1
|
Sun X, Xie D, Lou Z, Zhou Y, Li M, Li Q, Cai Y. T7 Peptide-modified macrophage membrane-coated nanoplatform for enhanced glioma treatment. Eur J Pharm Biopharm 2024; 204:114527. [PMID: 39383975 DOI: 10.1016/j.ejpb.2024.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/27/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
The efficient and secure delivery of intravenous chemotherapeutic agents across the blood-brain barrier (BBB) to the precise location of a brain tumor is a crucial element in glioma treatment. Herein, we introduce a biomimetic nanoplatform (T7-M-C/S) comprising a core made up of irinotecan hydrochloride (CPT11) and its bioactive metabolite, 7-Ethyl-10-hydroxycamptothecin (SN38), surrounded by a layer of T7-peptide-modified macrophage membrane. CPT11 spontaneously assembles with SN38 into stable and water-dispersible nanoparticles (C/S), greatly enhancing the water solubility of SN38. The integration of the modified peptide with the inherent proteins expressed by macrophage cells confers the nanoplatform with enhanced bioavailability and robust glioma-targeting abilities, ultimately resulting in superior therapeutic outcomes. These discoveries highlight a drug delivery system characterized by a high drug loading capacity, leveraging the macrophage membrane, and promising significant potential for glioma treatment.
Collapse
Affiliation(s)
- Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang China Resources Sanjiu Zhongyi Pharmaceutical Co., Ltd., Lishui 323010, China
| | - Dehui Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhao Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yujie Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ming Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingyong Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Xue YF, Song X, Ling XQ, Lv QY, Xia Y, Cui HF. Self-Assembled PEGylated Nanocubes Based on Hydrophobic Camptothecin and Doxorubicin for Combinational Therapy of Colorectal Cancer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54927-54941. [PMID: 39320506 DOI: 10.1021/acsami.4c13504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Nanoassemblies based on drug conjugates with high drug loading efficiency and stability have been regarded as promising candidates for the next generation of drug formulations. However, they are mostly amphiphilic. Here, a dual-hydrophobic drug conjugate-based nanoassembly has been created for enhanced synergistic antiproliferation against colorectal cancer cells. Camptothecin (CPT) and doxorubicin (DOX) were chosen as the hydrophobic drugs and covalently linked with a disulfide bond (-ss-). The synthesized CPT-ss-DOX can self-assemble into nanocubes (NCs) in an aqueous solution with the assistance of a small amount of polyethylene glycol (PEG), named PEGylated CPT-ss-DOX NCs. The PEGylated CPT-ss-DOX NCs were approximately 111.8 nm, possessing a crystal structure and a very low critical aggregation concentration (8.36 μg·mL-1). The self-assembly mechanism was studied using molecular docking and molecular dynamic simulation methods. The NCs demonstrated excellent storage stability and improved water solubility of CPT and DOX. These NCs could be taken up by cancer cells and gradually release the drugs. In addition, they had higher toxicity to cancer cells than a mixture of CPT and DOX, while they displayed reduced toxicity to normal cells. Due to assembly and PEG modification, the NCs improved drug retention time and enhanced accumulation at the tumor site. More importantly, they significantly inhibited colorectal tumor growth (58.37%) in vivo, superior to the CPT+DOX mix (42.63%). Moreover, the NCs reduced the cardiac toxicity of free drugs. Therefore, the prepared PEGylated CPT-ss-DOX NCs hold great potential for clinical transformation and provide a novel method for the self-delivery of hydrophobic molecules in cancer therapy.
