1
|
Schulz M, Bogdahn M, Geissler S, Quodbach J. Transfer of a rational formulation and process development approach for 2D inks for pharmaceutical 2D and 3D printing. Int J Pharm X 2024; 7:100256. [PMID: 38882398 PMCID: PMC11176655 DOI: 10.1016/j.ijpx.2024.100256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/18/2024] Open
Abstract
The field of pharmaceutical 3D printing is growing over the past year, with Spitam® as the first 3D printed dosage form on the market. Showing the suitability of a binder jetting process for dosage forms. Although the development of inks for pharmaceutical field is more trail and error based, focusing on the Z-number as key parameter to judge the printability of an ink. To generate a more knowledgeable based ink development an approach from electronics printing was transferred to the field of pharmaceutical binder jetting. Therefore, a dimensionless space was used to investigate the limits of printability for the used Spectra S Class SL-128 piezo print head using solvent based inks. The jettability of inks could now be judged based on the capillary and weber number. Addition of different polymers into the ink narrowed the printable space and showed, that the ink development purely based on Z-numbers is not suitable to predict printability. Two possible ink candidates were developed based on the droplet momentum which showed huge differences in process stability, indicating that the used polymer type and concentration has a high influence on printability and process stability. Based on the study a more knowledgeable based ink design for the field of pharmaceutical binder jetting is proposed, to shift the ink design to a more knowledgeable based and process-oriented approach.
Collapse
Affiliation(s)
- Maximilian Schulz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany
| | - Malte Bogdahn
- Merck Healthcare KGaA, Frankfurter Str. 250, Darmstadt, Germany
| | - Simon Geissler
- Merck Healthcare KGaA, Frankfurter Str. 250, Darmstadt, Germany
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany
- Division of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University,Universiteitsweg, 99, Utrecht, the Netherlands
| |
Collapse
|
2
|
Carou-Senra P, Rodríguez-Pombo L, Awad A, Basit AW, Alvarez-Lorenzo C, Goyanes A. Inkjet Printing of Pharmaceuticals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309164. [PMID: 37946604 DOI: 10.1002/adma.202309164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Inkjet printing (IJP) is an additive manufacturing process that selectively deposits ink materials, layer-by-layer, to create 3D objects or 2D patterns with precise control over their structure and composition. This technology has emerged as an attractive and versatile approach to address the ever-evolving demands of personalized medicine in the healthcare industry. Although originally developed for nonhealthcare applications, IJP harnesses the potential of pharma-inks, which are meticulously formulated inks containing drugs and pharmaceutical excipients. Delving into the formulation and components of pharma-inks, the key to precise and adaptable material deposition enabled by IJP is unraveled. The review extends its focus to substrate materials, including paper, films, foams, lenses, and 3D-printed materials, showcasing their diverse advantages, while exploring a wide spectrum of therapeutic applications. Additionally, the potential benefits of hardware and software improvements, along with artificial intelligence integration, are discussed to enhance IJP's precision and efficiency. Embracing these advancements, IJP holds immense potential to reshape traditional medicine manufacturing processes, ushering in an era of medical precision. However, further exploration and optimization are needed to fully utilize IJP's healthcare capabilities. As researchers push the boundaries of IJP, the vision of patient-specific treatment is on the horizon of becoming a tangible reality.
Collapse
Affiliation(s)
- Paola Carou-Senra
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Lucía Rodríguez-Pombo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Atheer Awad
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, College Lane, Hatfield, AL10 9AB, UK
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alvaro Goyanes
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
- FABRX Ltd., Henwood House, Henwood, Ashford, Kent, TN24 8DH, UK
- FABRX Artificial Intelligence, Carretera de Escairón 14, Currelos (O Saviñao), CP 27543, Spain
| |
Collapse
|
3
|
Krishnan PD, Durai RD, Veluri S, B Narayanan VH. Semisolid extrusion 3D printing of Dolutegravir-Chitosan nanoparticles laden polymeric buccal films: personalized solution for pediatric treatment. Biomed Mater 2024; 19:025046. [PMID: 38364288 DOI: 10.1088/1748-605x/ad2a3a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
In this work, the semi solid extrusion 3D printing process was utilized to incorporate anti-HIV drug Dolutegravir and its nanoparticles into the buccal film (BF) that was fabricated using the developed polymer ink. The composite made of polyvinyl alcohol (PVA) and sodium alginate was processed into a 3D printing polymer ink with optimum viscosity (9587 ± 219 cP) needed for the seamless extrusion through the nozzle of the 3D printer. The formulated BFs were assessed for its physical properties like weight (0.414 ± 0.3 g), thickness (1.54 ± 0.02 mm), swelling index (18.5 ± 0.91%), and mucoadhesiveness strength (0.165 ± 0.09 N) etc, The structural integrity and the surface morphology of the developed BFs were investigated by scanning electron microscopy analysis. The chemical stability and the solid-state nature of the drug in the BFs were assessed by Fourier transform infrared and x-ray diffraction analysis respectively. Further the BFs were assessed for drug dissolutionin-vitroandex-vivo, to study the effect of polymer composition and printing condition on the dissolution profile of the drug in the simulated salivary fluid. The results demonstrated that the developed PVA based polymer ink for 3D printing utilizing pressure is a versatile approach in the context of manufacturing mucoadhesive BFs customized in terms of shape and the amount of drug loaded.
Collapse
Affiliation(s)
- Priya Dharshini Krishnan
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Ramya Devi Durai
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
| | - Sivanjineyulu Veluri
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Vedha Hari B Narayanan
- Pharmaceutical Technology Laboratory, ASK-II, Lab No: 214, SASTRA Deemed-to-be-University, Thanjavur 613401, Tamil Nadu, India
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
4
|
Sterle Zorec B. Two-dimensional printing of nanoparticles as a promising therapeutic method for personalized drug administration. Pharm Dev Technol 2023; 28:826-842. [PMID: 37788221 DOI: 10.1080/10837450.2023.2264920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
The necessity for personalized patient treatment has drastically increased since the contribution of genes to the differences in physiological and metabolic state of individuals have been exposed. Different approaches have been considered so far in order to satisfy all of the diversities in patient needs, yet none of them have been fully implemented thus far. In this framework, various types of 2D printing technologies have been identified to offer some potential solutions for personalized medication, which development is increasing rapidly. Accurate drug-on-demand deposition, the possibility of consuming multiple drug substances in one product and adjusting individual drug concentration are just some of the few benefits over existing bulk pharmaceuticals manufacture, which printing technologies brings. With inclusion of nanotechnology by printing nanoparticles from its dispersions some further opportunities such as controlled and stimuli-responsive drug release or targeted and dose depending on drug delivery were highlighted. Yet, there are still some challenges to be solved before such products can reach the pharmaceutical market. In those terms mostly chemical, physical as well as microbiological stability concerns should be answered, with which 2D printing technology could meet the treatment needs of every individual and fulfill some existing drawbacks of large-scale batch production of pharmaceuticals we possess today.
