1
|
Sitovs A, Mohylyuk V. Ex vivo permeability study of poorly soluble drugs across gastrointestinal membranes: acceptor compartment media composition. Drug Discov Today 2024; 29:104214. [PMID: 39428083 DOI: 10.1016/j.drudis.2024.104214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Ex vivo drug permeability testing across gastrointestinal (GI) membranes is crucial in drug discovery and oral drug delivery. It is a reliable method for drugs with good solubility, but it poses challenges for poorly soluble drugs, which are common in development pipelines today. Although enabling formulations increase the apparent solubility in the GI compartment (dissolution vessel or permeation chamber's donor compartment), maintaining solubilized drug in the acceptor compartment during ex vivo testing remains largely unresolved. This review compiles and critically evaluates the diverse compositions of acceptor media used in ex vivo permeability studies for poorly soluble drugs, highlighting this significant yet underexplored aspect of pharmaceutical science. An algorithm is proposed for selecting solubility-enhancing additives for the acceptor media in ex vivo permeability studies of poorly soluble drugs.
Collapse
Affiliation(s)
- Andrejs Sitovs
- Leading Research Group, Faculty of Pharmacy, Rīga Stradiņš University, Riga, Latvia; Department of Pharmacology, Faculty of Pharmacy, Rīga Stradiņš University, Riga, Latvia
| | - Valentyn Mohylyuk
- Leading Research Group, Faculty of Pharmacy, Rīga Stradiņš University, Riga, Latvia.
| |
Collapse
|
2
|
Cabañero-Resta GJ, Sánchez-Dengra B, Ruiz-Picazo A, Bermejo M, Merino V, Gonzalez-Alvarez I, Gonzalez-Alvarez M. Pharmaceutical Compounding in Veterinary Medicine: Suspension of Itraconazole. Pharmaceutics 2024; 16:576. [PMID: 38794238 PMCID: PMC11125331 DOI: 10.3390/pharmaceutics16050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Itraconazole is a drug used in veterinary medicine for the treatment of different varieties of dermatophytosis at doses between 3-5 mg/kg/day in cats. Nevertheless, in Spain, it is only available in the market as a 52 mL suspension at 10 mg/mL. The lack of alternative formulations, which provide sufficient formulation to cover the treatment of large animals or allow the treatment of a group of them, can be overcome with compounding. For this purpose, it has to be considered that itraconazole is a weak base, class II compound, according to the Biopharmaceutics Classification System, that can precipitate when reaching the duodenum. The aim of this work is to develop alternative oral formulations of itraconazole for the treatment of dermatophytosis. Several oral compounds of itraconazole were prepared and compared, in terms of dissolution rate, permeability, and stability, in order to provide alternatives to the medicine commercialized. The most promising formulation contained hydroxypropyl methylcellulose and β-cyclodextrin. This combination of excipients was capable of dissolving the same concentration as the reference product and delaying the precipitation of itraconazole upon leaving the stomach. Moreover, the intestinal permeability of itraconazole was increased more than two-fold.
Collapse
Affiliation(s)
- Gema J. Cabañero-Resta
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, Vicente Andrés Estelles s/n, Burjassot, 46100 Valencia, Spain; (G.J.C.-R.); (V.M.)
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46100 Valencia, Spain
| | - Bárbara Sánchez-Dengra
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 San Juan de Alicante, Spain; (B.S.-D.); (A.R.-P.); (M.B.); (M.G.-A.)
| | - Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 San Juan de Alicante, Spain; (B.S.-D.); (A.R.-P.); (M.B.); (M.G.-A.)
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 San Juan de Alicante, Spain; (B.S.-D.); (A.R.-P.); (M.B.); (M.G.-A.)
| | - Virginia Merino
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, Vicente Andrés Estelles s/n, Burjassot, 46100 Valencia, Spain; (G.J.C.-R.); (V.M.)