Collapse
Affiliation(s)
- Yi-Fei Xue
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| | - Xiaojie Song
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| | - Xiao-Qing Ling
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| | - Qi-Yan Lv
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| | - Yu Xia
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| | - Hui-Fang Cui
- Department of Bioengineering, School of Life Sciences, Zhengzhou University, 100# Science Avenue, Zhengzhou 450001, PR China
| |
Collapse
|
3
|
Cui G, Deng S, Zhang B, Wang M, Lin Z, Lan X, Li Z, Yao G, Yu M, Yan J. Overcoming the Tumor Collagen Barriers: A Multistage Drug Delivery Strategy for DDR1-Mediated Resistant Colorectal Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402107. [PMID: 38953306 PMCID: PMC11434232 DOI: 10.1002/advs.202402107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Indexed: 07/04/2024]
Abstract
The extracellular matrix (ECM) is critical for drug resistance in colorectal cancer (CRC). The abundant collagen within the ECM significantly influences tumor progression and matrix-mediated drug resistance (MMDR) by binding to discoidin domain receptor 1 (DDR1), but the specific mechanisms by which tumor cells modulate ECM via DDR1 and ultimately regulate TME remain poorly understand. Furthermore, overcoming drug resistance by modulating the tumor ECM remains a challenge in CRC treatment. In this study, a novel mechanism is elucidated by which DDR1 mediates the interactions between tumor cells and collagen, enhances collagen barriers, inhibits immune infiltration, promotes drug efflux, and leads to MMDR in CRC. To address this issue, a multistage drug delivery system carrying DDR1-siRNA and chemotherapeutic agents is employed to disrupt collagen barriers by silencing DDR1 in tumor, enhancing chemotherapy drugs diffusion and facilitating immune infiltration. These findings not only revealed a novel role for collagen-rich matrix mediated by DDR1 in tumor resistance, but also introduced a promising CRC treatment strategy.
Collapse
Affiliation(s)
- Guangman Cui
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Shaohui Deng
- The Tenth Affiliated Hospital of Southern Medical UniversityDongguanGuangdong523059China
| | - Biao Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Manchun Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zhousheng Lin
- Breast CenterDepartment of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xinyue Lan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Zelong Li
- Breast CenterDepartment of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Guangyu Yao
- Breast CenterDepartment of General SurgeryNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Meng Yu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong‐Hongkong‐Macao Joint Laboratory for New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
- Zhujiang Hospital, Southern Medical UniversityGuangzhou510282China
| | - Jun Yan
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal TumorNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Department of Gastrointestinal SurgeryShenzhen People's HospitalSecond Clinical Medical College of Jinan UniversityFirst Affiliated Hospital of Southern University of Science and TechnologyShenzhenGuangdong518020China
| |
Collapse
|
4
|
Serras A, Faustino C, Pinheiro L. Functionalized Polymeric Micelles for Targeted Cancer Therapy: Steps from Conceptualization to Clinical Trials. Pharmaceutics 2024; 16:1047. [PMID: 39204392 PMCID: PMC11359152 DOI: 10.3390/pharmaceutics16081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is still ranked among the top three causes of death in the 30- to 69-year-old age group in most countries and carries considerable societal and macroeconomic costs that differ depending on the cancer type, geography, and patient gender. Despite advances in several pharmacological approaches, the lack of stability and specificity, dose-related toxicity, and limited bioavailability of chemotherapy (standard therapy) pose major obstacles in cancer treatment, with multidrug resistance being a driving factor in chemotherapy failure. The past three decades have been the stage for intense research activity on the topic of nanomedicine, which has resulted in many nanotherapeutics with reduced toxicity, increased bioavailability, and improved pharmacokinetics and therapeutic efficacy employing smart drug delivery systems (SDDSs). Polymeric micelles (PMs) have become an auspicious DDS for medicinal compounds, being used to encapsulate hydrophobic drugs that also exhibit substantial toxicity. Through preclinical animal testing, PMs improved pharmacokinetic profiles and increased efficacy, resulting in a higher safety profile for therapeutic drugs. This review focuses on PMs that are already in clinical trials, traveling the pathways from preclinical to clinical studies until introduction to the market.
Collapse
Affiliation(s)
| | - Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa (ULisboa), Avenida Professor Gama PintoGama Pinto, 1649-003 Lisboa, Portugal; (A.S.); (L.P.)
