1
|
Jaroszewski B, Jelonek K, Kasperczyk J. Drug Delivery Systems of Betulin and Its Derivatives: An Overview. Biomedicines 2024; 12:1168. [PMID: 38927375 PMCID: PMC11200571 DOI: 10.3390/biomedicines12061168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Natural origin products are regarded as promising for the development of new therapeutic therapies with improved effectiveness, biocompatibility, reduced side effects, and low cost of production. Betulin (BE) is very promising due to its wide range of pharmacological activities, including its anticancer, antioxidant, and antimicrobial properties. However, despite advancements in the use of triterpenes for clinical purposes, there are still some obstacles that hinder their full potential, such as their hydrophobicity, low solubility, and poor bioavailability. To address these concerns, new BE derivatives have been synthesized. Moreover, drug delivery systems have emerged as a promising solution to overcome the barriers faced in the clinical application of natural products. The aim of this manuscript is to summarize the recent achievements in the field of delivery systems of BE and its derivatives. This review also presents the BE derivatives mostly considered for medical applications. The electronic databases of scientific publications were searched for the most interesting achievements in the last ten years. Thus far, it is mostly nanoparticles (NPs) that have been considered for the delivery of betulin and its derivatives, including organic NPs (e.g., micelles, conjugates, liposomes, cyclodextrins, protein NPs), inorganic NPs (carbon nanotubes, gold NPs, silver), and complex/hybrid and miscellaneous nanoparticulate systems. However, there are also examples of microparticles, gel-based systems, suspensions, emulsions, and scaffolds, which seem promising for the delivery of BE and its derivatives.
Collapse
Affiliation(s)
- Bartosz Jaroszewski
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| | - Janusz Kasperczyk
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland
| |
Collapse
|
2
|
Kudryavtseva V, Sukhorukov GB. Features of Anisotropic Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307675. [PMID: 38158786 DOI: 10.1002/adma.202307675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
3
|
Jurczyk M, Musiał-Kulik M, Foryś A, Godzierz M, Kaczmarczyk B, Kasperczyk J, Wrześniok D, Beberok A, Jelonek K. Comparison of PLLA-PEG and PDLLA-PEG micelles for co-encapsulation of docetaxel and resveratrol. J Biomed Mater Res B Appl Biomater 2024; 112:e35318. [PMID: 37650461 DOI: 10.1002/jbm.b.35318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
The interest in combining chemosensitizers with cytostatics in cancer therapy is growing, which causes also a need to develop their delivery systems. Example of the combination with beneficial therapeutic effects is docetaxel (Dtx) and resveratrol (Res). Although poly(lactide)-co-poly(ethylene glycol) (PLA-PEG) micelles have been considered as one of the most promising platforms for drug delivery, their properties may depend on the stereoisomeric form of hydrophobic block. Therefore, the aim of this study was evaluation of the effect of PLA block on co-encapsulation and release rate of Dtx and Res, which has not been studied so far. This article presents a comparison of single- (Dtx or Res) and dual-drug (Dtx and Res) loaded micelles obtained from poly(l,l-lactide)-co-poly(ethylene glycol) (PLLA-PEG) and poly(d,l-lactide)-co-poly(ethylene glycol) (PDLLA-PEG). The analyzes of the micelles have been conducted including morphology, drug(s) encapsulation efficiency, intermolecular interactions, in vitro drug release, and cytotoxicity. Differences in drug loading ability and release profile have been observed between Res and Dtx but also depending on the polymer and number of drugs in micelles (single vs. dual loaded). The PLLA-PEG micelles have a significantly higher Dtx encapsulation capacity than PDLLA-PEG micelles. The highest cytotoxicity was shown for Dtx and Res dual-loaded micelles, regardless of the polymer. The findings may be used for selection of PLA-based drug delivery systems containing Dtx and Res.
