1
|
Liu J, Yi X, Zhang J, Yao Y, Panichayupakaranant P, Chen H. Recent Advances in the Drugs and Glucose-Responsive Drug Delivery Systems for the Treatment of Diabetes: A Systematic Review. Pharmaceutics 2024; 16:1343. [PMID: 39458671 PMCID: PMC11511183 DOI: 10.3390/pharmaceutics16101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Diabetes is a common chronic metabolic disease. Different types of drugs play important roles in controlling diabetes and its complications, but there are some limitations. The glucose-responsive drug delivery system is a novel technology with potential in diabetes treatment. It could automatically release drugs in response to changes in glucose levels in the body to maintain blood glucose within a normal range. The emergence of a glucose-sensitive drug delivery system provides a more intelligent and precise way to treat diabetes. The review is carried out according to the Preferred Reporting Items for Systematic Reviews (PRISMA 2020) guidelines This review focuses on the recent advances in the drugs and different systems of glucose-sensitive drug delivery, including glucose oxidase, phenylboronic acid, Concanavalin A, and other glucose-reactive systems. Furthermore, the glucose-responsive drug delivery system combined with the application applied in hydrogels, microneedles, and nanoparticles is also explored and summarized. The new platforms to sustain the release of anti-diabetic drugs could be desirable for patients. It could lead to increased adherence and glycemic outcomes for the detection and treatment of diabetes. Furthermore, given the limitations of glucose-responsive drug delivery systems, solutions and perspectives are proposed to help the understanding and application of these systems. This review will be helpful for drug discovery and treatment of diabetes from a new perspective.
Collapse
Affiliation(s)
- Junyu Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Xudong Yi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Jinrui Zhang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Yiman Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| | - Pharkphoom Panichayupakaranant
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Wang Y, Song W, Xue S, Sheng Y, Gao B, Dang Y, Zhang Y, Zhang G. β-Cyclodextrin/dialdehyde glucan-coated keratin nanoparticles for oral delivery of insulin. Int J Biol Macromol 2024; 276:133805. [PMID: 38996885 DOI: 10.1016/j.ijbiomac.2024.133805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. However, Oral insulin administration is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤2 %. Herein, we developed a simple, inexpensive and safe dual β-cyclodextrin/dialdehyde glucan-coated keratin nanoparticle (β-CD-K-IN-DG). The resulted β-CD-K-IN-DG not only gave the ultra-high insulin loading (encapsulation efficiency (98.52 %)), but also protected insulin from acid and enzymatic degradation. This β-CD-K-IN-DG had a notable hypoglycemic effect, there was almost 80 % insulin release after 4 h of incubation under hyperglycemic conditions. Ex vivo results confirmed that β-CD-K-IN-DG possessed high mucus-penetration ability. Transepithelial transport and uptake mechanism studies revealed that bypass transport pathway and endocytosis promoted β-CD-K-IN-DG entered intestinal epithelial cells, thus increased the bioavailability of insulin (12.27 %). The improved stability of insulin during in vivo transport implied that β-CD-K-IN-DG might be a potential tool for the effective oral insulin administration.
Collapse
Affiliation(s)
- Yunyun Wang
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, China
| | - Wangdi Song
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, China
| | - Shengnan Xue
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, China
| | - Yue Sheng
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, China
| | - Bo Gao
- Key Laboratory of Agricultural Microorganisms and Drug & Fertilizer Creation, Shihezi 832003, China
| | - Yanyan Dang
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, China.
| | - Genlin Zhang
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi 832003, China.
| |
Collapse
|
3
|
Wang Y, Li H, Rasool A, Wang H, Manzoor R, Zhang G. Polymeric nanoparticles (PNPs) for oral delivery of insulin. J Nanobiotechnology 2024; 22:1. [PMID: 38167129 PMCID: PMC10763344 DOI: 10.1186/s12951-023-02253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Successful oral insulin administration can considerably enhance the quality of life (QOL) of diabetes patients who must frequently take insulin injections. Oral insulin administration, on the other hand, is seriously hampered by gastrointestinal enzymes, wide pH range, mucus and mucosal layers, which limit insulin oral bioavailability to ≤ 2%. Therefore, a large number of technological solutions have been proposed to increase the oral bioavailability of insulin, in which polymeric nanoparticles (PNPs) are highly promising for oral insulin delivery. The recently published research articles chosen for this review are based on applications of PNPs with strong future potential in oral insulin delivery, and do not cover all related work. In this review, we will summarize the controlled release mechanisms of oral insulin delivery, latest oral insulin delivery applications of PNPs nanocarrier, challenges and prospect. This review will serve as a guide to the future investigators who wish to engineer and study PNPs as oral insulin delivery systems.