| | | |
Collapse
|
5
|
Khan AEMA, Arutla V, Srivenugopal KS. Human NQO1 as a Selective Target for Anticancer Therapeutics and Tumor Imaging. Cells 2024; 13:1272. [PMID: 39120303 PMCID: PMC11311714 DOI: 10.3390/cells13151272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human NAD(P)H-quinone oxidoreductase1 (HNQO1) is a two-electron reductase antioxidant enzyme whose expression is driven by the NRF2 transcription factor highly active in the prooxidant milieu found in human malignancies. The resulting abundance of NQO1 expression (up to 200-fold) in cancers and a barely detectable expression in body tissues makes it a selective marker of neoplasms. NQO1 can catalyze the repeated futile redox cycling of certain natural and synthetic quinones to their hydroxyquinones, consuming NADPH and generating rapid bursts of cytotoxic reactive oxygen species (ROS) and H2O2. A greater level of this quinone bioactivation due to elevated NQO1 content has been recognized as a tumor-specific therapeutic strategy, which, however, has not been clinically exploited. We review here the natural and new quinones activated by NQO1, the catalytic inhibitors, and the ensuing cell death mechanisms. Further, the cancer-selective expression of NQO1 has opened excellent opportunities for distinguishing cancer cells/tissues from their normal counterparts. Given this diagnostic, prognostic, and therapeutic importance, we and others have engineered a large number of specific NQO1 turn-on small molecule probes that remain latent but release intense fluorescence groups at near-infrared and other wavelengths, following enzymatic cleavage in cancer cells and tumor masses. This sensitive visualization/quantitation and powerful imaging technology based on NQO1 expression offers promise for guided cancer surgery, and the reagents suggest a theranostic potential for NQO1-targeted chemotherapy.
Collapse
Affiliation(s)
| | | | - Kalkunte S. Srivenugopal
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1406 Amarillo Research Bldg., Rm. 1102, Amarillo, TX 79106, USA; (A.E.M.A.K.); (V.A.)
| |
Collapse
|
6
|
Wu Z, Li Q, Zhu K, Zheng S, Hu H, Hou M, Qi L, Chen S, Xu Y, Zhao B, Yan C. Cancer Radiosensitization Nanoagent to Activate cGAS-STING Pathway for Molecular Imaging Guided Synergistic Radio/Chemo/Immunotherapy. Adv Healthc Mater 2024; 13:e2303626. [PMID: 38387885 DOI: 10.1002/adhm.202303626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Immunotherapy has emerged as an innovative strategy with the potential to improve outcomes in cancer patients. Recent evidence indicates that radiation-induced DNA damage can activate the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to enhance the antitumor immune response. Even so, only a small fraction of patients currently benefits from radioimmunotherapy due to the radioresistance and the inadequate activation of the cGAS-STING pathway. Herein, this work integrates hafnium oxide (HfO2) nanoparticles (radiosensitizer) and 7-Ethyl-10-hydroxycamptothecin (SN38, chemotherapy drug, STING agonist) into a polydopamine (PDA)-coated core-shell nanoplatform (HfO2@PDA/Fe/SN38) to achieve synergistic chemoradiotherapy and immunotherapy. The co-delivery of HfO2/SN38 greatly enhances radiotherapy efficacy by effectively activating the cGAS-STING pathway, which then triggers dendritic cells maturation and CD8+ T cells recruitment. Consequently, the growth of both primary and abscopal tumors in tumor-bearing mice is efficiently inhibited. Moreover, the HfO2@PDA/Fe/SN38 complexes exhibit favorable magnetic resonance imaging (MRI)/photoacoustic (PA) bimodal molecular imaging properties. In summary, these developed multifunctional complexes have the potential to intensify immune activation to realize simultaneous cancer Radio/Chemo/Immunotherapy for clinical translation.
