1
|
Gebrie HT, Thankachan D, Tsai HC, Lai JY, Chang HM, Wu SY. Doxorubicin-loaded Polymeric Biotin-PEG-SeSe-PBLA Micelles with surface Binding of Biotin-Mediated Cancer Cell Targeting and Redox-Responsive Drug release for enhanced anticancer efficacy. Colloids Surf B Biointerfaces 2024; 241:114028. [PMID: 38905811 DOI: 10.1016/j.colsurfb.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
Biotin receptors are overexpressed in various cancer cell types, essential in tumor development, metabolism, and metastasis. Chemotherapeutic agents may be more effective and have fewer adverse effects if they specifically target the biotin receptors on cancer cells. Polymeric micelles (PMs) with nanoscale size via the EPR effect to accumulate near tumor tissue. We utilized the solvent exchange technique to crate polymeric Biotin-PEG-SeSe-PBLA micelles. This underwent self-assembly to create uniformly dispersed PMs with a hydrodynamic diameter of 81.54 ± 0.23 nm. The resulting PMs characterized by 1HNMR, 13CNMR, FTIR, and Raman spectroscopy. PMs exhibited a high efficacy of Doxorubicin encapsulation (EE) and loading content (DLC), with values of 5.93 wt% and 74.32 %, respectively. DOX@Biotin-PEG-SeSe-PBLA micelles showed optimal DOX release, around 89 % and 74 % in 10 mM glutathione and 0.1 % H2O2, respectively, within 72 hours, in the simulated cancer redox pool. Fascinatingly, the blank Biotin-PEG-SeSe-PBLA micelles did not affect the HaCaT or HeLa cell lines; approximately 85 % of the cells were metabolically active. Contrarily, at a 5 μg/ml concentration, DOX@Biotin-PEG-SeSe-PBLA specifically inhibited the proliferation of roughly 76 % of HeLa cells and 11 % of HaCaT cells. The fluorescence microscopy results demonstrated that biotin-decorated micelles were more successfully internalized by HeLa cells, which overexpress the biotin receptor, than by non-targeted micelles in vitro. In summary, the diselenide-linked Biotin-PEGSeSe-PBLA formed smart PMs that could offer DOX specific to cancer cells with precision and are physiologically durable.
Collapse
Affiliation(s)
- Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Department of Chemistry, College of Natural and Computational Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Darieo Thankachan
- Department of materials science and engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&d Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&d Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC
| | - Hao-Ming Chang
- Division of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Szu-Yuan Wu
- Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan, ROC; Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan, ROC; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan, ROC; Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan, ROC; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan, ROC; Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Darge H, Addisu KD, Tsai HC, Birhan YS, Hanurry EY, Mekonnen TW, Gebrie HT, Arunagiri V, Thankachan D, Wu TY, Lai JY, Chang HM, Huang CC, Wu SY. Actively Targeting Redox-Responsive Multifunctional Micelles for Synergistic Chemotherapy of Cancer. ACS OMEGA 2024; 9:34268-34280. [PMID: 39157138 PMCID: PMC11325410 DOI: 10.1021/acsomega.3c09817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 08/20/2024]
Abstract
Stimuli-responsive polymeric micelles decorated with cancer biomarkers represent an optimal choice for drug delivery applications due to their ability to enhance therapeutic efficacy while mitigating adverse side effects. Accordingly, we synthesized a digoxin-modified novel multifunctional redox-responsive disulfide-linked poly(ethylene glycol-b-poly(lactic-co-glycolic acid) copolymer (Bi(Dig-PEG-PLGA)-S2) for the targeted and controlled release of doxorubicin (DOX) in cancer cells. Within the micellar aggregate, the disulfide bond confers redox responsiveness, while the presence of the digoxin moiety acts as a targeting agent and chemosensitizer for DOX. Upon self-assembly in aqueous solution, Bi(Dig-PEG-PLGA)-S2 formed uniformly distributed spherical micelles with a hydrodynamic diameter (D h ) of 58.36 ± 0.78 nm and a zeta potential of -24.71 ± 1.01 mV. The micelles exhibited desirable serum and colloidal stability with a substantial drug loading capacity (DLC) of 6.26% and an encapsulation efficiency (EE) of 83.23%. In addition, the release of DOX demonstrated the redox-responsive behavior of the micelles, with approximately 89.41 ± 6.09 and 79.64 ± 6.68% of DOX diffusing from DOX@Bi(Dig-PEG-PLGA)-S2 in the presence of 10 mM GSH and 0.1 mM H2O2, respectively, over 96 h. Therefore, in HeLa cell lines, DOX@Bi(Dig-PEG-PLGA)-S2 showed enhanced intracellular accumulation and subsequent apoptotic effects, attributed to the targeting ability and chemosensitization potential of digoxin. Hence, these findings underscore the promising characteristics of Bi(Dig-PEG-PLGA)-S2 as a multifunctional drug delivery vehicle for cancer treatment.
Collapse
Affiliation(s)
- Haile
Fentahun Darge
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- College
of Medicine and Health Science, Bahir Dar
University, P.O. Box
79, Bahir Dar 00000, Ethiopia
- Centre
for Ocular Research & Education (CORE), School of Optometry and
Vision Science, University of Waterloo, 200 Columbia St W., Waterloo N2L 3W8, Canada
| | - Kefyalew Dagnew Addisu
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Institute
of Technology, Bahir Dar University, P.O. Box 79, Bahir Dar 00000, Ethiopia
| | - Hsieh-Chih Tsai
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced
Membrane Materials Center, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- R&D
Center
for Membrane Technology, Chung Yuan University, Chung-Li 320, Taiwan
| | - Yihenew Simegniew Birhan
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department
of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos 00000, Ethiopia
| | - Endris Yibru Hanurry
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- School
of Medicine, Health Science College, Addis
Ababa University, P.O.