Collapse
Affiliation(s)
- Barbara Sterle Zorec
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Alogla A. Enhancing antioxidant delivery through 3D printing: a pathway to advanced therapeutic strategies. Front Bioeng Biotechnol 2023; 11:1256361. [PMID: 37860625 PMCID: PMC10583562 DOI: 10.3389/fbioe.2023.1256361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
The rapid advancement of 3D printing has transformed industries, including medicine and pharmaceuticals. Integrating antioxidants into 3D-printed structures offers promising therapeutic strategies for enhanced antioxidant delivery. This review explores the synergistic relationship between 3D printing and antioxidants, focusing on the design and fabrication of antioxidant-loaded constructs. Incorporating antioxidants into 3D-printed matrices enables controlled release and localized delivery, improving efficacy while minimizing side effects. Customization of physical and chemical properties allows tailoring of antioxidant release kinetics, distribution, and degradation profiles. Encapsulation techniques such as direct mixing, coating, and encapsulation are discussed. Material selection, printing parameters, and post-processing methods significantly influence antioxidant release kinetics and stability. Applications include wound healing, tissue regeneration, drug delivery, and personalized medicine. This comprehensive review aims to provide insights into 3D printing-assisted antioxidant delivery systems, facilitating advancements in medicine and improved patient outcomes for oxidative stress-related disorders.
Collapse
Affiliation(s)
- Ageel Alogla
- Industrial Engineering Department, College of Engineering (AlQunfudhah), Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
6
|
Batista P, Pintado M, Oliveira-Silva P. Overview about Oral Films in Mental Disorders. Pharmaceuticals (Basel) 2023; 16:1063. [PMID: 37630975 PMCID: PMC10458751 DOI: 10.3390/ph16081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Mental disorders are increasing worldwide, and efforts have been developed by multidisciplinary research groups to combine knowledge from different areas such as psychology, neuroscience, medicine, and biotechnology to develop strategies and products to promote the prevention of mental disorders. Excessive antipsychotic consumption is a public health problem, and innovative strategies must be devised. The development of innovative and, if possible, natural products is one of the strategies to combat this public health problem. Oral films are recent delivery systems that have been developed with several advantages that should be applied in this area. This review intends to draw attention to these new dosage forms of drugs and bioactive molecules pertinent to the field of mental health prevention and therapy and to the need for regulatory guidelines to ensure their quality and safety. This is a critical overview about strengths, weaknesses, opportunities, and threats related to oral film implementation in mental disorder treatment.
Collapse
Affiliation(s)
- Patrícia Batista
- Human Neurobehavioral Laboratory, Research Centre for Human Development, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Laboratório Associado, CBQF—Centro de Biotecnologia e Química Fina, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| | - Patrícia Oliveira-Silva
- Human Neurobehavioral Laboratory, Research Centre for Human Development, Universidade Católica Portuguesa, Rua Diogo Botelho, 1327, 4169-005 Porto, Portugal
| |
Collapse
|
7
|
Lammerding LC, Breitkreutz J. Technical evaluation of precisely manufacturing customized microneedle array patches via inkjet drug printing. Int J Pharm 2023:123173. [PMID: 37369288 DOI: 10.1016/j.ijpharm.2023.123173] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Dissolvable microneedle array patches offer the possibility to deliver active pharmaceutical ingredients bypassing the gastrointestinal tract by piercing the stratum corneum. Usually, microneedles are produced by micromolding but this often results in a waste of active pharmaceutical ingredient. In this study, inkjet printing was investigated as a manufacturing technology for dissolvable microneedle array patches. A suitable ink for the printing process was developed for lisinopril as a peptidomimetic model drug. The printing process was optimized. Povidone was found to be a promising polymer for the precise and smooth production of dissolvable microneedles. Different patterns of microneedles and blank spaces were successfully printed into one microneedle array patch. It was possible to exactly define the cavities to be filled. The amount of lisinopril was precisely adjusted between 95.14 and 99.26 % of the target dose. The applied method demonstrated the precise dosage opportunities of the inkjet printing methodology for customization and drug waste reduction. Inkjet printing could be used as a precise manufacturing method for personalized microneedle array patches as well as to combine incompatible drug substances in a single patch.
Collapse
Affiliation(s)
- Lukas C Lammerding
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Jörg Breitkreutz
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
8
|
Alqahtani AA, Ahmed MM, Mohammed AA, Ahmad J. 3D Printed Pharmaceutical Systems for Personalized Treatment in Metabolic Syndrome. Pharmaceutics 2023; 15:pharmaceutics15041152. [PMID: 37111638 PMCID: PMC10144629 DOI: 10.3390/pharmaceutics15041152] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The current healthcare system is widely based on the concept of “one size fit for all”, which emphasizes treating a disease by prescribing the same drug to all patients with equivalent doses and dosing frequency. This medical treatment scenario has shown varied responses with either no or weak pharmacological effects and exaggerated adverse reactions preceded by more patient complications. The hitches to the concept of “one size fits all” have devoted the attention of many researchers to unlocking the concept of personalized medicine (PM). PM delivers customized therapy with the highest safety margin for an individual patient’s needs. PM has the potential to revolutionize the current healthcare system and pave the way to alter drug choices and doses according to a patient’s clinical responses, providing physicians with the best treatment outcomes. The 3D printing techniques is a solid-form fabrication method whereby successive layers of materials based on computer-aided designs were deposited to form 3D structures. The 3D printed formulation achieves PM goals by delivering the desired dose according to patient needs and drug release profile to achieve a patient’s personal therapeutic and nutritional needs. This pre-designed drug release profile attains optimum absorption and distribution, exhibiting maximum efficacy and safety profiles. This review aims to focus on the role of the 3D printing technique as a promising tool to design PM in metabolic syndrome (MS).