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46100 Valencia, Spain
| | - Isabel Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 San Juan de Alicante, Spain; (B.S.-D.); (A.R.-P.); (M.B.); (M.G.-A.)
| | - Marta Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 San Juan de Alicante, Spain; (B.S.-D.); (A.R.-P.); (M.B.); (M.G.-A.)
| |
Collapse
|
3
|
Elmeniar AM, Osman MA, El-Gizawy SA, Modi D, Charbe NB, El-Kattan AF, El-Tanani M, Haggag YA, Tambuwala MM. In situ evaluation of the impact of metformin or verapamil coadministration with vildagliptin on its regional absorption from the rabbit's intestine. Biopharm Drug Dispos 2024; 45:71-82. [PMID: 38400763 DOI: 10.1002/bdd.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
This research aims to identify regional differences in vildagliptin absorption across the intestinal membrane. Furthermore, it was to investigate the effect of verapamil or metformin on vildagliptin absorptive clearance. The study utilized an in situ rabbit intestinal perfusion technique to determine vildagliptin oral absorption from duodenum, jejunum, ileum, and ascending colon. This was conducted both with and without perfusion of metformin or verapamil. The findings revealed that the vildagliptin absorptive clearance per unit length varied by site and was in the order as follows: ileum < jejunum < duodenum < ascending colon, implying that P-gp is significant in the reduction of vildagliptin absorption. Also, the arrangement cannot reverse intestinal P-gp, but the observations suggest that P-gp is significant in reducing vildagliptin absorption. Verapamil co-perfusion significantly increased the vildagliptin absorptive clearance by 2.4 and 3.2 fold through the jejunum and ileum, respectively. Metformin co-administration showed a non-significant decrease in vildagliptin absorptive clearance through all tested segments. Vildagliptin absorption was site-dependent and may be related to the intestinal P-glycoprotein content. This may aid in understanding the important elements that influence vildagliptin absorption, besides drug-drug interactions that can occur in type 2 diabetic patients taking vildagliptin in conjunction with other drugs that can modify the P-glycoprotein level.
Collapse
Affiliation(s)
- Ahmed M Elmeniar
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science & Technology, Belkas, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Dimple Modi
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | | | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Yusuf A Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Lincoln Medical School - Universities of Nottingham and Lincoln, University of Lincoln, Lincolnshire, UK
| |
Collapse
|
4
|
Wang Y, Zhang T, Liu J, Huang X, Yan X. Investigations of the gingerol oil colon targeting pellets for the treatment of ulcerative colitis. Fitoterapia 2023; 169:105607. [PMID: 37442485 DOI: 10.1016/j.fitote.2023.105607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
The clinical treatment of ulcerative colitis (UC) faces great challenges due to lifetime medication. In this study, Gingerol oil was extracted and purified by the process easily scale-up and cost effective, with productivity 2.72 ± 0.38% (w/w, versus crude drugs). The quality control of gingerol oil was fully established by HPLC fingerprint with 4 common peaks identified as 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol. The similarities of 6 batches of gingerol oil are within 0.931-0.999. The protective effects of gingerol oil are equivalent to or even stronger than that of 6-gingerol on inflammation and oxidative stress of HT-29 cells induced by lipopolysaccharide and H2O2, as well as on UC in mice caused by dextran sulfate sodium salt (DSS). Our research conclusions coincide well with the holistic view of Traditional Chinese Medicine and network pharmacology. The absorption kinetics of gingerol oil were conducted using the in situ intestinal perfusion in rats and comparable absorption were achieved in the jejunum, ileum and colon segments within 2 h. Thus, gingerol oil colon targeting pellets were prepared by extrusion-spherization technique. The cumulative dissolution behaviors and mechanisms were observed and analyzed by fitting to dissolution model. Our studies provided reliable theoretical and experimental support for the gingerol oil as reliable therapeutic choice of UC.
Collapse
Affiliation(s)
- Yajing Wang
- Department of Pharmacy, Changzhou University. Changzhou, China
| | - Tao Zhang
- Department of Pharmacy, Changzhou University. Changzhou, China
| | - Jie Liu
- Department of Pharmacy, Changzhou University. Changzhou, China
| | - Xianfeng Huang
- Department of Pharmacy, Changzhou University. Changzhou, China.
| | - Xiaojing Yan
- Changzhou Key Laboratory of Human Use Experience Research & Transformation of Menghe Medical School, Changzhou Hospital affiliated to Nanjing University of Chinese Medicine, Changzhou, China.