Box 1176, Addis Ababa 00000, Ethiopia
| | - Tefera Worku Mekonnen
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Hailemichael Tegenu Gebrie
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Vinothini Arunagiri
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Darieo Thankachan
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Tsung-Yun Wu
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Juin-Yih Lai
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced
Membrane Materials Center, National Taiwan
University of Science and Technology, Taipei 10607, Taiwan
- R&D
Center
for Membrane Technology, Chung Yuan University, Chung-Li 320, Taiwan
| | - Hao-Ming Chang
- Division
of General Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Chiang Huang
- Taiwan
Instrument Research Institute, National
Applied Research Laboratories, Hsinchu 300, Taiwan
| | - Szu-Yuan Wu
- Department
of Food Nutrition and Health Biotechnology, College of Medical and
Health Science, Asia University, Taichung 413, Taiwan
- Big
Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan
- Division
of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan 256, Taiwan
- Department
of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Cancer
Center, Lo-Hsu Medical Foundation, Lotung
Poh-Ai Hospital, Yilan 256, Taiwan
- Graduate
Institute of Business Administration, Fu
Jen Catholic University, Taipei 242, Taiwan
- Centers
for Regional Anesthesia and Pain Medicine, Taipei Municipal Wan Fang
Hospital, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
3
|
Singh D, Sharma Y, Dheer D, Shankar R. Stimuli responsiveness of recent biomacromolecular systems (concept to market): A review. Int J Biol Macromol 2024; 261:129901. [PMID: 38316328 DOI: 10.1016/j.ijbiomac.2024.129901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Stimuli responsive delivery systems, also known as smart/intelligent drug delivery systems, are specialized delivery vehicles designed to provide spatiotemporal control over drug release at target sites in various diseased conditions, including tumor, inflammation and many others. Recent advances in the design and development of a wide variety of stimuli-responsive (pH, redox, enzyme, temperature) materials have resulted in their widespread use in drug delivery and tissue engineering. The aim of this review is to provide an insight of recent nanoparticulate drug delivery systems including polymeric nanoparticles, dendrimers, lipid-based nanoparticles and the design of new polymer-drug conjugates (PDCs), with a major emphasis on natural along with synthetic commercial polymers used in their construction. Special focus has been placed on stimuli-responsive polymeric materials, their preparation methods, and the design of novel single and multiple stimuli-responsive materials that can provide controlled drug release in response a specific stimulus. These stimuli-sensitive drug nanoparticulate systems have exhibited varying degrees of substitution with enhanced in vitro/in vivo release. However, in an attempt to further increase drug release, new dual and multi-stimuli based natural polymeric nanocarriers have been investigated which respond to a mixture of two or more signals and are awaiting clinical trials. The translation of biopolymeric directed stimuli-sensitive drug delivery systems in clinic demands a thorough knowledge of its mechanism and drug release pattern in order to produce affordable and patient friendly products.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Yashika Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India; Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
5
|
Yuan Y, Wang Z, Su S, Mi Y, Li Q, Dong F, Tan W, Guo Z. Redox-sensitive self-assembled micelles based on low molecular weight chitosan-lipoic acid conjugates for the delivery of doxorubicin: Effect of substitution degree of lipoic acid. Int J Biol Macromol 2023; 247:125849. [PMID: 37460070 DOI: 10.1016/j.ijbiomac.2023.125849] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Amphiphilic low molecular weight chitosan-lipoic acid (LC-LA) conjugates with different degrees of substitution (DS) of LA were synthesized by N, N'‑carbonyldiimidazole (CDI) catalysis to self-assemble into redox-sensitive micelles. Critical micelle concentration (CMC), size, zeta potential, biocompatibility and redox-sensitive behavior of blank micelles were investigated. The results indicated that blank micelles with low CMC, nanoscale size and positive zeta potential showed excellent biocompatibility and redox-sensitive behavior. Doxorubicin (Dox) loaded micelles were prepared by encapsulating Dox into blank micelles. The loading ability, trigger-release behavior, antitumor activity and cellular uptake of Dox loaded micelles were studied. The results demonstrated that Dox loaded micelles with superior loading ability exhibited redox-trigger behavior, strong antitumor activity and increased cellular uptake efficiency against A549 cell. Besides, the effect of DS of LA on above properties was estimated. An increase in DS of LA reduced the CMC and cumulative release amount of Dox, but improved the loading efficiency, antitumor activity, and cellular uptake of Dox loaded micelles, which resulted from stronger interaction of hydrophobic groups in micelles with the DS of LA increased. Overall, self-assembled LC-LA micelles with good biosecurity and redox-sensitive behavior hold promising application prospects in Dox delivery and improving cancer therapeutic effect of Dox.
Collapse
Affiliation(s)
- Yuting Yuan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhenhua Wang
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Shengjia Su
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
6
|
Almajidi YQ, Kadhim MM, Alsaikhan F, Turki Jalil A, Hassan Sayyid N, Alexis Ramírez-Coronel A, Hassan Jawhar Z, Gupta J, Nabavi N, Yu W, Ertas YN. Doxorubicin-loaded micelles in tumor cell-specific chemotherapy. ENVIRONMENTAL RESEARCH 2023; 227:115722. [PMID: 36948284 DOI: 10.1016/j.envres.2023.115722] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Nanomedicine is a field that combines biology and engineering to improve disease treatment, particularly in cancer therapy. One of the promising techniques utilized in this area is the use of micelles, which are nanoscale delivery systems that are known for their simple preparation, high biocompatibility, small particle size, and the ability to be functionalized. A commonly employed chemotherapy drug, Doxorubicin (DOX), is an effective inhibitor of topoisomerase II that prevents DNA replication in cancer cells. However, its efficacy is frequently limited by resistance resulting from various factors, including increased activity of drug efflux transporters, heightened oncogenic factors, and lack of targeted delivery. This review aims to highlight the potential of micelles as new nanocarriers for delivering DOX and to examine the challenges involved with employing chemotherapy to treat cancer. Micelles that respond to changes in pH, redox, and light are known as stimuli-responsive micelles, which can improve the targeted delivery of DOX and its cytotoxicity by facilitating its uptake in tumor cells. Additionally, micelles can be utilized to administer a combination of DOX and other drugs and genes to overcome drug resistance mechanisms and improve tumor suppression. Furthermore, micelles can be used in phototherapy, both photodynamic and photothermal, to promote cell death and increase DOX sensitivity in human cancers. Finally, the alteration of micelle surfaces with ligands can further enhance their targeted delivery for cancer suppression.