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Bożena Kaczmarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|
4
|
Aliabadi A, Hasannia M, Vakili-Azghandi M, Araste F, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Synthesis approaches of amphiphilic copolymers for spherical micelle preparation: application in drug delivery. J Mater Chem B 2023; 11:9325-9368. [PMID: 37706425 DOI: 10.1039/d3tb01371e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The formation of polymeric micelles in aqueous environments through the self-assembly of amphiphilic polymers can provide a versatile platform to increase the solubility and permeability of hydrophobic drugs and pave the way for their administration. In comparison to various self-assembly-based vehicles, polymeric micelles commonly have a smaller size, spherical morphology, and simpler scale up process. The use of polymer-based micelles for the encapsulation and carrying of therapeutics to the site of action triggered a line of research on the synthesis of various amphiphilic polymers in the past few decades. The extended knowledge on polymers includes biocompatible smart amphiphilic copolymers for the formation of micelles, therapeutics loading and response to external stimuli, micelles with a tunable drug release pattern, etc. Different strategies such as ring-opening polymerization, atom transfer radical polymerization, reversible addition-fragmentation chain-transfer, nitroxide mediated polymerization, and a combination of these methods were employed to synthesize copolymers with diverse compositions and topologies with the proficiency of self-assembly into well-defined micellar structures. The current review provides a summary of the important polymerization techniques and recent achievements in the field of drug delivery using micellar systems. This review proposes new visions for the design and synthesis of innovative potent amphiphilic polymers in order to benefit from their application in drug delivery fields.
Collapse
Affiliation(s)
- Ali Aliabadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Hasannia
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Masoume Vakili-Azghandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Araste
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Rostami N, Gomari MM, Abdouss M, Moeinzadeh A, Choupani E, Davarnejad R, Heidari R, Bencherif SA. Synthesis and Characterization of Folic Acid-Functionalized DPLA-co-PEG Nanomicelles for the Targeted Delivery of Letrozole. ACS APPLIED BIO MATERIALS 2023; 6:1806-1815. [PMID: 37093754 PMCID: PMC10629236 DOI: 10.1021/acsabm.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
An effective treatment for hormone-dependent breast cancer is chemotherapy using cytotoxic agents such as letrozole (LTZ). However, most anticancer drugs, including LTZ, are classified as class IV biopharmaceuticals, which are associated with low water solubility, poor bioavailability, and significant toxicity. As a result, developing a targeted delivery system for LTZ is critical for overcoming these challenges and limitations. Here, biodegradable LTZ-loaded nanocarriers were synthesized by solvent emulsification evaporation using nanomicelles prepared with dodecanol-polylactic acid-co-polyethylene glycol (DPLA-co-PEG). Furthermore, cancer cell-targeting folic acid (FA) was conjugated into the nanomicelles to achieve a more effective and safer cancer treatment. During our investigation, DPLA-co-PEG and DPLA-co-PEG-FA displayed a uniform and spherical morphology. The average diameters of DPLA-co-PEG and DPLA-co-PEG-FA nanomicelles were 86.5 and 241.3 nm, respectively. Our preliminary data suggest that both nanoformulations were cytocompatible, with ≥90% cell viability across all concentrations tested. In addition, the amphiphilic nature of the nanomicelles led to high drug loading and dispersion in water, resulting in the extended release of LTZ for up to 50 h. According to the Higuchi model, nanomicelles functionalized with FA have a greater potential for the controlled delivery of LTZ into target cells. This model was confirmed experimentally, as LTZ-containing DPLA-co-PEG-FA was significantly and specifically more cytotoxic (up to 90% cell death) toward MCF-7 cells, a hormone-dependent human breast cancer cell line, when compared to free LTZ and LTZ-containing DPLA-co-PEG. Furthermore, a half-maximal inhibitory concentration (IC50) of 87 ± 1 nM was achieved when MCF-7 cells were exposed to LTZ-containing DPLA-co-PEG-FA, whereas higher doses of 125 ± 2 and 100 ± 2 nM were required for free LTZ and LTZ-containing DPLA-co-PEG, respectively. Collectively, DPLA-co-PEG-FA represents a promising nanosized drug delivery system to target controllably the delivery of drugs such as chemotherapeutics.