| |
Collapse
|
5
|
Exploring a Bioequivalence Failure for Silodosin Products Due to Disintegrant Excipients. Pharmaceutics 2022; 14:pharmaceutics14122565. [PMID: 36559059 PMCID: PMC9783061 DOI: 10.3390/pharmaceutics14122565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Some years ago, excipients were considered inert substances irrelevant in the absorption process. However, years of study have demonstrated that this belief is not always true. In this study, the reasons for a bioequivalence failure between two formulations of silodosin are investigated. Silodosin is a class III drug according to the Biopharmaceutics Classification System, which has been experimentally proven by means of solubility and permeability experiments. Dissolution tests have been performed to identify conditions concordant with the non-bioequivalent result obtained from the human bioequivalence study and it has been observed that paddles at 50 rpm are able to detect inconsistent differences between formulations at pH 4.5 and pH 6.8 (which baskets at 100 rpm are not able to do), whereas the GIS detects differences at the acidic pH of the stomach. It has also been observed that the differences in excipients between products did not affect the disintegration process, but disintegrants did alter the permeability of silodosin through the gastrointestinal barrier. Crospovidone and povidone, both derivatives of PVP, are used as disintegrants in the test product, instead of the pregelatinized corn starch used in the reference product. Permeability experiments show that PVP increases the absorption of silodosin-an increase that would explain the greater Cmax observed for the test product in the bioequivalence study.
Collapse
|
6
|
de Campos DP, Silva-Barcellos NM, Caldeira TG, Mussel WDN, Silveira V, de Souza J. Donepezil Hydrochloride BCS Class Ambiguity: Relevant Aspects to be Considered in Drug Classification. J Pharm Sci 2022; 111:3064-3074. [PMID: 35787368 DOI: 10.1016/j.xphs.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022]
Abstract
Donepezil hydrochloride (DH) is the most used anti-Alzheimer's disease drug, however, its classification according to the Biopharmaceutics Classification System (BCS) is not clear in the literature. BCS is one of the accepted criteria used to grant biowaiver (waiver of in vivo bioequivalence studies) of new drug products. So, the purpose of this work was to elucidate the BCS classification of DH and to raise the discussion about the possibility of biowaiver for new medicines containing it. The polymorphic form was previously identified as form III of DH. The drug showed high solubility in the entire pH range evaluated (1.2 to 6.8, at 37 °C) with a pH-dependent solubility profile. The effective permeability (Peff) values obtained with different DH concentrations, using in situ closed-loop perfusion model were statistically similar (p > 0.05), even when compared to high permeability control used (ketoprofen), demonstrating that DH has high permeability which, associated with its high solubility, allows to classify DH as BCS class 1. Relevant data to evaluate for granting a biowaiver for new medicines were also reviewed from the literature. Based on information reunited new immediate-release drug products containing DH should be eligible for BCS-based biowaiver.
Collapse
Affiliation(s)
- Débora Priscila de Campos
- Quality Control Laboratory - Postgraduate Program in Pharmaceutical Sciences. School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil.
| | - Neila Márcia Silva-Barcellos
- Quality Control Laboratory - Postgraduate Program in Pharmaceutical Sciences. School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil; Department of Pharmacy. School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Tamires Guedes Caldeira
- Quality Control Laboratory - Postgraduate Program in Pharmaceutical Sciences. School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Wagner da Nova Mussel
- Department of Chemistry. Institute of Exact Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Virgínia Silveira
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Jacqueline de Souza
- Quality Control Laboratory - Postgraduate Program in Pharmaceutical Sciences. School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil; Department of Pharmacy. School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
7
|
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier Drug Delivery Systems: Characterization, Limitations, Future Perspectives and Implementation of Artificial Intelligence. Pharmaceutics 2022; 14:883. [PMID: 35456717 PMCID: PMC9026217 DOI: 10.3390/pharmaceutics14040883] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
There has been an increasing demand for the development of nanocarriers targeting multiple diseases with a broad range of properties. Due to their tiny size, giant surface area and feasible targetability, nanocarriers have optimized efficacy, decreased side effects and improved stability over conventional drug dosage forms. There are diverse types of nanocarriers that have been synthesized for drug delivery, including dendrimers, liposomes, solid lipid nanoparticles, polymersomes, polymer-drug conjugates, polymeric nanoparticles, peptide nanoparticles, micelles, nanoemulsions, nanospheres, nanocapsules, nanoshells, carbon nanotubes and gold nanoparticles, etc. Several characterization techniques have been proposed and used over the past few decades to control and predict the behavior of nanocarriers both in vitro and in vivo. In this review, we describe some fundamental in vitro, ex vivo, in situ and in vivo characterization methods for most nanocarriers, emphasizing their advantages and limitations, as well as the safety, regulatory and manufacturing aspects that hinder the transfer of nanocarriers from the laboratory to the clinic. Moreover, integration of artificial intelligence with nanotechnology, as well as the advantages and problems of artificial intelligence in the development and optimization of nanocarriers, are also discussed, along with future perspectives.