Collapse
Affiliation(s)
| | - Mustafa M Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, 10022, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group(GIEE), National University of Education, Ecuador
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Iraq
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P, India
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Türkiye; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
7
|
Fabrication of amino acid conjugated polymeric micelles for controlled anticancer drug delivery using radiation and pH-stimuli-triggering systems. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Smart Polymeric Micelles for Anticancer Hydrophobic Drugs. Cancers (Basel) 2022; 15:cancers15010004. [PMID: 36612002 PMCID: PMC9817890 DOI: 10.3390/cancers15010004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has become one of the deadliest diseases in our society. Surgery accompanied by subsequent chemotherapy is the treatment most used to prolong or save the patient's life. Still, it carries secondary risks such as infections and thrombosis and causes cytotoxic effects in healthy tissues. Using nanocarriers such as smart polymer micelles is a promising alternative to avoid or minimize these problems. These nanostructured systems will be able to encapsulate hydrophilic and hydrophobic drugs through modified copolymers with various functional groups such as carboxyls, amines, hydroxyls, etc. The release of the drug occurs due to the structural degradation of these copolymers when they are subjected to endogenous (pH, redox reactions, and enzymatic activity) and exogenous (temperature, ultrasound, light, magnetic and electric field) stimuli. We did a systematic review of the efficacy of smart polymeric micelles as nanocarriers for anticancer drugs (doxorubicin, paclitaxel, docetaxel, lapatinib, cisplatin, adriamycin, and curcumin). For this reason, we evaluate the influence of the synthesis methods and the physicochemical properties of these systems that subsequently allow an effective encapsulation and release of the drug. On the other hand, we demonstrate how computational chemistry will enable us to guide and optimize the design of these micelles to carry out better experimental work.
Collapse
|
9
|
Shi Z, Liu J, Tian L, Li J, Gao Y, Xing Y, Yan W, Hua C, Xie X, Liu C, Liang C. Insights into stimuli-responsive diselenide bonds utilized in drug delivery systems for cancer therapy. Biomed Pharmacother 2022; 155:113707. [PMID: 36122520 DOI: 10.1016/j.biopha.2022.113707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the complexity and particularity of cancer cell microenvironments, redox responsive drug delivery systems (DDSs) for cancer therapy have been extensively explored. Compared with widely reported cancer treatment systems based on disulfide bonds, diselenide bonds have better redox properties and greater anticancer efficiency. In this review, the significance and application of diselenide bonds in DDSs are summarized, and the stimulation sensitivity of diselenide bonds is comprehensively reported. The potential and prospects for the application of diselenide bonds in next-generation anticancer drug treatment systems are extensively discussed.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi 830002, PR China.
| | - Jifang Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Life Science, Northwest University, Xi'an 710069, PR China.
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Yue Gao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Yue Xing
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Wenjing Yan
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Chenyu Hua
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd. Xi'an 710025, PR China.
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, PR China.
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
10
|
Sikder A, Vambhurkar G, Amulya E, Bagasariya D, Famta P, Shah S, Khatri DK, Singh SB, Sinha VR, Srivastava S. Advancements in redox-sensitive micelles as nanotheranostics: A new horizon in cancer management. J Control Release 2022; 349:1009-1030. [PMID: 35961470 DOI: 10.1016/j.jconrel.2022.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
World Health Organisation (WHO) delineated cancer as one of the foremost reasons for mortality with 10 million deaths in the year 2020. Early diagnosis and effective drug delivery are of utmost importance in cancer management. The entrapment of both bio-imaging dyes and drugs will open novel avenues in the area of tumor theranostics. Elevated levels of reactive oxygen species (ROS) and glutathione (GSH) are the characteristic features of the tumor microenvironment (TME). Researchers have taken advantage of these specific TME features in recent years to develop micelle-based theranostic nanosystems. This review focuses on the advantages of redox-sensitive micelles (RSMs) and supramolecular self-assemblies for tumor theranostics. Key chemical linkers employed for the tumor-specific release of the cargo have been discussed. In vitro characterisation techniques used for the characterization of RSMs have been deliberated. Potential bottlenecks that may present themselves in the bench-to-bedside translation of this technology and the regulatory considerations have been deliberated.