Collapse
Affiliation(s)
- Neda Rostami
- Department
of Chemistry, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Mohammad Mahmoudi Gomari
- Department
of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Majid Abdouss
- Department
of Chemistry, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Alaa Moeinzadeh
- Department
of Tissue Engineering and Regenerative Medicine, Faculty of Advanced
Technologies in Medicine, Iran University
of Medical Sciences, Tehran 1449614535, Iran
| | - Edris Choupani
- Department
of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Reza Davarnejad
- Department
of Chemical Engineering, Faculty of Engineering, Arak University, Arak 3848177584, Iran
| | - Reza Heidari
- Research
Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran 1411718541, Iran
| | - Sidi A. Bencherif
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Sorbonne
University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI),
University of Technology of Compiègne, Compiègne 60203, France
| |
Collapse
|
6
|
Effect of stereocomplex formation between enantiomeric poly(l,l-lactide) and poly(d,d-lactide) blocks on self-organization of amphiphilic poly(lactide)-block-poly(ethylene oxide) copolymers in dilute aqueous solution. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
7
|
Non-spherical Polymeric Nanocarriers for Therapeutics: The Effect of Shape on Biological Systems and Drug Delivery Properties. Pharmaceutics 2022; 15:pharmaceutics15010032. [PMID: 36678661 PMCID: PMC9865764 DOI: 10.3390/pharmaceutics15010032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
This review aims to highlight the importance of particle shape in the design of polymeric nanocarriers for drug delivery systems, along with their size, surface chemistry, density, and rigidity. Current manufacturing methods used to obtain non-spherical polymeric nanocarriers such as filomicelles or nanoworms, nanorods and nanodisks, are firstly described. Then, their interactions with biological barriers are presented, including how shape affects nanoparticle clearance, their biodistribution and targeting. Finally, their drug delivery properties and their therapeutic efficacy, both in vitro and in vivo, are discussed and compared with the characteristics of their spherical counterparts.
Collapse
|
8
|
Liu XY, Li D, Li TY, Wu YL, Piao JS, Piao MG. Vitamin A - modified Betulin polymer micelles with hepatic targeting capability for hepatic fibrosis protection. Eur J Pharm Sci 2022; 174:106189. [DOI: 10.1016/j.ejps.2022.106189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
|
9
|
Drug-Biopolymer Dispersions: Morphology- and Temperature- Dependent (Anti)Plasticizer Effect of the Drug and Component-Specific Johari-Goldstein Relaxations. Int J Mol Sci 2022; 23:ijms23052456. [PMID: 35269593 PMCID: PMC8910109 DOI: 10.3390/ijms23052456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Amorphous molecule-macromolecule mixtures are ubiquitous in polymer technology and are one of the most studied routes for the development of amorphous drug formulations. For these applications it is crucial to understand how the preparation method affects the properties of the mixtures. Here, we employ differential scanning calorimetry and broadband dielectric spectroscopy to investigate dispersions of a small-molecule drug (the Nordazepam anxiolytic) in biodegradable polylactide, both in the form of solvent-cast films and electrospun microfibres. We show that the dispersion of the same small-molecule compound can have opposite (plasticizing or antiplasticizing) effects on the segmental mobility of a biopolymer depending on preparation method, temperature, and polymer enantiomerism. We compare two different chiral forms of the polymer, namely, the enantiomeric pure, semicrystalline L-polymer (PLLA), and a random, fully amorphous copolymer containing both L and D monomers (PDLLA), both of which have lower glass transition temperature (Tg) than the drug. While the drug has a weak antiplasticizing effect on the films, consistent with its higher Tg, we find that it actually acts as a plasticizer for the PLLA microfibres, reducing their Tg by as much as 14 K at 30%-weight drug loading, namely, to a value that is lower than the Tg of fully amorphous films. The structural relaxation time of the samples similarly depends on chemical composition and morphology. Most mixtures displayed a single structural relaxation, as expected for homogeneous samples. In the PLLA microfibres, the presence of crystalline domains increases the structural relaxation time of the amorphous fraction, while the presence of the drug lowers the structural relaxation time of the (partially stretched) chains in the microfibres, increasing chain mobility well above that of the fully amorphous polymer matrix. Even fully amorphous homogeneous mixtures exhibit two distinct Johari-Goldstein relaxation processes, one for each chemical component. Our findings have important implications for the interpretation of the Johari-Goldstein process as well as for the physical stability and mechanical properties of microfibres with small-molecule additives.