Collapse
Affiliation(s)
- Abdulsalam A. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
9
|
Nair VV, Cabrera P, Ramírez-Lecaros C, Jara MO, Brayden DJ, Morales JO. Buccal delivery of small molecules and biologics: Of mucoadhesive polymers, films, and nanoparticles - An update. Int J Pharm 2023; 636:122789. [PMID: 36868332 DOI: 10.1016/j.ijpharm.2023.122789] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/08/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023]
Abstract
Buccal delivery of small and large molecules is an attractive route of administration that has been studied extensively over the past few decades. This route bypasses first-pass metabolism and can be used to deliver therapeutics directly to systemic circulation. Moreover, buccal films are efficient dosage forms for drug delivery due to their simplicity, portability, and patient comfort. Films have traditionally been formulated using conventional techniques, including hot-melt extrusion and solvent casting. However, newer methods are now being exploited to improve the delivery of small molecules and biologics. This review discusses recent advances in buccal film manufacturing, using the latest technologies, such as 2D and 3D printing, electrospraying, and electrospinning. This review also focuses on the excipients used in the preparation of these films, with emphasis on mucoadhesive polymers and plasticizers. Along with advances in manufacturing technology, newer analytical tools have also been used for the assessment of permeation of the active agents across the buccal mucosa, the most critical biological barrier and limiting factor of this route. Additionally, preclinical and clinical trial challenges are discussed, and some small molecule products already on the market are explored.
Collapse
Affiliation(s)
- Varsha V Nair
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Pablo Cabrera
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Independencia, Santiago 8380494, Chile; Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | | | - Miguel O Jara
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - David J Brayden
- UCD School of Veterinary Medicine and UCD Conway Institute, Belfield, Dublin D04 V1W8, Ireland
| | - Javier O Morales
- Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, Independencia, Santiago 8380494, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago 8380492, Chile; Drug Delivery Laboratory, Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile.
| |
Collapse
|
10
|
Orodispersible films — Pharmaceutical development for improved performance: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
Chachlioutaki K, Karavasili C, Mavrokefalou EE, Gioumouxouzis CI, Ritzoulis C, Fatouros DG. Quality control evaluation of paediatric chocolate-based dosage forms: 3D printing vs mold-casting method. Int J Pharm 2022; 624:121991. [PMID: 35809833 DOI: 10.1016/j.ijpharm.2022.121991] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Pharmaceutical compounding is a core activity in the preparation of patient-specific dosage forms. In the current study we aimed to investigate whether 3D printing could be employed for the preparation of pediatric-friendly personalized dosage forms that fulfil the acceptance criteria specified in the pharmacopoeias for conventional dosage forms. We then compared the 3D printed dosage forms with the same formulations prepared with mold-casting, a method frequently applied during pharmaceutical compounding. The molded dosage forms failed to pass most of the quality control tests, including the mass uniformity and content uniformity tests, as well as dose accuracy, contrary to the 3D printed, which not only passed all tests but also enabled precision overdose adjustment. Hence, 3D printing of chocolate-based dosage forms may effectively serve as an acceptable alternative method to mold casting in compounding patient-specific medication at the point-of-care.
Collapse
Affiliation(s)
- Konstantina Chachlioutaki
- Department of Pharmacy, Division of Pharmaceutical Technology, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124, Greece
| | - Christina Karavasili
- Department of Pharmacy, Division of Pharmaceutical Technology, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124, Greece.
| | - Eleftheria-Eleni Mavrokefalou
- Department of Pharmacy, Division of Pharmaceutical Technology, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124, Greece
| | - Christos I Gioumouxouzis
- Department of Pharmacy, Division of Pharmaceutical Technology, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Department of Pharmacy, Division of Pharmaceutical Technology, Faculty of Health Sciences, Aristotle University of Thessaloniki 54124, Greece
| |
Collapse
|
12
|
Morath B, Sauer S, Zaradzki M, Wagner A. TEMPORARY REMOVAL: Orodispersible films – Recent developments and new applications in drug delivery and therapy. Biochem Pharmacol 2022; 200:115036. [DOI: 10.1016/j.bcp.2022.115036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
|
13
|
Printing Drugs onto Nails for Effective Treatment of Onychomycosis. Pharmaceutics 2022; 14:pharmaceutics14020448. [PMID: 35214182 PMCID: PMC8879958 DOI: 10.3390/pharmaceutics14020448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
Inkjet printing (IJP) is an emerging technology for the precision dosing of medicines. We report, for the first time, the printing of the antifungal drug terbinafine hydrochloride directly onto nails for the treatment of onychomycosis. A commercial cosmetic nail printer was modified by removing the ink from the cartridge and replacing it with an in-house prepared drug-loaded ink. The drug-loaded ink was designed so that it was comparable to the commercial ink for key printability properties. Linear drug dosing was shown by changing the lightness of the colour selected for printing (R2 = 0.977) and by printing multiple times (R2 = 0.989). The drug loads were measured for heart (271 µg), world (205 µg) and football (133 µg) shapes. A disc diffusion assay against Trpytophan rubrum showed inhibition of fungal growth with printed-on discs. In vitro testing with human nails showed substantial inhibition with printed-on nails. Hence, this is the first study to demonstrate the ability of a nail printer for drug delivery, thereby confirming its potential for onychomycosis treatment.
Collapse
|
14
|
Lafeber I, Ruijgrok EJ, Guchelaar HJ, Schimmel KJM. 3D Printing of Pediatric Medication: The End of Bad Tasting Oral Liquids?-A Scoping Review. Pharmaceutics 2022; 14:416. [PMID: 35214148 PMCID: PMC8880000 DOI: 10.3390/pharmaceutics14020416] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
3D printing of pediatric-centered drug formulations can provide suitable alternatives to current treatment options, though further research is still warranted for successful clinical implementation of these innovative drug products. Extensive research has been conducted on the compliance of 3D-printed drug products to a pediatric quality target product profile. The 3D-printed tablets were of particular interest in providing superior dosing and release profile similarity compared to conventional drug manipulation and compounding methods, such as oral liquids. In the future, acceptance of 3D-printed tablets in the pediatric patient population might be better than current treatments due to improved palatability. Further research should focus on expanding clinical knowledge, providing regulatory guidance and expansion of the product range, including dosage form possibilities. Moreover, it should enable the use of diverse good manufacturing practice (GMP)-ready 3D printing techniques for the production of various drug products for the pediatric patient population.