Collapse
Affiliation(s)
- Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - V R Sinha
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
11
|
Darge HF, Lin YH, Hsieh-Chih T, Lin SY, Yang MC. Thermo/redox-responsive dissolvable gelatin-based microsphere for efficient cell harvesting during 3D cell culturing. BIOMATERIALS ADVANCES 2022; 139:213008. [PMID: 35882154 DOI: 10.1016/j.bioadv.2022.213008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The use of microspheres for culturing adherent cells has been proven as an important method, allowing for obtaining adequate number of cells in limited space and volume of medium for the intended cell-based medical applications. However, the use of proteolytic enzymes for cell harvesting from the microsphere resulted in cell damage and loss of functionality. Therefore, in this study, we developed a novel redox/thermo-responsive dissolvable gelatin-based microsphere for successful cell proliferation and harvesting adequate high-quality cells using non-enzymatic cell detachment methods. Initially, a redox-induced dissolvable gelatin-based microsphere was successfully prepared using disulfide bonds as crosslinking agent, firmly stabilizing gelatin networks and forming a stable microsphere at physiological temperature. The optimized concentration of the crosslinking agent was 1.2 mM, which kept the microsphere stable for >120 h. The microsphere was then coated with PNIPAm-ALA copolymer via physical or chemical means, resulting in a positively charged thermosensitive surface. The positive charge derived from ALA in PNIPAm-ALA copolymer enhanced cell attachment, while the thermosensitive property of the copolymer enabled for temperature induced cell harvesting. When the temperature dropped below the LCST value of PNIPAm-ALA5 (33.4°C), the copolymer swelled and became more hydrophilic, allowing cells to be readily separated. The addition of reducing agents such as GSH, DTT and L-cysteine resulted in further cleavage of the disulfide bond in the microsphere and dissolution of the microsphere for complete cell detachment. Interestingly, cell attachment and proliferation were enhanced on microspheres coated with PNIPAm-ALA5 using diselenide as a crosslinking agent, and complete cell detachment was occurred within 15 min after adding 25 mM DTT followed by lowering the temperature (4°C). Therefore, the microsphere fabricated in this study was worthwhile for non-enzymatic cell detachment and has the potential to be used for cell expansion and harvesting adequate live cells of high quality and functionality for tissue engineering or cell therapy.
Collapse
Affiliation(s)
- Haile F Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan; College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Yu-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Tsai Hsieh-Chih
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan.
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu, Taiwan.
| | - Ming-Chien Yang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
| |
Collapse
|
12
|
Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai HC, Wu SY. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy. BIOMATERIALS ADVANCES 2022; 139:213015. [PMID: 35882161 DOI: 10.1016/j.bioadv.2022.213015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Core-crosslinking of micelles (CCMs) appears to be a favorable strategy to enhance micellar stability and sustained release of the loaded drug. In this study, the DOX-conjugated pH-sensitive polymeric prodrug Methoxy Poly (ethylene oxide)-b-Poly (Aspartate-Hydrazide) (mPEG-P [Asp-(Hyd-DOX)] was created using ring-opening polymerization. To further enhance the micellar system, 3,3'-diselanediyldipropanoic acid (DSeDPA) was applied to link the hydrophobic segment via click reaction to form pH/redox-responsive CCMs. Dual anti-cancer drugs, DOX as a pro-drug and SN-38 as a targeting drug, were used to enhance inhibition. DLS confirmed that the non-cross-linked micelle (NCMs) showed a higher (96.43 nm) particle size compared to the CCMs (72.63 nm). Due to micellar shrinkage after crosslinking, CCMs displayed SN-38 drug loading (7.32 %) and encapsulation efficiency (86.23 %). The mPEG-P(Asp-Hyd) copolymer's in vitro cytotoxicity on HeLa and HaCaT cell lines found that 84.52 % of the cells are alive, and zebrafish (Danio rerio) embryos and larvae are highly biocompatible. The DOX/SN-38@CCMs had a sustained discharge profile in vitro, unlike the DOX/SN-38@NCMs. In DOX/SN-38@CCMs, HeLa cells were inhibited 50.90 % more than HaCaT (14.25 %) at the maximum drug dose (10 μg/mL). The CCMs successfully targeted and supplied DOX/SN-38 in HeLa cells rather than HaCaT cells, based on cellular uptake of 2D cell culture. CCMs, unlike NCMs, inhibit the growth of spheroids for extended periods of time due to the prolonged release of the loaded drug. Overall, CCMs are good-looking for use as regulated delivery of DOX/SN-38 in cancer cells because of all of these appealing characteristics.
Collapse
Affiliation(s)
- Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Darieo Thankachan
- Department of Materials Science And Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&d Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan.; Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Yun L, Li K, Liu C, Deng L, Li J. Dual-modified starch micelles as a promising nanocarrier for doxorubicin. Int J Biol Macromol 2022; 219:685-693. [PMID: 35878670 DOI: 10.1016/j.ijbiomac.2022.07.141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/29/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Natural amphiphilic polymer micelles have garnered considerable research attention as nanocarriers for delivering drugs. The objective of this study was to explore the possibility of applying biocompatible dual-modified starch micelles as drug delivery vehicles. To this end, a dual-modified corn starch polymer (SCD) was synthesized with zwitterionic sulfobetaine and deoxycholic acid; spherical micelles with an average particle size of ~200 nm were prepared through the self-assembly of SCD. The effects of dual modification on the degree of substitution, molecular structure, and functional properties of SCD were investigated. Further, doxorubicin was successfully incorporated into the micelles, and an in vitro drug release study was performed to confirm that the drug-loaded micelles displayed pH-sensitive properties with controlled and sustained release. The dissolve-diffuse-erosion-degradation release process was described according to the dynamic models of drug release for SCD micelles. The results can be used as reference information for further studies in the biotechnology and pharmaceutical domains.