Collapse
|
10
|
Xie P, Liu P. Chitosan-based DDSs for pH/hypoxia dual-triggered DOX delivery: Facile morphology modulation for higher in vitro cytotoxicity. Carbohydr Polym 2022; 275:118760. [PMID: 34742449 DOI: 10.1016/j.carbpol.2021.118760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 12/15/2022]
Abstract
The morphology of the drug delivery systems (DDSs) has been recognized to play an important role in their phagocytosis, cellular interaction and distribution. However, it is a technical challenge to simply prepare the non-spherical nanoscaled DDSs. Here, a facile strategy was developed to fabricate the pH/hypoxia dual-responsive nanowires by adding the maleic acid (MAH) and PEG modified chitosan (PEG-SS-CS-MAH) into aqueous solution of DOX. Compared with the PEG-SS-CS-MAH/DOX nanoparticles (NPs) by adding DOX into the PEG-SS-CS-MAH solution, the PEG-SS-CS-MAH/DOX nanowires (NWs) possessed a higher drug loading capacity of 58% and better pH/hypoxia dual-triggered DOX release performance with higher drug release in the simulated tumor intracellular microenvironment but a much lower premature drug leakage in the simulated normal physiological medium. As a result, higher in vitro anti-tumor efficacy was achieved with the PEG-SS-CS-MAH/DOX NWs, demonstrating their promising potential for tumor chemotherapy.
Collapse
Affiliation(s)
- Pengwei Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
11
|
Jelonek K, Zajdel A, Wilczok A, Kaczmarczyk B, Musiał-Kulik M, Hercog A, Foryś A, Pastusiak M, Kasperczyk J. Comparison of PLA-Based Micelles and Microspheres as Carriers of Epothilone B and Rapamycin. The Effect of Delivery System and Polymer Composition on Drug Release and Cytotoxicity against MDA-MB-231 Breast Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13111881. [PMID: 34834296 PMCID: PMC8624627 DOI: 10.3390/pharmaceutics13111881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/05/2022] Open
Abstract
Co-delivery of epothilone B (EpoB) and rapamycin (Rap) increases cytotoxicity against various kinds of cancers. However, the current challenge is to develop a drug delivery system (DDS) for the simultaneous delivery and release of these two drugs. Additionally, it is important to understand the release mechanism, as well as the factors that affect drug release, in order to tailor this process. The aim of this study was to analyze PLA–PEG micelles along with several types of microspheres obtained from PLA or a mixture of PLA and PLA–PEG as carriers of EpoB and Rap for their drug release properties and cytotoxicity against breast cancer cells. The study showed that the release process of EpoB and Rap from a PLA-based injectable delivery systems depends on the type of DDS, morphology, and polymeric composition (PLA to PLA–PEG ratio). These factors also affect the biological activity of the DDS, because the cytotoxic effect of the drugs against MDA-MB-231 cells depends on the release rate. The release process from all kinds of DDS was well-characterized by the Peppas–Sahlin model and was mainly controlled by Fickian diffusion. The conducted analysis allowed also for the selection of PLA 50/PLA–PEG 50 microspheres and PLA–PEG micelles as a promising co-delivery system of EpoB and Rap.
Collapse
Affiliation(s)
- Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Alicja Zajdel
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.Z.); (A.W.)
| | - Adam Wilczok
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.Z.); (A.W.)
| | - Bożena Kaczmarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Anna Hercog
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Małgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (K.J.); (B.K.); (M.M.-K.); (A.H.); (A.F.); (M.P.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland; (A.Z.); (A.W.)