Collapse
Affiliation(s)
- Yunyun Wang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Hao Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Aamir Rasool
- Institute of Biochemistry, University of Balochistan, Quetta, 78300, Pakistan.
| | - Hebin Wang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, 741000, China.
| | - Robina Manzoor
- Department of Biotechnology and Bioinformatics, Water and Marine Sciences, Lasbella University of Agriculture, Uthal, 90150, Pakistan
| | - Genlin Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green, Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
4
|
Pamshong SR, Bhatane D, Sarnaik S, Alexander A. Mesoporous silica nanoparticles: An emerging approach in overcoming the challenges with oral delivery of proteins and peptides. Colloids Surf B Biointerfaces 2023; 232:113613. [PMID: 37913702 DOI: 10.1016/j.colsurfb.2023.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/21/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Proteins and peptides (PPs), as therapeutics are widely explored in the past few decades, by virtue of their inherent advantages like high specificity and biocompatibility with minimal side effects. However, owing to their macromolecular size, poor membrane permeability, and high enzymatic susceptibility, the effective delivery of PPs is often challenging. Moreover, their subjection to varying environmental conditions, when administered orally, results in PPs denaturation and structural conformation, thereby lowering their bioavailability. Hence, for effective delivery with enhanced bioavailability, protection of PPs using nanoparticle-based delivery system has gained a growing interest. Mesoporous silica nanoparticles (MSNs), with their tailored morphology and pore size, high surface area, easy surface modification, versatile loading capacity, excellent thermal stability, and good biocompatibility, are eligible candidates for the effective delivery of macromolecules to the target site. This review highlights the different barriers hindering the oral absorption of PPs and the various strategies available to overcome them. In addition, the potential benefits of MSNs, along with their diversifying role in controlling the loading of PPs and their release under the influence of specific stimuli, are also discussed in length. Further, the tuning of MSNs for enhanced gene transfection efficacy is also highlighted. Since extensive research is ongoing in this area, this review is concluded with an emphasis on the potential risks of MSNs that need to be addressed prior to their clinical translation.
Collapse
Affiliation(s)
- Sharon Rose Pamshong
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Dhananjay Bhatane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Santosh Sarnaik
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India.
| |
Collapse
|
5
|
Aghayan M, Mahmoudi A, Sazegar MR, Jahanafarin A, Nazari O, Hamidi P, Poorhasan Z, Sadat Shafaei B. The development of a novel copper-loaded mesoporous silica nanoparticle as a peroxidase mimetic for colorimetric biosensing and its application in H 2O 2 and GSH assay. ANAL SCI 2023:10.1007/s44211-023-00339-z. [PMID: 37067770 DOI: 10.1007/s44211-023-00339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
In recent years, the development of nanomaterials-based peroxidase mimics as enzyme sensors has been attracting considerable interest due to their outstanding features, including potent stability, and cost-effectiveness toward natural enzymes. In this work, mesoporous silica nanoparticles functionalized by copper (Cu-MSN) were prepared as a new artificial enzyme for the first time through the sol-gel procedure. A comprehensive investigation of the catalytic activity of Cu-MSN was done through the oxidation of chromogenic peroxidase substrates, 3,3',5,5'-tetramethylbenzidine (TMB), and (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), in the presence of H2O2. The results indicate that the peroxidase-like activity of the as-prepared sample is significantly higher than other nanoparticles. Additionally, for the study, a facile and rapid sensing method based on the enzyme-like activity of Cu-MSN to detect H2O2 and glutathione (GSH) was developed to examine the potency of the proposed biosensor. Preliminary analysis revealed that the limit of detection (LOD) of H2O2 and GSH is 0.2 and 0.0126 μM, in the range of 0.9-100 and 0.042-1 μM, respectively. These findings support the claims for the efficiency of the sensor in detection fields. Also, human serum was utilized as the real sample to obtain additional evidence.