Collapse
Affiliation(s)
- Linqi Yun
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; The Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, PR China
| | - Cancan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Ligao Deng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
14
|
Hanurry EY, Birhan YS, Darge HF, Mekonnen TW, Arunagiri V, Chou HY, Cheng CC, Lai JY, Tsai HC. PAMAM Dendritic Nanoparticle-Incorporated Hydrogel to Enhance the Immunogenic Cell Death and Immune Response of Immunochemotherapy. ACS Biomater Sci Eng 2022; 8:2403-2418. [PMID: 35649177 DOI: 10.1021/acsbiomaterials.2c00171] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The efficiency of chemotherapy is frequently affected by its multidrug resistance, immune suppression, and severe side effects. Its combination with immunotherapy to reverse immune suppression and enhance immunogenic cell death (ICD) has emerged as a new strategy to overcome the aforementioned issues. Herein, we construct a pH-responsive PAMAM dendritic nanocarrier-incorporated hydrogel for the co-delivery of immunochemotherapeutic drugs. The stepwise conjugation of moieties and drug load was confirmed by various techniques. In vitro experimental results demonstrated that PAMAM dendritic nanoparticles loaded with a combination of drugs exhibited spherical nanosized particles, facilitated the sustained release of drugs, enhanced cellular uptake, mitigated cell viability, and induced apoptosis. The incorporation of PAB-DOX/IND nanoparticles into thermosensitive hydrogels also revealed the formation of a gel state at a physiological temperature and further a robust sustained release of drugs at the tumor microenvironment. Local injection of this formulation into HeLa cell-grafted mice significantly suppressed tumor growth, induced immunogenic cell death-associated cytokines, reduced cancer cell proliferation, and triggered a CD8+ T-cell-mediated immune response without obvious systemic toxicity, which indicates a synergistic ICD effect and reverse of immunosuppression. Hence, the localized delivery of immunochemotherapeutic drugs by a PAMAM dendritic nanoparticle-incorporated hydrogel could provide a promising strategy to enhance antitumor activity in cancer therapy.
Collapse
Affiliation(s)
- Endris Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Vinothini Arunagiri
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan.,Department of Chemical Engineering & Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
15
|
Akib AA, Shakil R, Rumon MMH, Roy CK, Chowdhury EH, Chowdhury AN. Natural and Synthetic Micelles for Delivery of Small Molecule Drugs, Imaging Agents and Nucleic Acids. Curr Pharm Des 2022; 28:1389-1405. [PMID: 35524674 DOI: 10.2174/1381612828666220506135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
The poor solubility, lack of targetability, quick renal clearance, and degradability of many therapeutic and imaging agents strongly limit their applications inside the human body. Amphiphilic copolymers having self-assembling properties can form core-shell structures called micelles, a promising nanocarrier for hydrophobic drugs, plasmid DNA, oligonucleotides, small interfering RNAs (siRNAs) and imaging agents. Fabrication of micelles loaded with different pharmaceutical agents provides numerous advantages including therapeutic efficacy, diagnostic sensitivity, and controlled release to the desired tissues. Moreover, due to their smaller particle size (10-100 nm) and modified surfaces with different functional groups (such as ligands) help them to accumulate easily in the target location, enhancing cellular uptake and reducing unwanted side effects. Furthermore, the release of the encapsulated agents may also be triggered from stimuli-sensitive micelles at different physiological conditions or by an external stimulus. In this review article, we discuss the recent advancement in formulating and targeting different natural and synthetic micelles including block copolymer micelles, cationic micelles, and dendrimers-, polysaccharide- and protein-based micelles for the delivery of different therapeutic and diagnostic agents. Finally, their applications, outcomes, and future perspectives have been summarized.
Collapse
Affiliation(s)
- Anwarul Azim Akib
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Ragib Shakil
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Chanchal Kumar Roy
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | - Ezharul Hoque Chowdhury
- Jeffrey Cheah School of Medicine and Health Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Malaysia
| | - Al-Nakib Chowdhury
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| |
Collapse
|
16
|
Birhan YS, Hanurry EY, Mekonnen TW, Darge HF, Lin Y, Yang M, Tsai H. Biotin‐decorated redox‐responsive micelles from diselenide‐linked star‐shaped copolymers for the targeted delivery and controlled release of doxorubicin in cancer cells. J Appl Polym Sci 2022. [DOI: 10.1002/app.52327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Endris Yibru Hanurry
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
| | - Yu‐Hsuan Lin
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Ming‐Chien Yang
- Department of Materials Science and Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Hsieh‐Chih Tsai
- Graduate Institute of Applied Science and Technology National Taiwan University of Science and Technology Taipei Taiwan
- Advanced Membrane Materials Center National Taiwan University of Science and Technology Taipei Taiwan
- R&D Center for Membrane Technology Chung Yuan Christian University Taoyuan Taiwan
| |
Collapse
|
17
|
Development of thermo/redox-responsive diselenide linked methoxy poly (ethylene glycol)-block-poly(ε-caprolactone-co-p-dioxanone) hydrogel for localized control drug release. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02776-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Lopes KP, Pinheiro DP, Neto JF, Gonçalves TA, Pereira SA, Pessoa C, Vieira IG, Ribeiro MEN, Yeates SG, Ricardo NM. Lapachol-loaded triblock copoly(oxyalkylene)s micelles: Potential use for anticancer treatment. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
20
|
Synthesis of cyclodextrin-derived star poly(N-vinylpyrrolidone)/poly(lactic-co-glycolide) supramolecular micelles via host-guest interaction for delivery of doxorubicin. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Andrgie AT, Darge HF, Mekonnen TW, Birhan YS, Hanurry EY, Chou HY, Wang CF, Tsai HC, Yang JM, Chang YH. Ibuprofen-Loaded Heparin Modified Thermosensitive Hydrogel for Inhibiting Excessive Inflammation and Promoting Wound Healing. Polymers (Basel) 2020; 12:E2619. [PMID: 33172099 PMCID: PMC7694755 DOI: 10.3390/polym12112619] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogels have been investigated as ideal biomaterials for wound treatment owing to their ability to form a highly moist environment which accelerates cell migration and tissue regeneration for prompt wound healing. They can also be used as a drug carrier for local delivery, and are able to activate immune cells to enhance wound healing. Here, we developed heparin-conjugated poly(N-isopropylacrylamide), an injectable, in situ gel-forming polymer, and evaluated its use in wound healing. Ibuprofen was encapsulated into the hydrogel to help reduce pain and excessive inflammation during healing. In addition to in vitro studies, a BALB/c mice model was used to evaluate its effect on would healing and the secretion of inflammatory mediators. The in vitro assay confirmed that the ibuprofen released from the hydrogel dramatically reduced lipopolysaccharide-induced inflammation by suppressing the production of NO, PGE2 and TNF-α in RAW264.7 macrophages. Moreover, an in vivo wound healing assay was conducted by applying hydrogels to wounds on the backs of mice. The results showed that the ibuprofen-loaded hydrogel improved healing relative to the phosphate buffered saline group. This study indicates that ibuprofen loaded in an injectable hydrogel is a promising candidate for wound healing therapy.
