1
|
Lou H, Ding L, Wu T, Li W, Khalaf R, Smyth HDC, Reid DL. Emerging Process Modeling Capabilities for Dry Powder Operations for Inhaled Formulations. Mol Pharm 2023; 20:5332-5344. [PMID: 37783568 DOI: 10.1021/acs.molpharmaceut.3c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Dry powder inhaler (DPI) products are commonly formulated as a mixture of micronized drug particles and large carrier particles, with or without additional fine particle excipients, followed by final powder filling into dose containment systems such as capsules, blisters, or reservoirs. DPI product manufacturing consists of a series of unit operations, including particle size reduction, blending, and filling. This review provides an overview of the relevant critical process parameters used for jet milling, high-shear blending, and dosator/drum capsule filling operations across commonly utilized instruments. Further, this review describes the recent achievements regarding the application of empirical and mechanistic models, especially discrete element method (DEM) simulation, in DPI process development. Although to date only limited modeling/simulation work has been accomplished, in the authors' perspective, process design and development are destined to be more modeling/simulation driven with the emphasis on evaluating the impact of material attributes/process parameters on process performance. The advancement of computational power is expected to enable modeling/simulation approaches to tackle more complex problems with better accuracy when dealing with real-world DPI process operations.
Collapse
Affiliation(s)
- Hao Lou
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Li Ding
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Tian Wu
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Weikun Li
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ryan Khalaf
- Drug Product Technologies, Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Hugh D C Smyth
- College of Pharmacy, The University of Texas at Austin, 2409 West University Avenue, PHR 4.214, Austin, Texas 78712, United States
| | - Darren L Reid
- Drug Product Technologies, Process Development, Amgen, 360 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
3
|
Jezerska L, Prokes R, Gelnar D, Zegzulka J. Hard gelatine capsules: DEM supported experimental study of particle arrangement effect on properties and vibrational transport behaviour. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Stegemann S, Faulhammer E, Pinto JT, Paudel A. Focusing on powder processing in dry powder inhalation product development, manufacturing and performance. Int J Pharm 2022; 614:121445. [PMID: 34998921 DOI: 10.1016/j.ijpharm.2021.121445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/17/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
Dry powder inhalers (DPI) are well established products for the delivery of actives via the pulmonary route. Various DPI products are marketed or developed for the treatment of local lung diseases such as chronic obstructive pulmonary disease (COPD), asthma or cystic fibrosis as well as systemic diseases targeted through inhaled delivery (i.e. Diabetes Mellitus). One of the key prerequisites of DPI formulations is that the aerodynamic size of the drug particles needs to be below 5 µm to enter deeply into the respiratory tract. These inherently cohesive inhalable size particles are either formulated as adhesive mixture with coarse carrier particles like lactose called carrier-based DPI or are formulated as free-flowing carrier-free particles (e.g. soft agglomerates, large hollow particles). In either case, it is common practice that drug and/or excipient particles of DPI formulations are obtained by processing API and API/excipients. The DPI manufacturing process heavily involves several particle and powder technologies such as micronization of the API, dry blending, powder filling and other particle engineering processes such as spray drying, crystallization etc. In this context, it is essential to thoroughly understand the impact of powder/particle properties and processing on the quality and performance of the DPI formulations. This will enable prediction of the processability of the DPI formulations and controlling the manufacturing process so that meticulously designed formulations are able to be finally developed as the finished DPI dosage form. This article is intended to provide a concise account of various aspects of DPI powder processing, including the process understanding and material properties that are important to achieve the desired DPI product quality. Various endeavors of model informed formulation/process design and development for DPI powder and PAT enabled process monitoring and control are also discussed.
Collapse
Affiliation(s)
- Sven Stegemann
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Eva Faulhammer
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|
5
|
Toson P, Doshi P, Matic M, Siegmann E, Blackwood D, Jain A, Brandon J, Lee K, Wilsdon D, Kimber J, Verrier H, Khinast J, Jajcevic D. Continuous mixing technology: Validation of a DEM model. Int J Pharm 2021; 608:121065. [PMID: 34481005 DOI: 10.1016/j.ijpharm.2021.121065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Continuous powder mixing is an important technology used in the development and manufacturing of solid oral dosage forms. Since critical quality attributes of the final product greatly depend on the performance of the mixing step, an analysis of such a process using the Discrete Element Method (DEM) is of crucial importance. On one hand, the number of expensive experimental runs can be reduced dramatically. On the other hand, numerical simulations can provide information that is very difficult to obtain experimentally. In order to apply such a simulation technology in product development and to replace experimental runs, an intensive model validation step is required. This paper presents a DEM model of the vertical continuous mixing device termed CMT (continuous mixing technology) and an extensive validation workflow. First, a cohesive contact model was calibrated in two small-scale characterization experiments: a compression test with spring-back and a shear cell test. An improved, quicker calibration procedure utilizing the previously calibrated contact models is presented. The calibration procedure is able to differentiate between the blend properties caused by different API particle sizes in the same formulation. Second, DEM simulations of the CMT were carried out to determine the residence time distribution (RTD) of the material inside the mixer. After that, the predicted RTDs were compared with the results of tracer spike experiments conducted with two blend material properties at two mass throughputs of 15 kg/h and 30 kg/h. Additionally, three hold-up masses (500, 730 and 850 g) and three impeller speeds (400, 440 and 650 rpms) were considered. Finally, both RTD datasets from DEM and tracer experiments were used to predict the damping behavior of incoming feeder fluctuations and the funnel of maximum duration and magnitude of incoming deviations that do not require a control action. The results for both tools in terms of enabling a control strategy (the fluctuation damping and the funnel plot) are in excellent agreement, indicating that DEM simulations are well suited to replace process-scale tracer spike experiments to determine the RTD.
Collapse
Affiliation(s)
- Peter Toson
- Research Center Pharmaceutical Engineering, Inffeldgasse 13, 8010 Graz, Austria
| | - Pankaj Doshi
- Worldwide Research and Development, Pfizer Inc., Groton, CT, USA.
| | - Marko Matic
- Research Center Pharmaceutical Engineering, Inffeldgasse 13, 8010 Graz, Austria
| | - Eva Siegmann
- Research Center Pharmaceutical Engineering, Inffeldgasse 13, 8010 Graz, Austria
| | - Daniel Blackwood
- Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
| | - Ashwinkumar Jain
- Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
| | - Jenna Brandon
- Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
| | - Kai Lee
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, United Kingdom
| | - David Wilsdon
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, United Kingdom
| | - James Kimber
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, United Kingdom
| | - Hugh Verrier
- Worldwide Research and Development, Pfizer Inc., Sandwich, Kent, United Kingdom
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering, Inffeldgasse 13, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Dalibor Jajcevic
- Research Center Pharmaceutical Engineering, Inffeldgasse 13, 8010 Graz, Austria.
| |
Collapse
|