Collapse
Affiliation(s)
- Morvarid Aghayan
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ali Mahmoudi
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Mohammad Reza Sazegar
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Alireza Jahanafarin
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Omid Nazari
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Parisa Hamidi
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Zeynab Poorhasan
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Batoul Sadat Shafaei
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| |
Collapse
|
6
|
Study on the Effect of Different Endoscopic Auxiliary Treatment of Gastric Mucosal Microtumor. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2557952. [PMID: 36267085 PMCID: PMC9578834 DOI: 10.1155/2022/2557952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the effect of endoscopy in the treatment of gastric mucosal microtumors. Methods A total of 229 patients with gastric mucosal microtumors were treated in our hospital from January 2016 to December 2021. All patients were divided into three groups group A, group B, and group C. Group A was treated with a transparent cap combined with circle-assisted endoscopic resection, group B with ligator combined with circle-assisted endoscopic resection, and group C with endoscopic mucosal tumor resection. The effects of the three groups were observed. Results There were 47 patients in group A, 17 males, and 30 females, aged 36-69 years, with an average age of 55.6 ± 9.2 years. There were 54 patients in group B, 18 males, and 36 females, aged 38-72 years, with an average age of 57.6 ± 7.7 years. There were 128 patients in group C, 29 males, and 99 females, aged 33-78 years, with an average age of 55.6 ± 8.4 years. There is no significant difference in age and sex between group A, group B, and group C (P > 0.05). The incidence of postoperative complications in group B (66.7%) was significantly higher than that in group A (57.4%) and group C (53.9%) (all P < 0.05). The incidence of postoperative complications in group A (57.4%) was higher than that in group C (53.9%), and the difference was statistically significant (P < 0.05). Conclusion Endoscopic mucosal resection and ligation combined with circle-assisted endoscopic resection are effective and safe in the treatment of gastric mucosal microtumors, but it needs to be combined with targeted nursing measures. The transparent cap combined with ring-assisted endoscopic resection has a significant effect on the treatment of gastric mucosal micromasses, reducing operative complications.
Collapse
|
7
|
Arhami M, Mahmoudi J. Synthesis and study the loading and releasing of losartan potassium on the modified mesoporous silica. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
8
|
Ficai D, Gheorghe M, Dolete G, Mihailescu B, Svasta P, Ficai A, Constantinescu G, Andronescu E. Microelectromechanical Systems Based on Magnetic Polymer Films. MICROMACHINES 2022; 13:mi13030351. [PMID: 35334643 PMCID: PMC8952241 DOI: 10.3390/mi13030351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Microelectromechanical systems (MEMS) have been increasingly used worldwide in a wide range of applications, including high tech, energy, medicine or environmental applications. Magnetic polymer composite films have been used extensively in the development of the micropumps and valves, which are critical components of the microelectromechanical systems. Based on the literature survey, several polymers and magnetic micro and nanopowders can be identified and, depending on their nature, ratio, processing route and the design of the device, their performances can be tuned from simple valves and pumps to biomimetic devices, such as, for instance, hearth ventricles. In many such devices, polymer magnetic films are used, the disposal of the magnetic component being either embedded into the polymer or coated on the polymer. One or more actuation zones can be used and the flow rate can be mono-directional or bi-directional depending on the design. In this paper, we review the main advances in the development of these magnetic polymer films and derived MEMS: microvalve, micropump, micromixer, microsensor, drug delivery micro-systems, magnetic labeling and separation microsystems, etc. It is important to mention that these MEMS are continuously improving from the point of view of performances, energy consumption and actuation mechanism and a clear tendency in developing personalized treatment. Due to the improved energy efficiency of special materials, wearable devices are developed and be suitable for medical applications.
Collapse
Affiliation(s)
- Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.D.); (E.A.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Marin Gheorghe
- Center for Technological Electronics and Interconnection Techniques, University Politehnica of Bucharest, Bulevardul Iuliu Maniu, 061071 Bucharest, Romania; (M.G.); (B.M.); (P.S.)