Collapse
Affiliation(s)
- Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (H.F.D.); (T.W.M.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (C.-F.W.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (H.F.D.); (T.W.M.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (C.-F.W.)
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (H.F.D.); (T.W.M.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (C.-F.W.)
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (H.F.D.); (T.W.M.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (C.-F.W.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (H.F.D.); (T.W.M.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (C.-F.W.)
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (H.F.D.); (T.W.M.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (C.-F.W.)
| | - Chih-Feng Wang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (H.F.D.); (T.W.M.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (C.-F.W.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (H.F.D.); (T.W.M.); (Y.S.B.); (E.Y.H.); (H.-Y.C.); (C.-F.W.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jen Ming Yang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 320-338, Taiwan;
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 320-338, Taiwan
| | - Yen-Hsiang Chang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 320-338, Taiwan;
- Department of General Dentistry, Chang Gung Memorial Hospital, Taoyuan 320-338, Taiwan
| |
Collapse
|
22
|
Dong Y, Liu P. Improving drug delivery performance of pH-triggered prodrug nanoparticles with an adaptive polycation block as pH-sensitive gatekeeper. Int J Pharm 2020; 589:119796. [DOI: 10.1016/j.ijpharm.2020.119796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
|
23
|
Birhan YS, Darge HF, Hanurry EY, Andrgie AT, Mekonnen TW, Chou HY, Lai JY, Tsai HC. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release. Pharmaceutics 2020; 12:E580. [PMID: 32585885 PMCID: PMC7356386 DOI: 10.3390/pharmaceutics12060580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 11/23/2022] Open
Abstract
Polymeric micelles (PMs) have been used to improve the poor aqueous solubility, slow absorption and non-selective biodistribution of chemotherapeutic agents (CAs), albeit, they suffer from disassembly and premature release of payloads in the bloodstream. To alleviate the thermodynamic instability of PMs, different core crosslinking approaches were employed. Herein, we synthesized the poly(ethylene oxide)-b-poly((2-aminoethyl)diselanyl)ethyl l-aspartamide)-b-polycaprolactone (mPEG-P(LA-DSeDEA)-PCL) copolymer which self-assembled into monodispersed nanoscale, 156.57 ± 4.42 nm, core crosslinked micelles (CCMs) through visible light-induced diselenide metathesis reaction between the pendant selenocystamine moieties. The CCMs demonstrated desirable doxorubicin (DOX)-loading content (7.31%) and encapsulation efficiency (42.73%). Both blank and DOX-loaded CCMs (DOX@CCMs) established appreciable colloidal stability in the presence of bovine serum albumin (BSA). The DOX@CCMs showed redox-responsive drug releasing behavior when treated with 5 and 10 mM reduced glutathione (GSH) and 0.1% H2O2. Unlike the DOX-loaded non-crosslinked micelles (DOX@NCMs) which exhibited initial burst release, DOX@CCMs demonstrated a sustained release profile in vitro where 71.7% of the encapsulated DOX was released within 72 h. In addition, the in vitro fluorescent microscope images and flow cytometry analysis confirmed the efficient cellular internalization of DOX@CCMs. The in vitro cytotoxicity test on HaCaT, MDCK, and HeLa cell lines reiterated the cytocompatibility (≥82% cell viability) of the mPEG-P(LA-DSeDEA)-PCL copolymer and DOX@CCMs selectively inhibit the viabilities of 48.85% of HeLa cells as compared to 15.75% of HaCaT and 7.85% of MDCK cells at a maximum dose of 10 µg/mL. Overall, all these appealing attributes make CCMs desirable as nanocarriers for the delivery and controlled release of DOX in tumor cells.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
24
|
Das SS, Bharadwaj P, Bilal M, Barani M, Rahdar A, Taboada P, Bungau S, Kyzas GZ. Stimuli-Responsive Polymeric Nanocarriers for Drug Delivery, Imaging, and Theragnosis. Polymers (Basel) 2020; 12:E1397. [PMID: 32580366 PMCID: PMC7362228 DOI: 10.3390/polym12061397] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
In the past few decades, polymeric nanocarriers have been recognized as promising tools and have gained attention from researchers for their potential to efficiently deliver bioactive compounds, including drugs, proteins, genes, nucleic acids, etc., in pharmaceutical and biomedical applications. Remarkably, these polymeric nanocarriers could be further modified as stimuli-responsive systems based on the mechanism of triggered release, i.e., response to a specific stimulus, either endogenous (pH, enzymes, temperature, redox values, hypoxia, glucose levels) or exogenous (light, magnetism, ultrasound, electrical pulses) for the effective biodistribution and controlled release of drugs or genes at specific sites. Various nanoparticles (NPs) have been functionalized and used as templates for imaging systems in the form of metallic NPs, dendrimers, polymeric NPs, quantum dots, and liposomes. The use of polymeric nanocarriers for imaging and to deliver active compounds has attracted considerable interest in various cancer therapy fields. So-called smart nanopolymer systems are built to respond to certain stimuli such as temperature, pH, light intensity and wavelength, and electrical, magnetic and ultrasonic fields. Many imaging techniques have been explored including optical imaging, magnetic resonance imaging (MRI), nuclear imaging, ultrasound, photoacoustic imaging (PAI), single photon emission computed tomography (SPECT), and positron emission tomography (PET). This review reports on the most recent developments in imaging methods by analyzing examples of smart nanopolymers that can be imaged using one or more imaging techniques. Unique features, including nontoxicity, water solubility, biocompatibility, and the presence of multiple functional groups, designate polymeric nanocues as attractive nanomedicine candidates. In this context, we summarize various classes of multifunctional, polymeric, nano-sized formulations such as liposomes, micelles, nanogels, and dendrimers.