- Correspondence:
| |
Collapse
|
12
|
Li S, Bobbala S, Vincent MP, Modak M, Liu Y, Scott EA. Pi-stacking Enhances Stability, Scalability of Formation, Control over Flexibility and Circulation Time of Polymeric Filaments. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100063. [PMID: 34870281 PMCID: PMC8635300 DOI: 10.1002/anbr.202100063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Self-assembling filomicelles (FM) are of great interest to nanomedicine due to their structural flexibility, extensive systemic circulation time, and amenability to unique "cylinder-to-sphere" morphological transitions. However, current fabrication techniques for FM self-assembly are highly variable and difficult to scale. Here, we demonstrate that tetrablock copolymers composed of poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) diblocks linked by a pi-stacking perylene bisimide (PBI) moiety permit rapid, scalable, and facile assembly of FM via the flash nanoprecipitation (FNP) method. Co-assembling the tetrablocks and PEG-b-PPS diblocks at different molar ratios resulted in mixed PBI-containing FM (mPBI-FM) with tunable length and flexibility. The flexibility of mPBI-FM can be optimized to decrease uptake by macrophages in vivo, leading to increased circulation time versus (-)PBI-FM without PBI tetrablocks after intravenous administration in mice. While PEG-b-PPS diblocks form FM within a narrow range of hydrophilic weight fractions, incorporation of pi-stacking PBI groups expanded this range to increase favorability of FM assembly. Furthermore, the aggregation-dependent fluorescence of PBI shifted during oxidation-induced "cylinder-to-sphere" transitions of mPBI-FM into micelles, resulting in a distinct emission wavelength for filamentous versus spherical nanostructures. Thus, incorporation of pi-stacking allows for rapid, scalable assembly of FM with tunable flexibility and stability for theranostic and nanomedicine applications.
Collapse
Affiliation(s)
- Sophia Li
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael P Vincent
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Mallika Modak
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Yugang Liu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
13
|
Correlation between the composition of PLA-based folate targeted micelles and release of phosphonate derivative of betulin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Mougin J, Bourgaux C, Couvreur P. Elongated self-assembled nanocarriers: From molecular organization to therapeutic applications. Adv Drug Deliv Rev 2021; 172:127-147. [PMID: 33705872 DOI: 10.1016/j.addr.2021.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Accepted: 02/26/2021] [Indexed: 12/31/2022]
Abstract
Self-assembled cylindrical aggregates made of amphiphilic molecules emerged almost 40 years ago. Due to their length up to micrometers, those particles display original physico-chemical properties such as important flexibility and, for concentrated samples, a high viscoelasticity making them suitable for a wide range of industrial applications. However, a quarter of century was needed to successfully take advantage of those improvements towards therapeutic purposes. Since then, a wide diversity of biocompatible materials such as polymers, lipids or peptides, have been developed to design self-assembling elongated drug nanocarriers, suitable for therapeutic or diagnostic applications. More recently, the investigation of the main forces driving the unidirectional growth of these nanodevices allowed a translation toward the formation of pure nanodrugs to avoid the use of unnecessary side materials and the possible toxicity concerns associated.
Collapse
Affiliation(s)
- Julie Mougin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Claudie Bourgaux
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| | - Patrick Couvreur
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
15
|
Zajdel A, Wilczok A, Jelonek K, Kaps A, Musiał-Kulik M, Kasperczyk J. Cytotoxic effect of targeted biodegradable epothilone B and rapamycin co-loaded nanocarriers on breast cancer cells. J Biomed Mater Res A 2021; 109:1693-1700. [PMID: 33719211 DOI: 10.1002/jbm.a.37164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
The new therapeutic solutions for breast cancer treatment are needed, for example, combined therapy consisted of several drugs that characterize different mechanisms of action and modern drug delivery systems. Therefore, we used combination of epothilone B (EpoB) and rapamycin (Rap) to analyze the cytotoxic effect against breast cancer cells (MCF-7; MDA-MB-231). Also, the effect of drugs co-delivered in bioresorbable micelles functionalized with biotin (PLA-PEG-BIO; poly(lactide)-co-poly(ethylene glycol)-biotin) was studied. The comparison of effects of the mixture of free drugs and the micelles co-loaded with EpoB and Rap revealed a significant decrease in the cell metabolic activity and survival. Moreover, the dual drug-loaded PLA-PEG-BIO micelles enhanced the cytotoxicity of EpoB and Rap against the tested cells as compared with the free drugs. The blank PLA-PEG-BIO micelles did not affect the tested cells. We expect that mixture of EpoB and Rap may be promising in breast cancer treatment and PLA-PEG-BIO micelles as carrier of these two drugs can be applicable for successful targeted delivery.