Collapse
Affiliation(s)
- Iris Lafeber
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| | - Elisabeth J. Ruijgrok
- Department of Hospital Pharmacy, Erasmus MC—Sophia Children’s Hospital, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| | - Kirsten J. M. Schimmel
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; (I.L.); (H.-J.G.)
| |
Collapse
|
15
|
O’Reilly CS, Elbadawi M, Desai N, Gaisford S, Basit AW, Orlu M. Machine Learning and Machine Vision Accelerate 3D Printed Orodispersible Film Development. Pharmaceutics 2021; 13:2187. [PMID: 34959468 PMCID: PMC8706962 DOI: 10.3390/pharmaceutics13122187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Orodispersible films (ODFs) are an attractive delivery system for a myriad of clinical applications and possess both large economical and clinical rewards. However, the manufacturing of ODFs does not adhere to contemporary paradigms of personalised, on-demand medicine, nor sustainable manufacturing. To address these shortcomings, both three-dimensional (3D) printing and machine learning (ML) were employed to provide on-demand manufacturing and quality control checks of ODFs. Direct ink writing (DIW) was able to fabricate complex ODF shapes, with thicknesses of less than 100 µm. ML algorithms were explored to classify the ODFs according to their active ingredient, by using their near-infrared (NIR) spectrums. A supervised model of linear discriminant analysis was found to provide 100% accuracy in classifying ODFs. A subsequent partial least square algorithm was applied to verify the dose, where a coefficient of determination of 0.96, 0.99 and 0.98 was obtained for ODFs of paracetamol, caffeine, and theophylline, respectively. Therefore, it was concluded that the combination of 3D printing, NIR and ML can result in a rapid production and verification of ODFs. Additionally, a machine vision tool was used to automate the in vitro testing. These collective digital technologies demonstrate the potential to automate the ODF workflow.
Collapse
Affiliation(s)
| | | | | | | | - Abdul W. Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK (M.E.); (N.D.); (S.G.)
| | - Mine Orlu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29–39 Brunswick Square, London WC1N 1AX, UK (M.E.); (N.D.); (S.G.)
| |
Collapse
|
16
|
3D Printing in medicine: Technology overview and drug delivery applications. ANNALS OF 3D PRINTED MEDICINE 2021. [DOI: 10.1016/j.stlm.2021.100037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Melnyk LA, Oyewumi MO. Integration of 3D printing technology in pharmaceutical compounding: Progress, prospects, and challenges. ANNALS OF 3D PRINTED MEDICINE 2021. [DOI: 10.1016/j.stlm.2021.100035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
18
|
Kumar Gupta D, Ali MH, Ali A, Jain P, Anwer MK, Iqbal Z, Mirza MA. 3D printing technology in healthcare: applications, regulatory understanding, IP repository and clinical trial status. J Drug Target 2021; 30:131-150. [PMID: 34047223 DOI: 10.1080/1061186x.2021.1935973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass consumerization of three-dimensional (3D) printing innovation has revolutionised admittance of 3D-printing in an expansive scope of ventures. When utilised predominantly for industrial manufacturing, 3D-printing strategies have rapidly attained acquaintance in different parts of health care industry. 3D-printing is a moderately new technology that has discovered promising applications in the medication conveyance and clinical areas. This review intends to explore different parts of 3D- printing innovation concerning pharmaceutical and clinical applications. Review on pharmaceutical products like tablets, caplets, films, polypills, microdots, biodegradable patches, medical devices (uterine and subcutaneous), patient specific implants, cardiovascular stents, etc. and prosthetics/anatomical structures, surgical models, organs and tissues created utilising 3D-printing is being presented. In addition, the regulatory understanding and current IP and clinical trial status pertaining to 3D fabricated products/medical applications have also been funnelled, garnering information from different web portals of regulatory agencies and databases. It is additionally certain that for such new innovations, there would be difficulties and questions before these are acknowledged as protected and viable. The circumstance demands purposeful and wary endeavours to acquire regulations which would at last prompt the accomplishment of this progressive innovation, thus various regulatory challenges faced have been conscientiously discussed.
Collapse
Affiliation(s)
- Dipak Kumar Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Humair Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
19
|
He M, Zhu L, Yang N, Li H, Yang Q. Recent advances of oral film as platform for drug delivery. Int J Pharm 2021; 604:120759. [PMID: 34098053 DOI: 10.1016/j.ijpharm.2021.120759] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022]
Abstract
Orally drug delivery film has received extensive interest duo to a distinct set of its advantageous properties compared to the traditional orally administered dosages, including faster rate of drug absorption, higher bioavailability and better patient compliance for children and elders with swallowing deficiencies. In particular, its potential capacity of delivering proteins and peptides has further attracted great attention. Lately, tremendous advances have been made in designing and developing both novel mucoadhesive films and orodispersible films to fulfill specific accomplishments of drug delivery. This review aims to summarize those newly developed oral films, discussing their formulation strategies, manufacturing methods as well as advantages and limitations thereof. Conclusions and future perspectives are also provided in brief.
Collapse
Affiliation(s)
- Mengning He
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingmeng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ni Yang
- School of Mathematics, University of Bristol, Bristol BS8 1QU, UK
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China; Ningbo Wesdon Powder Pharma Coatings Co. Ltd., Ningbo 315042, China.
| |
Collapse
|
20
|
Amekyeh H, Tarlochan F, Billa N. Practicality of 3D Printed Personalized Medicines in Therapeutics. Front Pharmacol 2021; 12:646836. [PMID: 33912058 PMCID: PMC8072378 DOI: 10.3389/fphar.2021.646836] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Technological advances in science over the past century have paved the way for remedial treatment outcomes in various diseases. Pharmacogenomic predispositions, the emergence of multidrug resistance, medication and formulation errors contribute significantly to patient mortality. The concept of "personalized" or "precision" medicines provides a window to addressing these issues and hence reducing mortality. The emergence of three-dimensional printing of medicines over the past decades has generated interests in therapeutics and dispensing, whereby the provisions of personalized medicines can be built within the framework of producing medicines at dispensaries or pharmacies. This plan is a good replacement of the fit-for-all modality in conventional therapeutics, where clinicians are constrained to prescribe pre-formulated dose units available on the market. However, three-dimension printing of personalized medicines faces several hurdles, but these are not insurmountable. In this review, we explore the relevance of personalized medicines in therapeutics and how three-dimensional printing makes a good fit in current gaps within conventional therapeutics in order to secure an effective implementation of personalized medicines. We also explore the deployment of three-dimensional printing of personalized medicines based on practical, legal and regulatory provisions.