Collapse
Affiliation(s)
- Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; or
| | - Abeer Ahmed Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Ragwa Mohamed Farid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| | - Shaimaa Khamis Mostafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt;
| | - Gihan Salah Labib
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21523, Egypt; (R.M.F.); (G.S.L.)
| |
Collapse
|
8
|
Hens B, Gonzalez-Alvarez I, Bermejo M. Exploring the Predictive Power of the In Situ Perfusion Technique towards Drug Absorption: Theory, Practice, and Applications. Mol Pharm 2022; 19:749-762. [DOI: 10.1021/acs.molpharmaceut.1c00861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bart Hens
- Drug Product Design, Pfizer, Sandwich, Kent, CT13 9NJ, United Kingdom
| | - Isabel Gonzalez-Alvarez
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| | - Marival Bermejo
- Department Engineering Pharmacy Section, Miguel Hernandez University, San Juan de Alicante, 03550 Alicante, Spain
| |
Collapse
|
9
|
Ashmawy SM, Eltahan DA, Osman MA, Essa EA. Influence of Piperine and Omeprazole on The Regional Absorption of Daclatasvir from Rabbit Intestine. Biopharm Drug Dispos 2022; 43:33-44. [PMID: 34997607 DOI: 10.1002/bdd.2308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 01/02/2022] [Indexed: 11/11/2022]
Abstract
The study assessed the site dependent intestinal absorption of daclatasvir and investigated the effects of piperine and omeprazole on such absorption utilizing in situ rabbit intestinal perfusion technique. The intestinal absorption of daclatasvir was assessed in four segments: duodenum, jejunum, ileum, and colon. The effect of co-perfusion with omeprazole was monitored through the tested anatomical sites. The effect of piperine, a P-glycoprotein (P-gp) inhibitor on daclatasvir absorption from jejunum and ileum was tested. The results showed that daclatasvir was incompletely absorbed from the rabbit small and large intestine. The absorptive clearance per unit length (PeA/L) was site dependent and was ranked as colon > duodenum > jejunum > ileum. This rank is the opposite of the rank of P-gp intestinal content suggesting possible influence for P-gp. Co-perfusion with omeprazole increased PeA/L and this was evidenced also with reduced the L95% of daclatasvir from both small and large intestinal segments. Significant enhancement in daclatasvir absorption through jejunum and ileum was shown in presence of piperine. Daclatasvir showed site dependent intestinal absorption in a manner suggesting its affection by P-gp efflux. This effect was inhibited by piperine. Co-administration of daclatasvir with omeprazole can enhance intestinal absorption a phenomenon which requires extension to human pharmacokinetic investigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Dina A Eltahan
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| |
Collapse
|
10
|
Metry M, Polli JE. Evaluation of Excipient Risk in BCS Class I and III Biowaivers. AAPS J 2022; 24:20. [PMID: 34988701 PMCID: PMC8817461 DOI: 10.1208/s12248-021-00670-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
The objective of this review article is to summarize literature data pertinent to potential excipient effects on intestinal drug permeability and transit. Despite the use of excipients in drug products for decades, considerable research efforts have been directed towards evaluating their potential effects on drug bioavailability. Potential excipient concerns stem from drug formulation changes (e.g., scale-up and post-approval changes, development of a new generic product). Regulatory agencies have established in vivo bioequivalence standards and, as a result, may waive the in vivo requirement, known as a biowaiver, for some oral products. Biowaiver acceptance criteria are based on the in vitro characterization of the drug substance and drug product using the Biopharmaceutics Classification System (BCS). Various regulatory guidance documents have been issued regarding BCS-based biowaivers, such that the current FDA guidance is more restrictive than prior guidance, specifically about excipient risk. In particular, sugar alcohols have been identified as potential absorption-modifying excipients. These biowaivers and excipient risks are discussed here. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Melissa Metry