- NANOM—MEMS, George Cosbuc 9, 505400 Rasnov, Romania
| | - Georgiana Dolete
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.D.); (E.A.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Bogdan Mihailescu
- Center for Technological Electronics and Interconnection Techniques, University Politehnica of Bucharest, Bulevardul Iuliu Maniu, 061071 Bucharest, Romania; (M.G.); (B.M.); (P.S.)
| | - Paul Svasta
- Center for Technological Electronics and Interconnection Techniques, University Politehnica of Bucharest, Bulevardul Iuliu Maniu, 061071 Bucharest, Romania; (M.G.); (B.M.); (P.S.)
| | - Anton Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.D.); (E.A.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
- Correspondence:
| | - Gabriel Constantinescu
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, Carol Davila University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania;
| | - Ecaterina Andronescu
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.D.); (E.A.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
9
|
Lian K, Feng H, Liu S, Wang K, Liu Q, Deng L, Wang G, Chen Y, Liu G. Insulin quantification towards early diagnosis of prediabetes/diabetes. Biosens Bioelectron 2022; 203:114029. [DOI: 10.1016/j.bios.2022.114029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
|
10
|
Magnetite-Silica Core/Shell Nanostructures: From Surface Functionalization towards Biomedical Applications—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112211075] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The interconnection of nanotechnology and medicine could lead to improved materials, offering a better quality of life and new opportunities for biomedical applications, moving from research to clinical applications. Magnetite nanoparticles are interesting magnetic nanomaterials because of the property-depending methods chosen for their synthesis. Magnetite nanoparticles can be coated with various materials, resulting in “core/shell” magnetic structures with tunable properties. To synthesize promising materials with promising implications for biomedical applications, the researchers functionalized magnetite nanoparticles with silica and, thanks to the presence of silanol groups, the functionality, biocompatibility, and hydrophilicity were improved. This review highlights the most important synthesis methods for silica-coated with magnetite nanoparticles. From the presented methods, the most used was the Stöber method; there are also other syntheses presented in the review, such as co-precipitation, sol-gel, thermal decomposition, and the hydrothermal method. The second part of the review presents the main applications of magnetite-silica core/shell nanostructures. Magnetite-silica core/shell nanostructures have promising biomedical applications in magnetic resonance imaging (MRI) as a contrast agent, hyperthermia, drug delivery systems, and selective cancer therapy but also in developing magnetic micro devices.
Collapse
|
11
|
Huang Q, Yu H, Wang L, Shen D, Chen X, Wang N. Preparation of Dendritic Mesoporous Silica/Phenylboronic Acid-Modified Hydroxypropyl Chitosan and Its Glucose-Responsive Performance. POLYMER SCIENCE SERIES A 2021. [DOI: 10.1134/s0965545x21060055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Qin T, Yan L, Wang X, Lin S, Zeng Q. Glucose-Responsive Polyelectrolyte Complexes Based on Dendritic Mesoporous Silica for Oral Insulin Delivery. AAPS PharmSciTech 2021; 22:226. [PMID: 34426942 DOI: 10.1208/s12249-021-02088-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
The postprandial glycemic regulation is essential for diabetic patients to reduce the risk of long-term microvascular and macrovascular complications. Herein, we designed a glucose-responsive oral insulin delivery system based on polyelectrolyte complexes (PECs) for controlling the increasing postprandial glucose concentrations. Briefly, alginate-g-3-aminophenylboronic acid (ALG-g-APBA) and chitosan-g-3-fluoro-4-carboxyphenylboronic acid (CS-g-FPBA) were wrapped on mesoporous silica (MSN) to form the negative charged ALG-g-APBA@MSN and the positive charged CS-g-FPBA@MSN nanoparticles, with an optimum insulin loading capacity of 124 mg/g and 295 mg/g, respectively. ALG-g-APBA@MSN was further cross-linked with CS-g-FPBA@MSN to form PECs through electrostatic interaction and borate esters. The dense polyelectrolyte network wrapped on MSN was capable of preventing insulin from diffusion and regulating its release. The in vitro insulin release of PECs demonstrated an obvious glucose response profile in different glucose concentrations (0 mg/mL, 2 mg/mL, 5 mg/mL) and presented a switch "on" and "off" release regulation at hyperglycemic or normal state. The CCK-8 assay showed that none of the MSN, ALG-g-APBA@MSN, CS-g-FPBA@MSN, and PECs possessed cytotoxicity to Caco-2 cells. For in vivo tests, the oral PECs exhibited a significant hypoglycemic effect and maintained in the euglycemic levels up to approximately 12 h on diabetic rats. Overall, the PECs directly triggered by postprandial glucose in the intestine have a good potential to be applied in intelligent insulin delivery by the oral route.