Collapse
Affiliation(s)
- Hilda Amekyeh
- Department of Pharmaceutics, School of Pharmacy, University of Health and Allied Sciences, Ho, Ghana
| | | | - Nashiru Billa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Gupta MS, Kumar TP, Davidson R, Kuppu GR, Pathak K, Gowda DV. Printing Methods in the Production of Orodispersible Films. AAPS PharmSciTech 2021; 22:129. [PMID: 33835297 DOI: 10.1208/s12249-021-01990-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/11/2021] [Indexed: 01/24/2023] Open
Abstract
Orodispersible film (ODF) formulations are promising and progressive drug delivery systems that are widely accepted by subjects across all the age groups. They are traditionally fabricated using the most popular yet conventional method called solvent casting method. The most modern and evolving method is based on printing technologies and such printed products are generally termed as printed orodispersible films (POFs). This modern technology is well suited to fabricate ODFs across different settings (laboratory or industrial) in general and in a pharmacy setting in particular. The present review provides an overview of various printing methods employed in fabricating POFs. Particularly, it provides insight about preparing POFs using inkjet, flexographic, and three-dimensional printing (3DP) or additive manufacturing techniques like filament deposition modeling, hot-melt ram extrusion 3DP, and semisolid extrusion 3DP methods. Additionally, the review is focused on patenting trends in POFs using ESPACENET, a European Patent Office search database. Finally, the review captures future market potential of 3DP in general and ODFs market potential in particular.
Collapse
|
22
|
Turković E, Vasiljević I, Drašković M, Obradović N, Vasiljević D, Parojčić J. An Investigation into Mechanical Properties and Printability of Potential Substrates for Inkjet Printing of Orodispersible Films. Pharmaceutics 2021; 13:pharmaceutics13040468. [PMID: 33808374 PMCID: PMC8066070 DOI: 10.3390/pharmaceutics13040468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022] Open
Abstract
Inkjet printing is novel approach in drug manufacturing that enables dispensing precise volumes of ink onto substrates. Optimal substrate properties including suitable mechanical characteristic are recognized as crucial to achieve desired dosage form performance upon administration. Identification of relevant quality attributes and their quantification is subject of intensive scientific research. The aim of this work was to explore applicability of different materials as printing substrates and explore contribution of the investigated substrate properties to its printability. Substrates were characterized with regards to uniformity, porosity, disintegration time, mechanical properties and drug dissolution. Experimentally obtained values were mathematically transformed and the obtained results were presented as relevant radar charts. It was shown that structurally different substrates may be employed for orodispersible films inkjet printing. Main disadvantage of single-polymer films was low drug load, and their printability was dependent on film flexibility and mechanical strength. Structured orodispersible film templates exhibited favorable mechanical properties and drug load capacity. Wafer edible sheets were characterized with high mechanical resistance and brittleness which somewhat diminished printability, but did not hinder high drug load. Obtained results provide insight into application of different materials as printing substrates and contribute to understanding of substrate properties which can affect printability.
Collapse
Affiliation(s)
- Erna Turković
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (I.V.); (M.D.); (D.V.); (J.P.)
- Correspondence:
| | - Ivana Vasiljević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (I.V.); (M.D.); (D.V.); (J.P.)
| | - Milica Drašković
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (I.V.); (M.D.); (D.V.); (J.P.)
| | - Nataša Obradović
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Dragana Vasiljević
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (I.V.); (M.D.); (D.V.); (J.P.)
| | - Jelena Parojčić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (I.V.); (M.D.); (D.V.); (J.P.)
| |
Collapse
|
23
|
Chou WH, Gamboa A, Morales JO. Inkjet printing of small molecules, biologics, and nanoparticles. Int J Pharm 2021; 600:120462. [PMID: 33711471 DOI: 10.1016/j.ijpharm.2021.120462] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/02/2023]
Abstract
During the last decades, inkjet printing has emerged as a novel technology and attracted the attention of the pharmaceutical industry, as a potential method for manufacturing personalized and customizable dosage forms to deliver drugs. Commonly, the desired drug is dissolved or dispersed within the ink and then dispensed in various dosage forms. Using this approach, several studies have been conducted to load hydrophilic or poorly water-soluble small molecules onto the surface of different solid substrates, including films, tablets, microneedles, and smart data-enriched edible pharmaceuticals, using two-dimensional and three-dimensional inkjet printing methods, with high dose accuracy and reproducibility. Furthermore, biological drugs, such as peptides, proteins, growth factors, and plasmids, have also been evaluated with positive results, eliciting the expected biological response; nonetheless, minor changes in the structure of these compounds with significant impaired activity cannot be dismissed. Another strategy using inkjet printing is to disperse drug-loaded nanoscale particles in the ink liquid, such as nanosuspension, nanocomplexes, or nanoparticles, which have been explored with promising results. Although these favorable outcomes, the proper selection of ink constituents and the inkjet printer, the correlation of printing cycles and effectively printed doses, the stability studies of drugs within the ink and the optimal analysis of samples before and after the printing process are the main challenges for inkjet printing, and therefore, this review analyzes these aspects to assess the body of current literature and help to guide future investigations on this field.
Collapse
Affiliation(s)
- Wai-Houng Chou
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile
| | - Alexander Gamboa
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile; Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avenida Ejército 146, Santiago 8320000, Chile
| | - Javier O Morales
- Department of Pharmaceutical Science and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile; Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile; Center of New Drugs for Hypertension (CENDHY), Santiago 8380494, Chile.
| |
Collapse
|
24
|
Inoue M, Kiefer O, Fischer B, Breitkreutz J. Raman monitoring of semi-continuously manufactured orodispersible films for individualized dosing. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Vaz VM, Kumar L. 3D Printing as a Promising Tool in Personalized Medicine. AAPS PharmSciTech 2021; 22:49. [PMID: 33458797 PMCID: PMC7811988 DOI: 10.1208/s12249-020-01905-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Personalized medicine has the potential to revolutionize the healthcare sector, its goal being to tailor medication to a particular individual by taking into consideration the physiology, drug response, and genetic profile of that individual. There are many technologies emerging to cause this paradigm shift from the conventional "one size fits all" to personalized medicine, the major one being three-dimensional (3D) printing. 3D printing involves the establishment of a three-dimensional object, in a layer upon layer manner using various computer software. 3D printing can be used to construct a wide variety of pharmaceutical dosage forms varying in shape, release profile, and drug combination. The major technological platforms of 3D printing researched on in the pharmaceutical sector include inkjet printing, binder jetting, fused filament fabrication, selective laser sintering, stereolithography, and pressure-assisted microsyringe. A possible future application of this technology could be in a clinical setting, where prescriptions could be dispensed based on individual needs. This manuscript points out the various 3D printing technologies and their applications in research for fabricating pharmaceutical products, along with their pros and cons. It also presents its potential in personalized medicine by individualizing the dose, release profiles, and incorporating multiple drugs in a polypill. An insight on how it tends to various populations is also provided. An approach of how it can be used in a clinical setting is also highlighted. Also, various challenges faced are pointed out, which must be overcome for the success of this technology in personalized medicine.