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Best practices in current models mimicking drug permeability in the gastrointestinal tract - an UNGAP review. Eur J Pharm Sci 2021; 170:106098. [PMID: 34954051 DOI: 10.1016/j.ejps.2021.106098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
The absorption of orally administered drug products is a complex, dynamic process, dependent on a range of biopharmaceutical properties; notably the aqueous solubility of a molecule, stability within the gastrointestinal tract (GIT) and permeability. From a regulatory perspective, the concept of high intestinal permeability is intrinsically linked to the fraction of the oral dose absorbed. The relationship between permeability and the extent of absorption means that experimental models of permeability have regularly been used as a surrogate measure to estimate the fraction absorbed. Accurate assessment of a molecule's intestinal permeability is of critical importance during the pharmaceutical development process of oral drug products, and the current review provides a critique of in vivo, in vitro and ex vivo approaches. The usefulness of in silico models to predict drug permeability is also discussed and an overview of solvent systems used in permeability assessments is provided. Studies of drug absorption in humans are an indirect indicator of intestinal permeability, but in vitro and ex vivo tools provide initial screening approaches are important tools for direct assessment of permeability in drug development. Continued refinement of the accuracy of in silico approaches and their validation with human in vivo data will facilitate more efficient characterisation of permeability earlier in the drug development process and will provide useful inputs for integrated, end-to-end absorption modelling.
Collapse
|
12
|
Yang W, Jiang X, Liu J, Qi D, Luo Z, Yu G, Li X, Sen M, Chen H, Liu W, Liu Y, Wang G. Integrated Strategy From In Vitro, In Situ, In Vivo to In Silico for Predicting Active Constituents and Exploring Molecular Mechanisms of Tongfengding Capsule for Treating Gout by Inhibiting Inflammatory Responses. Front Pharmacol 2021; 12:759157. [PMID: 34912220 PMCID: PMC8666879 DOI: 10.3389/fphar.2021.759157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 01/07/2023] Open
Abstract
The study of screening active constituents from traditional Chinese medicine (TCM) is important for explicating the mechanism of action of TCM and further evaluating the safety and efficacy effectively. However, detecting and identifying the active constituents from complicated biological samples still remain a challenge. Here, a practical, quick, and novel integrated strategy from in vitro, in situ, in vivo to in silico for rapidly screening the active constituents was developed. Firstly, the chemical profile of TCM in vitro was identified using UPLC-Q Exactive-Orbitrap HRMS. Secondly, the in situ intestinal perfusion with venous sampling (IPVS) method was used to investigate the intestinal absorption components. Thirdly, after intragastric administration of the TCM extract, the in vivo absorbed prototype components were detected and identified. Finally, the target network pharmacology approach was applied to explore the potential targets and possible mechanisms of the absorbed components from TCM. The reliability and availability of this approach was demonstrated using Tongfengding capsule (TFDC) as an example of herbal medicine. A total of 141 compounds were detected and identified in TFDC, and among them, 64 components were absorbed into the plasma. Then, a total of 35 absorbed bioactive components and 50 related targets shared commonly by compounds and gout were integrated via target network pharmacology analysis. Ultimately, the effects of the absorbed components on metabolism pathways were verified by experiments. These results demonstrated that this original method may provide a practical tool for screening bioactive compounds from TCM treating particular diseases. Furthermore, it also can clarify the potential mechanism of action of TCM and rationalize the application of TFDC as an effective herbal therapy for gout.