Collapse
Affiliation(s)
- Alicja Zajdel
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Sosnowiec, Poland
| | - Adam Wilczok
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Sosnowiec, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Anna Kaps
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland, Sosnowiec, Poland
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|
16
|
Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single- versus Dual-Targeted Nanoparticles with Folic Acid and Biotin for Anticancer Drug Delivery. Pharmaceutics 2021; 13:326. [PMID: 33802531 PMCID: PMC8001342 DOI: 10.3390/pharmaceutics13030326] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer is one of the major causes of death worldwide and its treatment remains very challenging. The effectiveness of cancer therapy significantly depends upon tumour-specific delivery of the drug. Nanoparticle drug delivery systems have been developed to avoid the side effects of the conventional chemotherapy. However, according to the most recent recommendations, future nanomedicine should be focused mainly on active targeting of nanocarriers based on ligand-receptor recognition, which may show better efficacy than passive targeting in human cancer therapy. Nevertheless, the efficacy of single-ligand nanomedicines is still limited due to the complexity of the tumour microenvironment. Thus, the NPs are improved toward an additional functionality, e.g., pH-sensitivity (advanced single-targeted NPs). Moreover, dual-targeted nanoparticles which contain two different types of targeting agents on the same drug delivery system are developed. The advanced single-targeted NPs and dual-targeted nanocarriers present superior properties related to cell selectivity, cellular uptake and cytotoxicity toward cancer cells than conventional drug, non-targeted systems and single-targeted systems without additional functionality. Folic acid and biotin are used as targeting ligands for cancer chemotherapy, since they are available, inexpensive, nontoxic, nonimmunogenic and easy to modify. These ligands are used in both, single- and dual-targeted systems although the latter are still a novel approach. This review presents the recent achievements in the development of single- or dual-targeted nanoparticles for anticancer drug delivery.
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland; (A.B.); (D.W.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (M.J.); (M.M.-K.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 41-200 Sosnowiec, Poland
| |
Collapse
|
17
|
Valenti S, Diaz A, Romanini M, del Valle LJ, Puiggalí J, Tamarit JL, Macovez R. Amorphous binary dispersions of chloramphenicol in enantiomeric pure and racemic poly-lactic acid: Morphology, molecular relaxations, and controlled drug release. Int J Pharm 2019; 568:118565. [DOI: 10.1016/j.ijpharm.2019.118565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022]
|
18
|
Cytotoxic Effect of Paclitaxel and Lapatinib Co-Delivered in Polylactide- co-Poly(ethylene glycol) Micelles on HER-2-Negative Breast Cancer Cells. Pharmaceutics 2019; 11:pharmaceutics11040169. [PMID: 30959904 PMCID: PMC6523169 DOI: 10.3390/pharmaceutics11040169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
To find better strategies to enhance the cytotoxic effect of paclitaxel (PTX) and lapatinib (LAP) against breast cancer cells, we analyzed the efficacy of a novel delivery system containing polylactide-co-poly(ethylene glycol) (PLA-PEG) filomicelles of over 100 nm in length and spherical micelles of approximately 20 nm in diameter. The 1H NMR measurements confirmed the incorporation of PTX and LAP into micelles. Analysis of the drug release mechanism revealed the diffusion-controlled release of LAP and anomalous transport of PTX. Drug content analysis in lyophilized micelles and micellar solution showed their good storage stability for at least 6 weeks. Blank micelles, LAP-loaded micelles and free LAP did not affect MCF-7 breast cancer cell proliferation, suggesting that the cytotoxicity of PTX-, PTX/LAP-loaded micelles, and the binary mixture of free PTX and LAP was solely caused by PTX. PTX/LAP-loaded micelles showed greater toxicity compared to the binary mixture of PTX and LAP after 48 h and 72 h. Only free PTX alone induced P-gp activity. This study showed the feasibility of using a LAP and PTX combination to overcome MDR in MCF-7 cells, particularly when co-loaded into micelles. We suggest that PTX/LAP micelles can be applicable not only for the therapy of HER-2-positive, but also HER-2-negative breast cancers.
Collapse
|