Collapse
Affiliation(s)
- Zede Wu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qiuyu Li
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kai Zhu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuting Zheng
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Honglei Hu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Meirong Hou
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Qi
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Siwen Chen
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bingxia Zhao
- Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Experimental Education/Administration Center, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
7
|
Wei Q, Wu Y, Jiang X, Lu W, Liu S, Yu J. Supramolecular prodrug of SN38 based on endogenous albumin and SN38 prodrug modified with semaglutide side chain to improve the tumor distribution. Bioorg Med Chem 2024; 106:117754. [PMID: 38728869 DOI: 10.1016/j.bmc.2024.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
To improve the biodistribution of the drug in the tumor, a supramolecular prodrug of SN38 was fabricated in situ between endogenous albumin and SN38 prodrug modified with semaglutide side chain. Firstly, SN38 was conjugated with semaglutide side chain and octadecanedioic acid via glycine linkers to obtain SI-Gly-SN38 and OA-Gly-SN38 prodrugs, respectively. Both SI-Gly-SN38 and OA-Gly-SN38 exhibited excellent stability in PBS for over 24 h. Due to the strong binding affinity of the semaglutide side chain with albumin, the plasma half-life of SI-Gly-SN38 was 2.7 times higher than that of OA-Gly-SN38. Furthermore, with addition of HSA, the fluorescence intensity of SI-Gly-SN38 was 4 times higher than that of OA-Gly-SN38, confirming its strong binding capability with HSA. MTT assay showed that the cytotoxicity of SI-Gly-SN38 and OA-Gly-SN38 was higher than that of Irinotecan. Even incubated with HSA, the SI-Gly-SN38 and OA-Gly-SN38 still maintained high cytotoxicity, indicating minimal influence of HSA on their cytotoxicity. In vivo pharmacokinetic studies demonstrated that the circulation half-life of SI-Gly-SN38 was twice that of OA-Gly-SN38. SI-Gly-SN38 exhibited significantly reduced accumulation in the lungs, being only 0.23 times that of OA-Gly-SN38. The release of free SN38 in the lungs from SI-Gly-SN38 was only 0.4 times that from OA-Gly-SN38 and Irinotecan. The SI-Gly-SN38 showed the highest accumulation in tumors. The tumor inhibition rate of SI-Gly-SN38 was 6.42% higher than that of OA-Gly-SN38, and 8.67% higher than that of Irinotecan, respectively. These results indicate that the supramolecular prodrug delivery system can be constructed between SI-Gly-SN38 and endogenous albumin, which improves drug biodistribution in vivo, enhances tumor accumulation, and plays a crucial role in tumor growth inhibition.
Collapse
Affiliation(s)
- Qingyu Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yanyan Wu
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China
| | - Xing Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shiyuan Liu
- Department of Radiology, the Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
8
|
Pian L, Zeng B, Wang N, Wang S, Wu H, Wan H, Chen L, Huang W, Gao Z, Jin D, Jin M. Synergistic Effects of Chemotherapy and Phototherapy on Ovarian Cancer Using Follicle-Stimulating Hormone Receptor-Mediated Liposomes Co-Loaded with SN38 and IR820. Pharmaceutics 2024; 16:490. [PMID: 38675151 PMCID: PMC11054123 DOI: 10.3390/pharmaceutics16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
We have developed an ovarian cancer-targeted drug delivery system based on a follicle-stimulating hormone receptor (FSHR) peptide. The lipophilic chemotherapeutic drug SN38 and the photosensitizer IR820 were loaded into the phospholipid bilayer of liposomes. The combination of chemotherapy and phototherapy has become a promising strategy to improve the therapeutic effect of chemotherapy drugs on solid tumors. IR820 can be used for photodynamic therapy (PDT), effectively converting near-infrared light (NIR) into heat and producing reactive oxygen species (ROS), causing damage to intracellular components and leading to cell death. In addition, PDT generates heat in near-infrared, thereby enhancing the sensitivity of tumors to chemotherapy drugs. FSH liposomes loaded with SN38 and IR820 (SN38/IR820-Lipo@FSH) were prepared using thin-film hydration-sonication. FSH peptide binding was analyzed using 1H NMR spectrum and Maldi-Tof. The average size and zeta potential of SN38/IR820-Lipo@FSH were 105.1 ± 1.15 nm (PDI: 0.204 ± 0.03) and -27.8 ± 0.42 mV, respectively. The encapsulation efficiency of SN38 and IR820 in SN38/IR820-Lipo@FSH liposomes were 90.2% and 91.5%, respectively, and their release was slow in vitro. FSH significantly increased the uptake of liposomes, inhibited cell proliferation, and induced apoptosis in A2780 cells. Moreover, SN38/IR820-Lipo@FSH exhibited better tumor-targeting ability and anti-ovarian cancer activity in vivo when compared with non-targeted SN38/IR820-Lipo. The combination of chemotherapy and photodynamic treatment based on an FSH peptide-targeted delivery system may be an effective approach to treating ovarian cancer.