Collapse
Affiliation(s)
- Wenning Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoquan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingtong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongying Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqiang Luo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guohua Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xueyan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Muli Sen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hongjiao Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing, China
| |
Collapse
|
13
|
Caldeira TG, Saúde-Guimarães DA, González-Álvarez I, Bermejo M, de Souza J. Eremantholide C from aerial parts of Lychnophora trichocarpha, as drug candidate: fraction absorbed prediction in humans and BCS permeability class determination. Daru 2021; 29:195-203. [PMID: 33884588 PMCID: PMC8149492 DOI: 10.1007/s40199-021-00397-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/13/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Lychnophora trichocarpha (Spreng.) Spreng. ex Sch.Bip has been used in folk medicine to treat pain, inflammation, rheumatism and bruises. Eremantholide C, a sesquiterpene lactone, is one of the substances responsible for the anti-inflammatory and anti-hyperuricemic effects of L. trichocarpha. OBJECTIVES Considering the potential to become a drug for the treatment of inflammation and gouty arthritis, this study evaluated the permeability of eremantholide C using in situ intestinal perfusion in rats. From the permeability data, it was possible to predict the fraction absorbed of eremantholide C in humans and elucidate its oral absorption process. METHODS In situ intestinal perfusion studies were performed in the complete small intestine of rats using different concentrations of eremantholide C: 960 μg/ml, 96 μg/ml and 9.6 μg/ml (with and without sodium azide), in order to verify the lack of dependence on the measured permeability as a function of the substance concentration in the perfusion solutions. RESULTS Eremantholide C showed Peff values, in rats, greater than 5 × 10-5 cm/s and fraction absorbed predicted for humans greater than 85%. These results indicated the high permeability for eremantholide C. Moreover, its permeation process occurs only by passive route, because there were no statistically significant differences between the Peff values for eremantholide C. CONCLUSION The high permeability, in addition to the low solubility, indicated that eremantholide C is a biologically active substance BCS class II. The pharmacological activities, low toxicity and biopharmaceutics parameters demonstrate that eremantholide C has the necessary requirements for the development of a drug product, to be administered orally, with action on inflammation, hyperuricemia and gout.
Collapse
Affiliation(s)
- Tamires Guedes Caldeira
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| | - Dênia Antunes Saúde-Guimarães
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Isabel González-Álvarez
- Department of Engineering, Pharmaceutics and Pharmaceutical Technology Area, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Marival Bermejo
- Department of Engineering, Pharmaceutics and Pharmaceutical Technology Area, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Jacqueline de Souza
- Programa de Pós-graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
14
|
Ruiz-Picazo A, Lozoya-Agullo I, González-Álvarez I, Bermejo M, González-Álvarez M. Effect of excipients on oral absorption process according to the different gastrointestinal segments. Expert Opin Drug Deliv 2020; 18:1005-1024. [PMID: 32842776 DOI: 10.1080/17425247.2020.1813108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Excipients are necessary to develop oral dosage forms of any Active Pharmaceutical Ingredient (API). Traditionally, excipients have been considered inactive and inert substances, but, over the years, numerous studies have contradicted this belief. This review focuses on the effect of excipients on the physiological variables affecting oral absorption along the different segments of the gastrointestinal tract. The effect of excipients on the segmental absorption variables are illustrated with examples to help understand the complexity of predicting their in vivo effects. AREAS COVERED The effects of excipients on disintegration, solubility and dissolution, transit time, and absorption are analyzed in the context of the different gastrointestinal segments and the physiological factors affecting release and membrane permeation. The experimental techniques used to study excipient effects and their human predictive ability are reviewed. EXPERT OPINION The observed effects of excipient in oral absorption process have been characterized in the past, mainly in vitro (i.e. in dissolution studies, in vitro cell culture methods or in situ animal studies). Unfortunately, a clear link with their effects in vivo, i.e. their impact on Cmax or AUC, which need a mechanistic approach is still missing. The information compiled in this review leads to the conclusion that the effect of excipients in API oral absorption and bioavailability is undeniable and shows the need of implementing standardized and reproducible preclinical tools coupled with mechanistic and predictive physiological-based models to improve the current empirical retrospective approach.