Collapse
|
26
|
Durga Prasad Reddy R, Sharma V. Additive manufacturing in drug delivery applications: A review. Int J Pharm 2020; 589:119820. [DOI: 10.1016/j.ijpharm.2020.119820] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
|
27
|
Kiefer O, Breitkreutz J. Comparative investigations on key factors and print head designs for pharmaceutical inkjet printing. Int J Pharm 2020; 586:119561. [DOI: 10.1016/j.ijpharm.2020.119561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
|
28
|
Gupta MS, Kumar TP. Characterization of Orodispersible Films: An Overview of Methods and Introduction to a New Disintegration Test Apparatus Using LDR - LED Sensors. J Pharm Sci 2020; 109:2925-2942. [PMID: 32565356 DOI: 10.1016/j.xphs.2020.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Orodispersible Film (ODF) is a promising and progressive dosage form that offers exceptional drug delivery benefits to patients. Indeed, they are the most transformational alternatives to traditional/conventional dosage forms such as tablets and capsules. ODFs are portable and highly comfortable for self-administration by patients with swallowing problems. The key to gain end-user acceptance is to have an ODF with outstanding quality. Poor quality may lead to choking or spitting, accordingly leading to a lack of compliance. It is vital to employ suitable experimental methodologies that facilitate characterization or determination of the quality of ODF. Nonetheless, there are no standard techniques prescribed in official compendia of any country. But, there is a consensus in the thin-film research community about the characterization techniques that one relies on deciding the quality of an ODF. We review various experimental techniques and highlight its importance in determining the performance and quality of an ODF. We provide a relatively novel and inventive disintegration test apparatus, which works using 'Light Dependent Resistor (LDR) and Light Emitting Diode (LED) sensors' for clear and accurate determination of start and end disintegration time of an ODF.
Collapse
Affiliation(s)
- Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, India.
| | - Tegginamath Pramod Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570 015, India
| |
Collapse
|
29
|
Samiei N. Recent trends on applications of 3D printing technology on the design and manufacture of pharmaceutical oral formulation: a mini review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00040-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
30
|
Jennotte O, Koch N, Lechanteur A, Evrard B. Three-dimensional printing technology as a promising tool in bioavailability enhancement of poorly water-soluble molecules: A review. Int J Pharm 2020; 580:119200. [PMID: 32156531 DOI: 10.1016/j.ijpharm.2020.119200] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
Poor aqueous solubility of active pharmaceutical ingredients (API) is nowadays a major issue in the pharmaceutical field. The combinatorial chemistry provides more and more API with a great therapeutic potential, but with a low aqueous solubility. Among the strategies to overcome this drawback, the use of amorphous solid dispersions (ASD), as well as the increase of surface area, is widely used. The three dimensional (3D) printing technologies appear to be innovative tools allowing the construction of any unconventional forms with different composition, structure or infill; especially by using ASD materials. This review aims to deliver notions about the different 3D printing techniques found in the literature to improve aqueous solubility of several API, namely nozzle-based method, inkjet methods and laser- based methods, as well as guide formulator in terms of formulation parameters that have to be optimized to allow the most suitable impression of innovative medicines.
Collapse
Affiliation(s)
- Olivier Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium.
| | - Nathan Koch
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium.
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| |
Collapse
|
31
|
Visser JC, Wibier L, Kiefer O, Orlu M, Breitkreutz J, Woerdenbag HJ, Taxis K. A Pediatrics Utilization Study in The Netherlands to Identify Active Pharmaceutical Ingredients Suitable for Inkjet Printing on Orodispersible Films. Pharmaceutics 2020; 12:pharmaceutics12020164. [PMID: 32079184 PMCID: PMC7076503 DOI: 10.3390/pharmaceutics12020164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 01/13/2023] Open
Abstract
Background: The use of medication in pediatrics, children aged 0–5 years, was explored so as to identify active pharmaceutical ingredients (APIs) suitable for inkjet printing on a plain orodispersible film (ODF) formulation in a pharmacy. Methods: The database IADB.nl, containing pharmacy dispensing data from community pharmacies in the Netherlands, was used to explore medication use in the age group of 0–5 years old, based on the Anatomical Therapeutic Chemical classification code (ATC code). Subsequently, a stepwise approach with four exclusion steps was used to identify the drug candidates for ODF formulation development. Results: there were 612 Active Pharmaceutical Ingredients (APIs) that were dispensed to the target group, mostly antibiotics. Of the APIs, 221 were not registered for pediatrics, but were used off-label. After the exclusion steps, 34 APIs were examined regarding their suitability for inkjet printing. Almost all of the APIs were sparingly water soluble to practically insoluble. Conclusion: Pharmaceutical inkjet printing is a suitable new technique for ODF manufacturing for pediatric application, however the maximal printed dose as found in the literature remained low. From the selected candidates, only montelukast shows a sufficiently high water-solubility to prepare a water-based solution. To achieve higher drug loads per ODF is ambitious, but is theoretically possible by printing multiple layers, using highly water-soluble APIs or highly loaded suspensions.
Collapse
Affiliation(s)
- J. Carolina Visser
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (L.W.); (H.J.W.)
- Correspondence: ; Tel.: +31-50-3633282; Fax: +31-50-3632500
| | - Lisa Wibier
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (L.W.); (H.J.W.)
- Department of PharmacoTherapy, Epidemiology and Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Olga Kiefer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (O.K.); (J.B.)
| | - Mine Orlu
- School of Pharmacy, University College London, London WC1N 1AX, UK;
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany; (O.K.); (J.B.)
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (L.W.); (H.J.W.)
| | - Katja Taxis
- Department of PharmacoTherapy, Epidemiology and Economics, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
32
|
Musazzi UM, Khalid GM, Selmin F, Minghetti P, Cilurzo F. Trends in the production methods of orodispersible films. Int J Pharm 2020; 576:118963. [DOI: 10.1016/j.ijpharm.2019.118963] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
|
33
|
Menditto E, Orlando V, De Rosa G, Minghetti P, Musazzi UM, Cahir C, Kurczewska-Michalak M, Kardas P, Costa E, Sousa Lobo JM, Almeida IF. Patient Centric Pharmaceutical Drug Product Design-The Impact on Medication Adherence. Pharmaceutics 2020; 12:E44. [PMID: 31947888 PMCID: PMC7023035 DOI: 10.3390/pharmaceutics12010044] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Medication adherence is a growing concern for public health and poor adherence to therapy has been associated with poor health outcomes and higher costs for patients. Interventions for improving adherence need to consider the characteristics of the individual therapeutic regimens according to the needs of the patients. In particular, geriatric and paediatric populations as well as dermatological patients have special needs/preferences that should be considered when designing drug products. Patient Centric Drug Product Pharmaceutical Design (PCDPD) offers the opportunity to meet the needs and preferences of patients. Packaging, orodispersible formulations, fixed dose combinations products, multiparticulate formulations, topical formulations and 3D printing are of particular relevance in a PCDPD process. These will be addressed in this review as well as their impact on medication adherence.