Collapse
Affiliation(s)
- Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India;
| | - Priyanshu Bharadwaj
- UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76175-133, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Condensed Matter Physics Area, Particle Physics Department Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
25
|
Advances in anti-breast cancer drugs and the application of nano-drug delivery systems in breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101662] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Hanurry EY, Mekonnen TW, Andrgie AT, Darge HF, Birhan YS, Hsu WH, Chou HY, Cheng CC, Lai JY, Tsai HC. Biotin-Decorated PAMAM G4.5 Dendrimer Nanoparticles to Enhance the Delivery, Anti-Proliferative, and Apoptotic Effects of Chemotherapeutic Drug in Cancer Cells. Pharmaceutics 2020; 12:E443. [PMID: 32403321 PMCID: PMC7284937 DOI: 10.3390/pharmaceutics12050443] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/29/2022] Open
Abstract
Biotin receptors are overexpressed by various types of solid cancer cells and play a significant role in tumor metabolism, growth, and metastasis. Thus, targeting the biotin receptors on tumor cells may enhance the efficiency and reduce the side-effects of chemotherapy. The aim of this study was to develop a biotin-coupled poly(amido)amine (PAMAM) (PG4.5) dendrimer nanoparticle to enhance the tumor-specific delivery and intracellular uptake of anticancer drugs via receptor-mediated endocytosis. We modified PG4.5 with diethylenetriamine (DETA) followed by biotin via an amide bond and characterized the resulting PG4.5-DETA-biotin nanoparticles by 1H NMR, FTIR, and Raman spectroscopy. Loading and releasing of gemcitabine (GEM) from PG4.5-DETA-biotin were evaluated by UV-Visible spectrophotometry. Cell viability and cellular uptake were examined by MTT assay and flow cytometry to assess the biocompatibility, cellular internalization efficiency and antiproliferative activity of PG4.5-DETA-biotin/GEM. Gemcitabine-loaded PG4.5-DETA-biotin nanoparticles were spherical with a particle size of 81.6 ± 6.08 nm and zeta potential of 0.47 ± 1.25 mV. Maximum drug-loading content and encapsulation efficiency were 10.84 ± 0.16% and 47.01 ± 0.71%, respectively. Nearly 60.54 ± 1.99% and 73.96 ± 1.14% of gemcitabine was released from PG4.5-DETA-biotin/GEM nanoparticles after 48 h at the acidic pH values of 6.5 and 5, respectively. Flow cytometry and fluorescence microscopy of cellular uptake results revealed PG4.5-DETA-biotin/GEM nanoparticles selectively targeted cancer cells in vitro. Cytotoxicity assays demonstrated gemcitabine-loaded PG4.5-DETA-biotin significantly reduced cell viability and induced apoptosis in HeLa cells. Thus, biotin-coupled PG4.5-DETA nanocarrier could provide an effective, targeted drug delivery system and selectively convey gemcitabine into tumor cells.
Collapse
Affiliation(s)
- Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Wei-Hsin Hsu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
27
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
28
|
Li Y, Zhang X, Zhang J, Ma J, Chi L, Qiu N, Li Y. Synthesis of a biodegradable branched copolymer mPEG-b-PLGA-g-OCol and its pH-sensitive micelle. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110455. [PMID: 31924042 DOI: 10.1016/j.msec.2019.110455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/02/2019] [Accepted: 11/16/2019] [Indexed: 01/01/2023]
Abstract
An amphiphilic biodegradable branched copolymer, mPEG-b-PLGA-g-OCol, was synthesized by grafting copolymer (methoxy polyethylene glycol)-b-Poly (l,d-lactic-co-glycolic acid) (mPEG-b-PLGA) on oligomeric collagen (OCol), to form a branched structure with mPEG-b-PLGA as side chain and OCol as backbone. mPEG-b-PLGA and mPEG-b-PLGA-g-OCol were both amphipathic and can self-assemble into micelles in aqueous solution. The mPEG-b-PLGA-g-OCol micelles showed pH-sensitive behaviors and the particle size below 100 nm in slightly acidic environment such as tumor tissue milieu interieur to perform passive targeting. Observed by SEM, when the solution pH increased from 5 to 9, the morphology of mPEG-b-PLGA-g-OCol micelles changed from small spheres to larger ones to rings. For biodegradable mPEG-b-PLGA-g-OCol, the micelles will gradually degrade in body. Further, doxorubicin (DOX) was effectively loaded in the micelles with drug loading and encapsulation efficiency of 3.48% and 25.8%, respectively. To evaluate antineoplastic effect of DOX-laden micelles in vitro, MTT test, flow cytometry and CLSM were performed and found that DOX-laden micelles exhibited higher cellular proliferation inhibition against HeLa cells. These features indicated that the mPEG-b-PLGA-g-OCol micelles were potential drug carrier for cancer therapy.