Collapse
|
13
|
Huang Q, Yu H, Wang L, Shen D, Chen X, Wang N. Synthesis and testing of polymer grafted mesoporous silica as glucose-responsive insulin release drug delivery systems. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Pishnamazi M, Hafizi H, Pishnamazi M, Marjani A, Shirazian S, Walker GM. Controlled release evaluation of paracetamol loaded amine functionalized mesoporous silica KCC1 compared to microcrystalline cellulose based tablets. Sci Rep 2021; 11:535. [PMID: 33436819 PMCID: PMC7804127 DOI: 10.1038/s41598-020-79983-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/15/2020] [Indexed: 01/11/2023] Open
Abstract
In the pharmaceutical manufacturing, drug release behavior development is remained as one of the main challenges to improve the drug effectiveness. Recently, more focus has been done on using mesoporous silica materials as drug carriers for prolonged and superior control of drug release in human body. In this study, release behavior of paracetamol is developed using drug-loaded KCC-1-NH2 mesoporous silica, based on direct compaction method for preparation of tablets. The purpose of this study is to investigate the utilizing of pure KCC-1 mesoporous silica (KCC-1) and amino functionalized KCC-1 (KCC-1-NH2) as drug carriers in oral solid dosage formulations compared to common excipient, microcrystalline cellulose (MCC), to improve the control of drug release rate by manipulating surface chemistry of the carrier. Different formulations of KCC-1 and KCC-NH2 are designed to investigate the effect of functionalized mesoporous silica as carrier on drug controlled-release rate. The results displayed the remarkable effect of KCC-1-NH2 on drug controlled-release in comparison with the formulation containing pure KCC-1 and formulation including MCC as reference materials. The pure KCC-1 and KCC-1-NH2 are characterized using different evaluation methods such as FTIR, SEM, TEM and N2 adsorption analysis.
Collapse
Affiliation(s)
- Marieh Pishnamazi
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Hamid Hafizi
- Department of Chemical Sciences, Bernal Institute, Synthesis and Solid-State Pharmaceutical Centre (SSPC), University of Limerick, Limerick, Ireland
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, Synthesis and Solid-State Pharmaceutical Centre (SSPC), University of Limerick, Limerick, Ireland
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- The Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | - Azam Marjani
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Saeed Shirazian
- Department of Chemical Sciences, Bernal Institute, Synthesis and Solid-State Pharmaceutical Centre (SSPC), University of Limerick, Limerick, Ireland
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
- Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, 454080, Russian Federation
| | - Gavin M Walker
- Department of Chemical Sciences, Bernal Institute, Synthesis and Solid-State Pharmaceutical Centre (SSPC), University of Limerick, Limerick, Ireland
| |
Collapse
|
15
|
Mesoporous Silica Platforms with Potential Applications in Release and Adsorption of Active Agents. Molecules 2020; 25:molecules25173814. [PMID: 32825791 PMCID: PMC7503268 DOI: 10.3390/molecules25173814] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 01/01/2023] Open
Abstract
In recent years, researchers focused their attention on mesoporous silica nanoparticles (MSNs) owing to the considerable advancements of the characterization methods, especially electron microscopy methods, which allowed for a clear visualization of the pore structure and the materials encapsulated within the pores, along with the X-ray diffraction (small angles) methods and specific surface area determination by Brunauer–Emmett–Teller (BET) technique. Mesoporous silica gained important consideration in biomedical applications thanks to its tunable pore size, high surface area, surface functionalization possibility, chemical stability, and pore nature. Specifically, the nature of the pores allows for the encapsulation and release of anti-cancer drugs into tumor tissues, which makes MSN ideal candidates as drug delivery carriers in cancer treatment. Moreover, the inner and outer surfaces of the MSN provide a platform for further functionalization approaches that could enhance the adsorption of the drug within the silica network and the selective targeting and controlled release to the desired site. Additionally, stimuli-responsive mesoporous silica systems are being used as mediators in cancer therapy, and through the release of the therapeutic agents hosted inside the pores under the action of specific triggering factors, it can selectively deliver them into tumor tissues. Another important application of the mesoporous silica nanomaterials is related to its ability to extract different hazardous species from aqueous media, some of these agents being antibiotics, pesticides, or anti-tumor agents. The purpose of this paper is to analyze the methods of MSN synthesis and related characteristics, the available surface functionalization strategies, and the most important applications of MSN in adsorption as well as release studies. Owing to the increasing antibiotic resistance, the need for developing materials for antibiotic removal from wastewaters is important and mesoporous materials already proved remarkable performances in environmental applications, including removal or even degradation of hazardous agents such as antibiotics and pesticides.