Collapse
Affiliation(s)
- Lina Pian
- Immunology Biology Key Laboratory, Yanbian University, Yanji 133000, China;
- Department of Gynecology, Yanbian University Hospital, Yanji 133000, China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (B.Z.); (N.W.); (H.W.); (H.W.); (L.C.); (W.H.); (M.J.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (B.Z.); (N.W.); (H.W.); (H.W.); (L.C.); (W.H.); (M.J.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (B.Z.); (N.W.); (H.W.); (H.W.); (L.C.); (W.H.); (M.J.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (B.Z.); (N.W.); (H.W.); (H.W.); (L.C.); (W.H.); (M.J.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongshuang Wan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (B.Z.); (N.W.); (H.W.); (H.W.); (L.C.); (W.H.); (M.J.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (B.Z.); (N.W.); (H.W.); (H.W.); (L.C.); (W.H.); (M.J.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (B.Z.); (N.W.); (H.W.); (H.W.); (L.C.); (W.H.); (M.J.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (B.Z.); (N.W.); (H.W.); (H.W.); (L.C.); (W.H.); (M.J.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Jin
- Immunology Biology Key Laboratory, Yanbian University, Yanji 133000, China;
- Department of Gynecology, Yanbian University Hospital, Yanji 133000, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (B.Z.); (N.W.); (H.W.); (H.W.); (L.C.); (W.H.); (M.J.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Huang J, Tang X, Yang Z, Chen J, Wang K, Shi C, Liu Z, Wu M, Du Q. Enhancing oral delivery and anticancer efficacy of 7-ethyl-10-hydroxycamptothecin through self-assembled micelles of deoxycholic acid grafted N'-nonyl-trimethyl chitosan. Colloids Surf B Biointerfaces 2024; 234:113736. [PMID: 38215603 DOI: 10.1016/j.colsurfb.2023.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
Irinotecan (CPT-11) is used as a first or second-line chemotherapy drug for the treatment and management of colorectal cancers. In vitro studies have shown that 7-ethyl-10-hydroxycamptothecin (SN38), the active metabolite of CPT-11, displays promising anticancer efficacy. However, its poor aqueous solubility and hydrolytic degradation result in its lower oral bioavailability and impracticable clinical application. To overcome these limitations, a novel amphiphilic chitosan derivative, deoxycholic acid decorated N'-nonyl-trimethyl chitosan, was synthesized. Nano-micelles loaded with SN38 were subsequently prepared to enhance the bioavailability and anti-tumor efficacy of the drug through oral administration. The nano-micelles demonstrated improved dilution stability, enhanced greater mucosal adherence, significant P-gp efflux inhibition, and increased drug transport in the intestine by paracellular and transcellular pathways. Consequently, both the in vivo pharmacokinetic profile and therapeutic efficacy of SN38 against cancer were substantially improved via the micellar system. Thus, the developed polymeric micelles can potentially enhance the SN38 oral absorption for cancer therapy, offering prospective avenues for further exploration.
Collapse
Affiliation(s)
- Jie Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Tang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ziqiong Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jianqiu Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Kun Wang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Chengnan Shi
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zihan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ming Wu
- Institute of Pediatrics, Xuzhou Medical University, Xuzhou, China
| | - Qian Du
- School of Pharmacy, Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
10
|
Qi QR, Tian H, Yue BS, Zhai BT, Zhao F. Research Progress of SN38 Drug Delivery System in Cancer Treatment. Int J Nanomedicine 2024; 19:945-964. [PMID: 38293612 PMCID: PMC10826519 DOI: 10.2147/ijn.s435407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
The active metabolite of irinotecan (CPT-11), 7-ethyl-10-hydroxycamptothecin (SN38), is 100-1000 times more active than CPT-11 and has shown inhibitory effects on a range of cancer cells, including those from the rectal, small cell lung, breast, esophageal, uterine, and ovarian malignancies. Despite SN38's potent anticancer properties, its hydrophobicity and pH instability have caused substantial side effects and anticancer activity loss, which make it difficult to use in clinical settings. To solve the above problems, the construction of SN38-based drug delivery systems is one of the most feasible methods to improve drug solubility, enhance drug stability, increase drug targeting ability, improve drug bioavailability, enhance therapeutic efficacy and reduce adverse drug reactions. Therefore, based on the targeting mechanism of drug delivery systems, this paper reviews SN38 drug delivery systems, including polymeric micelles, liposomal nanoparticles, polymeric nanoparticles, protein nanoparticles, conjugated drug delivery systems targeted by aptamers and ligands, antibody-drug couplings, magnetic targeting, photosensitive targeting, redox-sensitive and multi-stimulus-responsive drug delivery systems, and co-loaded drug delivery systems. The focus of this review is on nanocarrier-based SN38 drug delivery systems. We hope to provide a reference for the clinical translation and application of novel SN38 medications.