Collapse
Affiliation(s)
- Yanwei Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Xue Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingpeng Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jing Ma
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Lin Chi
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Nannan Qiu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Yanhui Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China.
| |
Collapse
|
29
|
Jazani AM, Oh JK. Development and disassembly of single and multiple acid-cleavable block copolymer nanoassemblies for drug delivery. Polym Chem 2020. [DOI: 10.1039/d0py00234h] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acid-degradable block copolymer-based nanoassemblies are promising intracellular candidates for tumor-targeting drug delivery as they exhibit the enhanced release of encapsulated drugs through their dissociation.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
30
|
Andrgie AT, Birhan YS, Mekonnen TW, Hanurry EY, Darge HF, Lee RH, Chou HY, Tsai HC. Redox-Responsive Heparin-Chlorambucil Conjugate Polymeric Prodrug for Improved Anti-Tumor Activity. Polymers (Basel) 2019; 12:E43. [PMID: 31892144 PMCID: PMC7023610 DOI: 10.3390/polym12010043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 01/19/2023] Open
Abstract
Polymeric prodrug-based delivery systems have been extensively studied to find a better solution for the limitations of a single drug and to improve the therapeutic and pharmacodynamics properties of chemotherapeutic agents, which can lead to efficient therapy. In this study, redox-responsive disulfide bond-containing amphiphilic heparin-chlorambucil conjugated polymeric prodrugs were designed and synthesized to enhance anti-tumor activities of chlorambucil. The conjugated prodrug could be self-assembled to form spherical vesicles with 61.33% chlorambucil grafting efficiency. The cell viability test results showed that the prodrug was biocompatible with normal cells (HaCaT) and that it selectively killed tumor cells (HeLa cells). The uptake of prodrugs by HeLa cells increased with time. Therefore, the designed prodrugs can be a better alternative as delivery vehicles for the chlorambucil controlled release in cancer cells.
Collapse
Affiliation(s)
- Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (Y.S.B.); (T.W.M.); (E.Y.H.); (H.F.D.); (H.-Y.C.)
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (Y.S.B.); (T.W.M.); (E.Y.H.); (H.F.D.); (H.-Y.C.)
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (Y.S.B.); (T.W.M.); (E.Y.H.); (H.F.D.); (H.-Y.C.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (Y.S.B.); (T.W.M.); (E.Y.H.); (H.F.D.); (H.-Y.C.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (Y.S.B.); (T.W.M.); (E.Y.H.); (H.F.D.); (H.-Y.C.)
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (Y.S.B.); (T.W.M.); (E.Y.H.); (H.F.D.); (H.-Y.C.)
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (A.T.A.); (Y.S.B.); (T.W.M.); (E.Y.H.); (H.F.D.); (H.-Y.C.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
31
|
Darge HF, Andrgie AT, Hanurry EY, Birhan YS, Mekonnen TW, Chou HY, Hsu WH, Lai JY, Lin SY, Tsai HC. Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy. Int J Pharm 2019; 572:118799. [PMID: 31678386 DOI: 10.1016/j.ijpharm.2019.118799] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 02/01/2023]
Abstract
In a malignant tumor, overexpression of pro-angiogenic factors like vascular endothelial growth factor (VEGF) provokes the production of pathologic vascular networks characterized by leaky, chaotically organized, immature, thin-walled, and ill-perfused. As a result, hostile tumor environment would be developed and profoundly hinders anti-cancer drug activities and fuels tumor progression. In this study, we develop a strategy of sequential sustain release of anti-angiogenic drug, Bevacizumab (BVZ), and anti-cancer drug, Doxorubicin (DOX), using poly (d, l-Lactide)- Poly (ethylene glycol) -Poly (d, l-Lactide) (PDLLA-PEG-PDLLA) hydrogel as a local delivery system. The release profiles of the drugs from the hydrogel were investigated in vitro which confirmed that relatively rapid release of BVZ (73.56 ± 1.39%) followed by Dox (61.21 ± 0.62%) at pH 6.5 for prolonged period. The in vitro cytotoxicity test revealed that the copolymer exhibited negligible cytotoxicity up to 2.5 mg ml-1 concentration on HaCaT and HeLa cells. Likeways, the in vitro degradation of the copolymer showed 41.63 ± 2.62% and 73.25 ± 4.36% weight loss within 6 weeks at pH 7.4 and 6.5, respectively. After a single intratumoral injection of the drug-encapsulated hydrogel on Hela xenograft nude, hydrogel co-loaded with BVZ and Dox displayed the highest tumor suppression efficacy for up to 36 days with no noticeable damage on vital organs. Therefore, localized co-delivery of anti-angiogenic drug and anti-cancer drug by hydrogel system may be a promising approach for enhanced chemotherapeutic efficacy in cancer treatment.
Collapse
Affiliation(s)
- Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Wei-Hsin Hsu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Tao-Yuan 320, Taiwan
| | - Shuian-Yin Lin
- Biomedical Technology and Device Research Center, Industrial Technology Research Institute, Hsinchu 310, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| |
Collapse
|
32
|
Encapsulation of gadolinium ferrite nanoparticle in generation 4.5 poly(amidoamine) dendrimer for cancer theranostics applications using low frequency alternating magnetic field. Colloids Surf B Biointerfaces 2019; 184:110531. [PMID: 31590053 DOI: 10.1016/j.colsurfb.2019.110531] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/21/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023]
Abstract
Iron oxide-based magnetic resonance imaging (MRI) contrast agents have negative contrast limitations in cancer diagnosis. Gadolinium (Gd)-based contrast agents show toxicity. To overcome these limitations, Gd-doped ferrite (Gd:Fe3O4 (GdIO) nanoparticles (NPs) were synthesized as T1-T2 dual-modal contrast agents for MRI-traced drug delivery. A theranostics GdIO encapsulated in a Generation 4.5 PAMAM dendrimer (G4.5-GdIO) was developed by alkaline coprecipitation. The drug-loading efficiency of the NPs was ∼24%. In the presence of a low-frequency alternating magnetic field (LFAMF), a maximum cumulative doxorubicin (DOX) release of ∼77.47% was achieved in a mildly acidic (pH = 5.0) simulated endosomal microenvironment. Relaxometric measurements indicated superior r1 (5.19 mM-1s-1) and r2 (26.13 mM-1s-1) for G4.5-GdIO relative to commercially available Gd-DTPA. Thus, G4.5-GdIO is promising as an alternative noninvasive MRI-traced cancer drug delivery system.
Collapse
|