Collapse
|
16
|
Chatterjee S, Bhushan Sharma C, Lavie CJ, Adhikari A, Deedwania P, O'keefe JH. Oral insulin: an update. MINERVA ENDOCRINOL 2020; 45:49-60. [DOI: 10.23736/s0391-1977.19.03055-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Kornecki JF, Carballares D, Tardioli PW, Rodrigues RC, Berenguer-Murcia Á, Alcántara AR, Fernandez-Lafuente R. Enzyme production ofd-gluconic acid and glucose oxidase: successful tales of cascade reactions. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00819b] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review mainly focuses on the use of glucose oxidase in the production ofd-gluconic acid, which is a reactant of undoubtable interest in different industrial areas. As example of diverse enzymatic cascade reactions.
Collapse
Affiliation(s)
- Jakub F. Kornecki
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Diego Carballares
- Departamento de Biocatálisis
- ICP-CSIC
- Campus UAM-CSIC
- 28049 Madrid
- Spain
| | - Paulo W. Tardioli
- Postgraduate Program in Chemical Engineering (PPGEQ)
- Department of Chemical Engineering
- Federal University of São Carlos
- 13565-905 São Carlos
- Brazil
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales
- Universidad de Alicante
- Alicante 03080
- Spain
| | - Andrés R. Alcántara
- Departamento de Química en Ciencias Farmacéuticas
- Facultad de Farmacia
- Universidad Complutense de Madrid
- 28040-Madrid
- Spain
| | | |
Collapse
|
18
|
Sapre N, Chakraborty R, Purohit P, Bhat S, Das G, Bajpe SR. Enteric pH responsive cargo release from PDA and PEG coated mesoporous silica nanoparticles: a comparative study in Drosophila melanogaster. RSC Adv 2020; 10:11716-11726. [PMID: 35496595 PMCID: PMC9050832 DOI: 10.1039/c9ra11019d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/13/2020] [Indexed: 01/16/2023] Open
Abstract
Physiological stimulus-specific cargo release from nanoparticle carriers is a holy grail of drug delivery research. While the majority of such work is carried out in vitro with cell lines, widespread use of common mammalian model systems – mice and rats – is difficult due to the associated cost and regulatory restrictions. Here we use the inexpensive, easily reared, excellent genetic model system Drosophila melanogaster to test pH responsive cargo release from widely used mesoporous silica nanoparticles (MSNs) coated with pH sensitive polydopamine (PDA) and polyethylene glycol (PEG) polymers. We synthesized 650 ± 75 nm diameter PDA or PEG coated mesoporous silica nanoparticles loaded with a fluorescent dye and fed to individual adult flies. Subsequently, the passage of the particles were monitored through the fly gut. As in mammals, the fly intestine has multiple pH specific zones that are easily accessible for imaging and also genetic, biochemical or physiological manipulations. We observed that both the species of MSNs ruptured around the acidic (pH < 4.0) middle midgut of the flies. PEG coated particles showed sharper specificity of release in the acidic middle midgut of flies than the PDA coated ones and had less tendency to clump together. Our results clearly show that the Drosophila gut can be used as a model to test pH responsive biocompatible materials in vivo. Our work paves the way for greater use of Drosophila as an in vivo complete systemic model in drug delivery and smart materials research. It also suggests that such specific delivery of chemical/biological cargo can be exploited to study basic biology of the gut cells and their communication with other organs. Targeted delivery in Drosophila middle mid-gut at pH < 4.0.![]()
Collapse
Affiliation(s)
- Nidhi Sapre
- Symbiosis Centre for Nanoscience and Nanotechnology
- Symbiosis International (Deemed University) (SIU)
- Pune
- India
| | | | | | | | - Gaurav Das
- National Centre for Cell Science
- Pune
- India
| | - Sneha R. Bajpe
- Symbiosis Centre for Nanoscience and Nanotechnology
- Symbiosis International (Deemed University) (SIU)
- Pune
- India
