1
|
Patocka J, Wu W, Oleksak P, Jelinkova R, Nepovimova E, Spicanova L, Springerova P, Alomar S, Long M, Kuca K. Fentanyl and its derivatives: Pain-killers or man-killers? Heliyon 2024; 10:e28795. [PMID: 38644874 PMCID: PMC11031787 DOI: 10.1016/j.heliyon.2024.e28795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Fentanyl is a synthetic μ-opioid receptor agonist approved to treat severe to moderate pain with faster onset of action and about 100 times more potent than morphine. Over last two decades, abuse of fentanyl and its derivatives has an increased trend, globally. Currently, the United States (US) faces the most serious situation related to fentanyl overdose, commonly referred to as the opioid epidemic. Nowadays, fentanyl is considered as the number one cause of death for adults aged 18-45 in the US. Synthesis and derivatization of fentanyl is inexpensive to manufacture and easily achievable. Indeed, more than 1400 fentanyl derivatives have been described in the scientific literature and patents. In addition, accessibility and efficacy of fentanyl and its derivatives can play a potential role in misuse of these compounds as a chemical weapon. In this review, the properties, general pharmacology, and overdose death cases associated with fentanyl and selected derivatives are presented. Moreover, current opioid epidemic in the US, Moscow theatre hostage crisis, and potential misuse of fentanyl and its derivatives as a chemical weapon are disclosed.
Collapse
Affiliation(s)
- Jiri Patocka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Wenda Wu
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Romana Jelinkova
- NBC Defence Institute, University of Defence, 68201 Vyskov, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Lenka Spicanova
- Philosophical Faculty, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Pavlina Springerova
- Philosophical Faculty, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Suliman Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital in Hradec Kralove, Sokolska 581, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
2
|
Ren S, Liu C, Sun Y, Zhang Y, Ruan J, Fang L. Formulation Development and Molecular Mechanism Characterization of Long-Acting Patches of Asenapine for Efficient Delivery by Combining API-ILs Strategy and Controlled-Release Polymers. J Pharm Sci 2023; 112:1850-1862. [PMID: 36858176 DOI: 10.1016/j.xphs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
The objective of our study, which combined API-ILs strategy and controlled-release polymers, was to prepare a 72 h long-acting drug-in-adhesive patch for optimum delivery of asenapine (ASE). Special attention was paid to the permeation promotion mechanism and the controlled release behavior of ASE-ILs in pressure sensitive adhesives (PSA). Formulation factors were investigated by ex vivo transdermal experiments. The optimized patch was evaluated by pharmacokinetics study and skin irritation test. The obtained formulation was as follows, 15% w/w ASE-MA (about 1136 μg/cm2 ASE, 413 μg/cm2 MA), AACONH2 (Amide adhesive) as the matrix, 80 μm thickness, backing film of CoTran™ 9733. The optimized patch displayed satisfactory ex vivo and in vivo performance with Q 72 h of 620 ± 44 µg/cm2 and Fabs of 62.4%, which utilization rate (54.6%) was significantly higher than the control group (38.3%). By using the classical shake flask method, 13C NMR, DSC, and FTIR, the physicochemical properties and structure of ILs were characterized. log Do/w, ATR-FTIR, Raman, and molecular dynamics simulation results confirmed that ASE-MA (MA: 3-Methoxypropionic acid) had appropriate lipophilicity, and affected lipid fluidity as well as the conformation of keratin to improve the skin permeation. The FTIR, MDSC, rheology, and molecular docking results revealed that hydrogen bond (H-bond), were formed between ASE-MA and PSA, and the drug increased the molecular mobility of polymer chains. In summary, the 72 h long-acting patch of ASE was successfully prepared and it supplied a reference for the design of long-acting patches with ASE.
Collapse
Affiliation(s)
- Shoujun Ren
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yutong Sun
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Yang Zhang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Jiuheng Ruan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
3
|
Gilpin V, Surandhiran D, Scott C, Devine A, Cundell JH, Gill CIR, Pourshahidi LK, Davis J. Lasered Graphene Microheaters Modified with Phase-Change Composites: New Approach to Smart Patch Drug Delivery. MICROMACHINES 2022; 13:1132. [PMID: 35888949 PMCID: PMC9319399 DOI: 10.3390/mi13071132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/07/2023]
Abstract
The combination of paraffin wax and O,O'-bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol was used as a phase-change material (PCM) for the controlled delivery of curcumin. The PCM was combined with a graphene-based heater derived from the laser scribing of polyimide film. This assembly provides a new approach to a smart patch through which release can be electronically controlled, allowing repetitive dosing. Rather than relying on passive diffusion, delivery is induced and terminated through the controlled heating of the PCM with transfer only occurring when the PCM transitions from solid to liquid. The material properties of the device and release characteristics of the strategy under repetitive dosing are critically assessed. The delivery yield of curcumin was found to be 3.5 µg (4.5 µg/cm2) per 3 min thermal cycle.