Collapse
Affiliation(s)
- Enrica Menditto
- CIRFF, Centre of Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, Corso Umberto I, 40, 80138 Napoli NA, Italy; (E.M.); (V.O.)
| | - Valentina Orlando
- CIRFF, Centre of Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, Corso Umberto I, 40, 80138 Napoli NA, Italy; (E.M.); (V.O.)
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II Corso Umberto I, 40, 80138 Napoli NA, Italy;
| | - Paola Minghetti
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy; (P.M.); (U.M.M.)
| | - Umberto Maria Musazzi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Via G. Colombo 71, 20133 Milan, Italy; (P.M.); (U.M.M.)
| | - Caitriona Cahir
- Division of Population Health Sciences, Royal College of Surgeons, Beaux Lane House, Mercer Street, Dublin 2, Ireland;
| | - Marta Kurczewska-Michalak
- Department of Family Medicine, Medical University of Lodz, 60, Narutowicza St., 90-136 Lodz, Poland; (M.K.-M.); (P.K.)
| | - Przemysław Kardas
- Department of Family Medicine, Medical University of Lodz, 60, Narutowicza St., 90-136 Lodz, Poland; (M.K.-M.); (P.K.)
| | - Elísio Costa
- UCIBIO/REQUIMTE, Faculty of Pharmacy and Porto4Ageing, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - José Manuel Sousa Lobo
- UCIBIO/REQUIMTE, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| | - Isabel F Almeida
- UCIBIO/REQUIMTE, MedTech-Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
| |
Collapse
|
34
|
Ehtezazi T, Algellay M, Hardy A. Next Steps in 3D Printing of Fast Dissolving Oral Films for Commercial Production. RECENT PATENTS ON DRUG DELIVERY & FORMULATION 2019; 14:5-20. [PMID: 31886755 DOI: 10.2174/1872211314666191230115851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 01/12/2023]
Abstract
3D printing technique has been utilised to develop novel and complex drug delivery systems that are almost impossible to produce by employing conventional formulation techniques. For example, this technique may be employed to produce tablets or Fast Dissolving oral Films (FDFs) with multilayers of active ingredients, which are personalised to patient's needs. In this article, we compared the production of FDFs by 3D printing to conventional methods such as solvent casting. Then, we evaluated the need for novel methods of producing fast dissolving oral films, and why 3D printing may be able to meet the shortfalls of FDF production. The challenges of producing 3D printed FDFs are identified at commercial scale by referring to the identification of suitable materials, hardware, qualitycontrol tests and Process Analytical Technology. In this paper, we discuss that the FDF market will grow to more than $1.3 billion per annum in the next few years and 3D printing of FDFs may share part of this market. Although companies are continuing to invest in technologies, which provide alternatives to standard drug delivery systems, the market for thin-film products is already well established. Market entry for a new technology such as 3D printing of FDFs will, therefore, be hard, unless, this technology proves to be a game changer. A few approaches are suggested in this paper.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Marwan Algellay
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Alison Hardy
- Knowledge Exchange and Commercialisation, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
35
|
El Aita I, Ponsar H, Quodbach J. A Critical Review on 3D-printed Dosage Forms. Curr Pharm Des 2019; 24:4957-4978. [PMID: 30520369 DOI: 10.2174/1381612825666181206124206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last decades, 3D-printing has been investigated and used intensively in the field of tissue engineering, automotive and aerospace. With the first FDA approved printed medicinal product in 2015, the research on 3D-printing for pharmaceutical application has attracted the attention of pharmaceutical scientists. Due to its potential of fabricating complex structures and geometrics, it is a highly promising technology for manufacturing individualized dosage forms. In addition, it enables the fabrication of dosage forms with tailored drug release profiles. OBJECTIVE The aim of this review article is to give a comprehensive overview of the used 3D-printing techniques for pharmaceutical applications, including information about the required material, advantages and disadvantages of the respective technique. METHODS For the literature research, relevant keywords were identified and the literature was then thoroughly researched. CONCLUSION The current status of 3D-printing as a manufacturing process for pharmaceutical dosage forms was highlighted in this review article. Moreover, this article presents a critical evaluation of 3D-printing to control the dose and drug release of printed dosage forms.
Collapse
Affiliation(s)
- Ilias El Aita
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Hanna Ponsar
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany.,INVITE GmbH, Drug Delivery Innovation Center (DDIC), Chempark Building W 32, 51368 Leverkusen, Germany
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| |
Collapse
|
36
|
Tian Y, Orlu M, Woerdenbag HJ, Scarpa M, Kiefer O, Kottke D, Sjöholm E, Öblom H, Sandler N, Hinrichs WLJ, Frijlink HW, Breitkreutz J, Visser JC. Oromucosal films: from patient centricity to production by printing techniques. Expert Opin Drug Deliv 2019; 16:981-993. [DOI: 10.1080/17425247.2019.1652595] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yu Tian
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Mine Orlu
- School of Pharmacy, University College London, London, Bloomsbury, UK
| | - Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | | | - Olga Kiefer
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dina Kottke
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Erica Sjöholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Heidi Öblom
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, FI, Finland
| | - Wouter L. J. Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Henderik W. Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - J. Carolina Visser
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, AV, The Netherlands
| |
Collapse
|
37
|
Trenfield SJ, Xian Tan H, Awad A, Buanz A, Gaisford S, Basit AW, Goyanes A. Track-and-trace: Novel anti-counterfeit measures for 3D printed personalized drug products using smart material inks. Int J Pharm 2019; 567:118443. [DOI: 10.1016/j.ijpharm.2019.06.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
|
38
|
Edinger M, Iftimi LD, Markl D, Al-Sharabi M, Bar-Shalom D, Rantanen J, Genina N. Quantification of Inkjet-Printed Pharmaceuticals on Porous Substrates Using Raman Spectroscopy and Near-Infrared Spectroscopy. AAPS PharmSciTech 2019; 20:207. [PMID: 31161397 DOI: 10.1208/s12249-019-1423-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/17/2019] [Indexed: 12/21/2022] Open
Abstract
The use of inkjet printing for pharmaceutical manufacturing is gaining interest for production of personalized dosage forms tailored to specific patients. As part of the manufacturing, it is imperative to ensure that the correct dose is printed. The aim of this study was to use inkjet printing for manufacturing of personalized dosage forms combined with the use of near-infrared (NIR) and Raman spectroscopy as complementary analytical techniques for active pharmaceutical ingredient (API) quantification of the inkjet-printed dosage forms. Three APIs, propranolol (0.5-4.1 mg), montelukast (2.1-12.1 mg), and haloperidol (0.6-4.1 mg) were inkjet printed in 1 cm2 areas on a porous substrate. The printed doses were non-destructively analyzed by transmission NIR and Raman spectroscopy (both transmission and backscatter). X-ray computed microtomography (μ-CT) analysis was undertaken for porosity measurements of the substrate. The API content was confirmed using high-performance liquid chromatography (HPLC), and the content in the dosage forms was modeled from the NIR and Raman spectra using partial least squares regression (PLS). HPLC analysis revealed a linear correlation of the number of layers printed to the API content. The resulting PLS models for both NIR and Raman had R2 values between 0.95 and 0.99. The best predictive model was obtained using NIR, followed by Raman spectroscopy. μ-CT revealed the substrate to be highly porous and optimal for inkjet printing. In conclusion, NIR and Raman spectroscopic techniques could be used complementary as fast API quantification tools for inkjet-printed medicines.