| |
Collapse
|
19
|
Amino Acid-functionalized hollow mesoporous silica nanospheres as efficient biocompatible drug carriers for anticancer applications. Int J Pharm 2019; 572:118709. [DOI: 10.1016/j.ijpharm.2019.118709] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/16/2023]
|
20
|
Fontana RM, Milano N, Barbara L, Di Vincenzo A, Gallo G, Meo PL. Cyclodextrin‐Calixarene Nanosponges as Potential Platforms for pH‐Dependent Delivery of Tetracycline. ChemistrySelect 2019. [DOI: 10.1002/slct.201902373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rosa Maria Fontana
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| | - Nicola Milano
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| | - Lorenzo Barbara
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| | - Antonella Di Vincenzo
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| | - Giuseppe Gallo
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| | - Paolo Lo Meo
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| |
Collapse
|
21
|
Cansever Mutlu E, Birinci Yıldırım A, Yıldırım M, Ficai A, Ficai D, Oktar FN, Ţîţu M, Çetinkaya A, Demir A. Improvement of antibacterial and biocompatibility properties of electrospray biopolymer films by ZnO and MCM-41. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02937-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Huang Q, Wang L, Yu H, Ur-Rahman K. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy. J Control Release 2019; 305:50-64. [DOI: 10.1016/j.jconrel.2019.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/05/2023]
|
23
|
Affiliation(s)
- Anton Ficai
- Politehnica University of Bucharest, Faculty of Applied Chemistry and Material Science, Department of Science and Engineering of Oxide Materials and Nanomaterials; Gh Polizu Street 1-7, 011061 Bucharest, Romania
| |
Collapse
|
24
|
Bondarev AV, Zhilyakova ET. USE OF SORPTION PROCESSES IN THE TECHNOLOGY OF DRUG DELIVERY SYSTEMS. PHARMACY & PHARMACOLOGY 2019. [DOI: 10.19163/2307-9266-2019-7-1-4-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aimof this research is the review of scientific and technical literature regarding possibility of using sorption processes in the technology of drug delivery systems.Materials and methods. The materials are the following electronic resources: eLIBRARY, CyberLeninka, PubMed. The methods of review are analysis and synthesis. The study covers the scientific literature from 1996 up to the present time.Results.Sorbents are used as carriers for various medicinal peroral substances, they are also dispensers of various compounds in the form of polymeric eye films and stents in the human body. The delivery of medicinal substances occurs with the help of sorption processes of mass transfer. Currently, the following medical substances are used as carriers for medicinal substances: activated carbon, mineral sorbents (medical clays, synthetic sorbents), polymers and their biosimilars. 6 groups of pharmaceutical substances are registered for the production of enterosorbents in Russia and they can be used as sorbent carriers in the sorption drug system. They are: activated carbon, colloidal silicon dioxide, polyvinylpyrrolidone, dioctahedral smectite, polymethylsiloxane polyhydrate. As a result of the study, the model of the sorption drug system has been developed. It consists of sorbent carrier, active pharmaceutical ingredient and excipients that provide the desorption. Desorption of the active pharmaceutical ingredient may contribute to its modified release. The technology for obtaining sorption medicinal systems requires further study and development of modeling methods, searching for experimental pharmacological models and technological methods, which make it possible to obtain sorption dosage form with modified release.Conclusion.The review of the sorption processes used in the technology of drug delivery systems has been carried out. The model of the sorption drug system has been developed.
Collapse
|