Collapse
Affiliation(s)
- Victoria Gilpin
- School of Engineering, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK; (V.G.); (D.S.); (C.S.); (A.D.)
| | - Deetchaya Surandhiran
- School of Engineering, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK; (V.G.); (D.S.); (C.S.); (A.D.)
| | - Cameron Scott
- School of Engineering, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK; (V.G.); (D.S.); (C.S.); (A.D.)
| | - Amy Devine
- School of Engineering, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK; (V.G.); (D.S.); (C.S.); (A.D.)
| | - Jill H. Cundell
- School of Health Sciences, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK;
| | - Chris I. R. Gill
- School of Biomolecular Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK; (C.I.R.G.); (L.K.P.)
| | - L. Kirsty Pourshahidi
- School of Biomolecular Sciences, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK; (C.I.R.G.); (L.K.P.)
| | - James Davis
- School of Engineering, Ulster University, Jordanstown BT37 0QB, Northern Ireland, UK; (V.G.); (D.S.); (C.S.); (A.D.)
| |
Collapse
|
4
|
Davis DA, Martins PP, Zamloot MS, Kucera SA, Williams RO, Smyth HDC, Warnken ZN. Complex Drug Delivery Systems: Controlling Transdermal Permeation Rates with Multiple Active Pharmaceutical Ingredients. AAPS PharmSciTech 2020; 21:165. [PMID: 32500420 DOI: 10.1208/s12249-020-01682-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/08/2020] [Indexed: 11/30/2022] Open
Abstract
A transdermal drug delivery system (TDDS) is generally designed to deliver an active pharmaceutical ingredient (API) through the skin for systemic action. Permeation of an API through the skin is controlled by adjusting drug concentration, formulation composition, and patch design. A bilayer, drug-in-adhesive TDDS design may allow improved modulation of the drug release profile by facilitating varying layer thicknesses and drug spatial distribution across each layer. We hypothesized that the co-release of two fixed-dose APIs from a bilayer TDDS could be controlled by modifying spatial distribution and layer thickness while maintaining the same overall formulation composition. Franz cell diffusion studies demonstrated that three different bilayer patch designs, with different spatial distribution of drug and layer thicknesses, could modulate drug permeation and be compared with a reference single-layer monolith patch design. Compared with the monolith, decreased opioid antagonist permeation while maintaining fentanyl permeation could be achieved using a bilayer design. In addition, modulation of the drug spatial distribution and individual layer thicknesses, control of each drug's permeation could be independently achieved. Bilayer patch performance did not change over an 8-week period in accelerated stability storage conditions. In conclusion, modifying the patch design of a bilayer TDDS achieves an individualized permeation of each API while maintaining constant patch composition.
Collapse
|
5
|
Cordery SF, Husbands SM, Bailey CP, Guy RH, Delgado-Charro MB. Simultaneous Transdermal Delivery of Buprenorphine Hydrochloride and Naltrexone Hydrochloride by Iontophoresis. Mol Pharm 2019; 16:2808-2816. [PMID: 31070927 DOI: 10.1021/acs.molpharmaceut.9b00337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The opioids buprenorphine hydrochloride (BUP) and naltrexone hydrochloride (NTX) show promise as a combination treatment for addiction, but no means of delivering the two compounds in one medicine currently exist. In this paper, we report sufficient input rates of both these drugs from one iontophoretic transdermal drug delivery system. Experiments were performed using dermatomed pig skin mounted in glass side-bi-side cells. BUP and NTX were iontophoretically delivered together from the anode using direct constant current from Ag/AgCl electrodes. The transdermal drug fluxes and the masses of drugs in both the stratum corneum and the underlying epidermis/dermis were measured. The apparent electroosmotic flow was quantified using a neutral marker (acetaminophen). The effects of donor composition (drug concentration/molar fraction and pH), current density and profile, and the choice of receptor solution were assessed. Iontophoresis dramatically increased the flux of both drugs compared to passive control values. Target fluxes (calculated from literature clearance values and required therapeutic plasma concentrations) were greatly exceeded for NTX and were met for BUP. The latter accumulated in the skin and suppressed electroosmotic flow, inhibiting both its own flux and that of NTX. NTX, in turn, negatively influenced the flux of BUP via co-ion competition. Lowering current density by increasing the delivery area resulted in increased electroosmotic flow but did not significantly affect current-normalized drug fluxes. Delivering the drugs from both electrodes and reversing the polarity for every 2 h did not increase the flux of either compound. In summary, during iontophoresis, BUP and NTX inhibited each other's flux by two distinct mechanisms. While the more complex behavior of BUP complicates the optimization of this drug combination, iontophoresis nevertheless appears to be a feasible approach for the controlled codelivery of NTX and BUP through the skin.
Collapse
Affiliation(s)
- Sarah F Cordery
- Department of Pharmacy & Pharmacology , University of Bath , Bath BA2 7AY , U.K
| | - Stephen M Husbands
- Department of Pharmacy & Pharmacology , University of Bath , Bath BA2 7AY , U.K
| | | | - Richard H Guy
- Department of Pharmacy & Pharmacology , University of Bath , Bath BA2 7AY , U.K
| | | |
Collapse
|