Collapse
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Lozoya-Agullo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
15
|
Ruiz-Picazo A, Colón-Useche S, Gonzalez-Alvarez M, Gonzalez-Alvarez I, Bermejo M, Langguth P. Effect of thickener on disintegration, dissolution and permeability of common drug products for elderly patients. Eur J Pharm Biopharm 2020; 153:168-176. [PMID: 32561342 DOI: 10.1016/j.ejpb.2020.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/30/2020] [Accepted: 06/08/2020] [Indexed: 11/28/2022]
Abstract
Dysphagia is a very common problem suffered by elderly patients. The use of thickeners during administration in these patients helps to prevent difficulties with swallowing larger solid dosage forms. However, there are several indications when the thickeners may influence disintegration and dissolution processes of solid dosage forms, potentially affecting therapeutic efficacy. In this paper the effects of a commonly used thickener on tablet disintegration, dissolution and subsequent absorption of 6 formulated drugs frequently used in elderly patients (Aspirin, Atenolol, Acenocumarol, Candesartan, Ramipril and Valsartan) in two different administration conditions (intact tablet and crushed tablet) are reported. Disintegration times were determined using a modified disintegration test device. The presence of thickener leads to a pseudoplastic behavior with clearly increased viscosity values. The thickener was also shown to significantly affect the release processes (dissolution and disintegration), but not the permeability of the studied drugs. When tablets are crushed the effect of the thickener on drug dissolution is avoided. Consequently, crushing the tablets would be a recommendation for these drugs if the use of a thickener is necessary in patients with dysphagia.
Collapse
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - Sarin Colón-Useche
- Analysis and Control Department, University of Los Andes, Mérida 5101, Venezuela
| | - Marta Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - Isabel Gonzalez-Alvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain.
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Spain
| | - Peter Langguth
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
16
|
Figueroa-Campos A, Sánchez-Dengra B, Merino V, Dahan A, González-Álvarez I, García-Arieta A, González-Álvarez M, Bermejo M. Candesartan Cilexetil In Vitro-In Vivo Correlation: Predictive Dissolution as a Development Tool. Pharmaceutics 2020; 12:E633. [PMID: 32640620 PMCID: PMC7408357 DOI: 10.3390/pharmaceutics12070633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
The main objective of this investigation was to develop an in vitro-in vivo correlation (IVIVC) for immediate release candesartan cilexetil formulations by designing an in vitro dissolution test to be used as development tool. The IVIVC could be used to reduce failures in future bioequivalence studies. Data from two bioequivalence studies were scaled and combined to obtain the dataset for the IVIVC. Two-step and one-step approaches were used to develop the IVIVC. Experimental solubility and permeability data confirmed candesartan cilexetil. Biopharmaceutic Classification System (BCS) class II candesartan average plasma profiles were deconvoluted by the Loo-Riegelman method to obtain the oral fractions absorbed. Fractions dissolved were obtained in several conditions in USP II and IV apparatus and the results were compared calculating the f2 similarity factor. Levy plot was constructed to estimate the time scaling factor and to make both processes, dissolution and absorption, superimposable. The in vitro dissolution experiment that reflected more accurately the in vivo behavior of the products of candesartan cilexetil employed the USP IV apparatus and a three-step pH buffer change, from 1.2 to 4.5 and 6.8, with 0.2% of Tween 20. This new model was able to predict the in vivo differences in dissolution and it could be used as a risk-analysis tool for formulation selection in future bioequivalence trials.
Collapse
Affiliation(s)
- Andrés Figueroa-Campos
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Juan de Alicante, Spain; (A.F.-C.); (B.S.-D.); (M.G.-Á.); (M.B.)
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46100 Valencia, Spain;
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, Vicente Andrés Estelles s/n, Burjassot, 46100 Valencia, Spain
| | - Bárbara Sánchez-Dengra
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Juan de Alicante, Spain; (A.F.-C.); (B.S.-D.); (M.G.-Á.); (M.B.)
| | - Virginia Merino
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46100 Valencia, Spain;
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de València, Vicente Andrés Estelles s/n, Burjassot, 46100 Valencia, Spain
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Juan de Alicante, Spain; (A.F.-C.); (B.S.-D.); (M.G.-Á.); (M.B.)
| | - Alfredo García-Arieta
- Service of Pharmacokinetics and Generic Medicines, Division of Pharmacology and Clinical Evaluation, Department of Human Use Medicines, Spanish Agency for Medicines and Health Care Products, 28022 Madrid, Spain;
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Juan de Alicante, Spain; (A.F.-C.); (B.S.-D.); (M.G.-Á.); (M.B.)