Collapse
|
39
|
Lamichhane S, Bashyal S, Keum T, Noh G, Seo JE, Bastola R, Choi J, Sohn DH, Lee S. Complex formulations, simple techniques: Can 3D printing technology be the Midas touch in pharmaceutical industry? Asian J Pharm Sci 2019; 14:465-479. [PMID: 32104475 PMCID: PMC7032174 DOI: 10.1016/j.ajps.2018.11.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022] Open
Abstract
3D printing is a method of rapid prototyping and manufacturing in which materials are deposited onto one another in layers to produce a three-dimensional object. Although 3D printing was developed in the 1980s and the technology has found widespread industrial applications for production from automotive parts to machine tools, its application in pharmaceutical area is still limited. However, the potential of 3D printing in the pharmaceutical industry is now being recognized. The ability of 3D printing to produce medications to exact specifications tailored to the needs of individual patients has indicated the possibility of developing personalized medicines. The technology allows dosage forms to be precisely printed in various shapes, sizes and textures that are difficult to produce using traditional techniques. However, there are various challenges associated with the proper application of 3D printing in the pharmaceutical sector which should be overcome to exploit the scope of this technology. In this review, an overview is provided on the various 3D printing technologies used in fabrication of complex dosage forms along with their feasibility and limitations.
Collapse
Affiliation(s)
| | - Santosh Bashyal
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Taekwang Keum
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Gyubin Noh
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jo Eun Seo
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Rakesh Bastola
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jaewoong Choi
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Dong Hwan Sohn
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
40
|
Orodispersible films based on blends of trehalose and pullulan for protein delivery. Eur J Pharm Biopharm 2018; 133:104-111. [DOI: 10.1016/j.ejpb.2018.09.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/10/2018] [Accepted: 09/22/2018] [Indexed: 11/23/2022]
|
41
|
Personalized orodispersible films by hot melt ram extrusion 3D printing. Int J Pharm 2018; 551:52-59. [DOI: 10.1016/j.ijpharm.2018.09.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 10/28/2022]
|
42
|
Edinger M, Jacobsen J, Bar-Shalom D, Rantanen J, Genina N. Analytical aspects of printed oral dosage forms. Int J Pharm 2018; 553:97-108. [PMID: 30316794 DOI: 10.1016/j.ijpharm.2018.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 12/19/2022]
Abstract
Printing technologies, both 2D and 3D, have gained considerable interest during the last years for manufacturing of personalized dosage forms, tailored to each patient. Here we review the research work on 2D printing techniques, mainly inkjet printing, for manufacturing of film-based oral dosage forms. We describe the different printing techniques and give an overview of film-based oral dosage forms produced using them. The main part of the review focuses on the non-destructive analytical methods used for evaluation of qualitative aspects of printed dosage forms, e.g., solid-state properties, as well as for quantification of the active pharmaceutical ingredient (API) in the printed dosage forms, with an emphasis on spectroscopic methods. Finally, the authors share their view on the future of printed dosage forms.
Collapse
Affiliation(s)
- Magnus Edinger
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Daniel Bar-Shalom
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark
| | - Natalja Genina
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100, Denmark.
| |
Collapse
|
43
|
Alomari M, Vuddanda PR, Trenfield SJ, Dodoo CC, Velaga S, Basit AW, Gaisford S. Printing T 3 and T 4 oral drug combinations as a novel strategy for hypothyroidism. Int J Pharm 2018; 549:363-369. [PMID: 30063938 DOI: 10.1016/j.ijpharm.2018.07.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
Hypothyroidism is a chronic and debilitating disease that is estimated to affect 3% of the general population. Clinical experience has highlighted the synergistic value of combining triiodothyronine (T3) and thyroxine (T4) for persistent or recurrent symptoms. However, thus far a platform that enables the simultaneous and independent dosing of more than one drug for oral administration has not been developed. Thermal inkjet (TIJ) 2D printing is a potential solution to enable the dual deposition of T3 and T4 onto orodispersible films (ODFs) for therapy personalisation. In this study, a two-cartridge TIJ printer was modified such that it could print separate solutions of T3 and T4. Dose adjustments were achieved by printing solutions adjacent to each other, enabling therapeutic T3 (15-50 μg) and T4 dosages (60-180 μg) to be successfully printed. Excellent linearity was observed between the theoretical and measured dose for both T3 and T4 (R2 = 0.982 and 0.985, respectively) by changing the length of the print objective (Y-value). Rapid disintegration of the ODFs was achieved (<45 s). As such, this study for the first time demonstrates the ability to produce personalised dose combinations by TIJ printing T3 and T4 onto the same substrate for oral administration.
Collapse
Affiliation(s)
- Mustafa Alomari
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Parameswara R Vuddanda
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Pharmaceutical and Biomaterial Research Group, Division of Medical Sciences, Department of Health Sciences, Luleå University of Technology, Luleå 97187, Sweden
| | - Sarah J Trenfield
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Cornelius C Dodoo
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sitaram Velaga
- Pharmaceutical and Biomaterial Research Group, Division of Medical Sciences, Department of Health Sciences, Luleå University of Technology, Luleå 97187, Sweden
| | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|