficiency for low to medium polar extractables in rubber stoppers. The SFE conditions were optimized by response surface methodology (RSM). Experimental results of the extract yield were close to the predicted values (R2 = 0.95). Then the extractables were qualitatively and quantitatively analyzed with ultrahigh performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS). Finally, risk assessment was made by comparing predicted exposure with injection permitted daily exposure (pPDE) limit or threshold recommended by threshold of toxicological concern (TTC). The results showed that there are many extractables such as glyceride, fatty acids and derivatives, antioxidants, and degradation products. Among them degradation products were in the majority and content of 17 substances exceeded corresponding limits. Considering their unknown toxicology, more experiments are therefore needed to provide information on their toxicology and risk assessment. The study provides a reference for the compatibility of drugs, and quality supervision of pharmaceuticals packaging.
Collapse
|
5
|
Ding J, Zhong Y, Li H, Chen Z, Yu W. Valorization of poly(ethylene)terephthalate wastes into nanoporous carbons for the adsorption of 1,3-diphenylguanidine from an aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/c9nj06367f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon prepared by using MgO templating and KOH activation has a better absorption capacity for DPG.
Collapse
Affiliation(s)
- Junwei Ding
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Yuan Zhong
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Hui Li
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Zhe Chen
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Wenlong Yu
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| |
Collapse
|
6
|
Woodward Z, Brooks P, Morris-Smith B, Wallis M, Ogbourne SM. Adsorption and Leachable Contamination of Flucloxacillin, Cyclosporin and Amiodarone Following Delivery Through an Intravenous Administration Set. Pharm Res 2018; 35:121. [PMID: 29675679 DOI: 10.1007/s11095-018-2409-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/13/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE Interactions between a pharmaceutical drug and its delivery device can result in changes in drug concentration and leachable contamination. Flucloxacillin, amiodarone and cyclosporin were investigated for drug concentration changes and leachable contamination after delivery through an intravenous administration set. METHODS Flucloxacillin, amiodarone and cyclosporin were delivered through an intravenous administration set and the eluate analysed by HPLC-UV and HPLC-MS. RESULTS The average recovery of flucloxacillin was 99.7% and no leachable compounds were identified. The average recovery of cyclosporin was 96.1%, which contrasts previous findings that have reported up to 50% loss of cyclosporin. This is likely due to the use of DEHP-free administration sets in this study, as adsorption of cyclosporin is linearly related to DEHP content. The average recovery of amiodarone was 91.5%. 5-hydroxymethylfurfural was identified in the amiodarone solution following delivery through the administration set as well as the 5% glucose solution used for delivery. CONCLUSIONS Drug/administration set interactions may modify pharmaceuticals during delivery. In this study, only 90% of the amiodarone was delivered through a generic administration set. Given the growing use of generic administration sets in hospital settings, validation of the suitability of their use is required to ensure patient safety and expected levels of efficacy.
Collapse
Affiliation(s)
- Zachary Woodward
- Genecology Research Centre, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia
| | - Peter Brooks
- Genecology Research Centre, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia
| | - Bernadette Morris-Smith
- Sunshine Coast Hospital Health Service, Sunshine Coast University Hospital, Sunshine Coast, Queensland, Australia
| | - Marianne Wallis
- Nursing and Midwifery Cluster for Research Excellence, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Steven M Ogbourne
- Genecology Research Centre, Faculty of Science, Health, Engineering and Education, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.
| |
Collapse
|