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, 03550 Juan de Alicante, Spain; (A.F.-C.); (B.S.-D.); (M.G.-Á.); (M.B.)
| |
Collapse
|
17
|
López-Yerena A, Vallverdú-Queralt A, Mols R, Augustijns P, Lamuela-Raventós RM, Escribano-Ferrer E. Absorption and Intestinal Metabolic Profile of Oleocanthal in Rats. Pharmaceutics 2020; 12:E134. [PMID: 32033424 PMCID: PMC7076358 DOI: 10.3390/pharmaceutics12020134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Oleocanthal (OLC), a phenolic compound of extra virgin olive oil (EVOO), has emerged as a potential therapeutic agent against a variety of diseases due to its anti-inflammatory activity. The aim of the present study is to explore its in vivo intestinal absorption and metabolism. An in situ perfusion technique in rats was used, involving simultaneous sampling from the luminal perfusate and mesenteric blood. Samples were analysed by UHPLC-MS-MS for the presence of oleocanthal (OLC) and its metabolites. OLC was mostly metabolized by phase I metabolism, undergoing hydration, hydrogenation and hydroxylation. Phase II reactions (glucuronidation of hydrogenated OLC and hydrated metabolites) were observed in plasma samples. OLC was poorly absorbed in the intestine, as indicated by the low effective permeability coefficient (2.23 ± 3.16 × 10-5 cm/s) and apparent permeability coefficient (4.12 ± 2.33 × 10-6 cm/s) obtained relative to the values of the highly permeable reference compound levofloxacin (LEV). The extent of OLC absorption reflected by the area under the mesenteric blood-time curve normalized by the inlet concentration (AUC) was also lower than that of LEV (0.25 ± 0.04 vs. 0.64 ± 0.03, respectively). These results, together with the observed intestinal metabolism, suggest that OLC has a moderate-to-low oral absorption; but higher levels of OLC are expected to reach human plasma vs. rat plasma.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
| | - Anna Vallverdú-Queralt
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Raf Mols
- Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium; (R.M.); (P.A.)
| | - Patrick Augustijns
- Drug Delivery and Disposition, KU Leuven, 3000 Leuven, Belgium; (R.M.); (P.A.)
| | - Rosa M. Lamuela-Raventós
- Nutrition, Food Science and Gastronomy Department, XaRTA, Institute of Nutrition and Food Safety (INSA-UB), School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (A.L.-Y.); (A.V.-Q.); (R.M.L.-R.)
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Elvira Escribano-Ferrer
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Biopharmaceutics and Pharmacokinetics Unit, Institute of Nanoscience and Nanotechnology (IN2UB), Pharmacy and Food Sciences School, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
18
|
Yang H, Hao Q, Cheng J, Wang M, Zou J, Zhang X, Guo D. Exploring the compatibility mechanism of ShengDiHuang Decoction based on the in situ single-pass intestinal perfusion model. Biopharm Drug Dispos 2019; 41:44-53. [PMID: 31778580 DOI: 10.1002/bdd.2211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/03/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
Affecting the absorption of active ingredients in the intestine serves as one of the important compatibility mechanisms of traditional Chinese medicine. The aim of this study was to investigate the compatibility mechanism of ShengDiHuang Decoction (SDHD) by using the single-pass intestinal perfusion in situ model. The major effective ingredients, catalpol, aucubin, acteoside, rehmannioside D, rehmannioside A, rhein, aloe emodin, emodin, chrysophanol, and physcion, were determined by HPLC. By analysing the effects of different concentrations, different pH, intestinal segments, protein inhibitors, and tight junction regulators on SDHD absorption, it was found that catalpol, aucubin, rehmannioside D, rehmannioside A, acteoside, rhein, and chrysophanol may undergo active transport, while aloe-emodin and emodin may undergo passive transport. Catalpol, aucubin, and rehmannioside D may be substrates of BCRP and MRP2, while rehmannioside A and rhein may be substrates of BCRP, and acteoside and chrysophanol may be substrates of P-gp, BCRP and MRP2. By comparing the Papp values of the major effective ingredients between single herb and herb-pairs, the compatibility of rehmannia and rheum could significantly promote the absorption of components in rehmannia. It is verified that rheum has a synergistic effect on the absorption of rehmannia in SDHD.
Collapse
Affiliation(s)
- Hui Yang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Qi Hao
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Jiangxue Cheng
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Mei Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| |
Collapse
|