Collapse
Affiliation(s)
- Qing-rui Qi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Huan Tian
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| | - Bao-sen Yue
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Feng Zhao
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
11
|
Wang S, Hu N, Deng B, Wang H, Qiao R, Li C. A Guanosine-Derived Antitumor Supramolecular Prodrug. Biomacromolecules 2024; 25:290-302. [PMID: 38065622 DOI: 10.1021/acs.biomac.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The prodrug strategy for its potential to enhance the pharmacokinetic and/or pharmacodynamic properties of drugs, especially chemotherapeutic agents, has been widely recognized as an important means to improve therapeutic efficiency. Irinotecan's active metabolite, 7-ethyl-10-hydroxycamptothecin (SN38), a borate derivative, was incorporated into a G-quadruplex hydrogel (GB-SN38) by the ingenious and simple approach. Drug release does not depend on carboxylesterase, thus bypassing the side effects caused by ineffective activation, but specifically responds to the ROS-overexpressed tumor microenvironment by oxidative hydrolysis of borate ester that reduces serious systemic toxicity from nonspecific biodistribution of SN38. Comprehensive spectroscopy was used to define the structural and physicochemical characteristics of the drug-loaded hydrogel. The GB-SN38 hydrogel's high level of biosafety and notable tumor-suppressive properties were proven in in vitro and in vivo tests.
Collapse
Affiliation(s)
- Shuyun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Nanrong Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Bo Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Hongyue Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| |
Collapse
|
12
|
Jiang Y, Chen H, Lin T, Zhang C, Shen J, Chen J, Zhao Y, Xu W, Wang G, Huang P. Ultrasound-activated prodrug-loaded liposome for efficient cancer targeting therapy without chemotherapy-induced side effects. J Nanobiotechnology 2024; 22:2. [PMID: 38169390 PMCID: PMC10763105 DOI: 10.1186/s12951-023-02195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Off-targeted distribution of chemotherapeutic drugs causes severe side effects, further leading to poor prognosis and patient compliance. Ligand/receptor-mediated targeted drug delivery can improve drug accumulation in the tumor but it always attenuated by protein corona barriers. RESULTS To address these problems, a radically different strategy is proposed that can leave the off-targeted drugs inactive but activate the tumor-distributed drugs for cancer-targeting therapy in a tumor microenvironment-independent manner. The feasibility and effectiveness of this strategy is demonstrated by developing an ultrasound (US)-activated prodrug-loaded liposome (CPBSN38L) comprising the sonosensitizer chlorin e6 (Ce6)-modified lipids and the prodrug of pinacol boronic ester-conjugated SN38 (PBSN38). Once CPBSN38L is accumulated in the tumor and internalized into the cancer cells, under US irradiation, the sonosensitizer Ce6 rapidly induces extensive production of intracellular reactive oxygen species (ROS), thereby initiating a cascade amplified ROS-responsive activation of PBSN38 to release the active SN38 for inducing cell apoptosis. If some of the injected CPBSN38L is distributed into normal tissues, the inactive PBSN38 exerts no pharmacological activity on normal cells. CPBSN38L exhibited strong anticancer activity in multiple murine tumor models of colon adenocarcinoma and hepatocellular carcinoma with no chemotherapy-induced side effects, compared with the standard first-line anticancer drugs irinotecan and topotecan. CONCLUSIONS This study established a side-effect-evitable, universal, and feasible strategy for cancer-targeting therapy.
Collapse
Affiliation(s)
- Yifan Jiang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hongjian Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Tao Lin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiaxin Shen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jifan Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yanan Zhao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wen Xu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
13
|
Huang X, Li J, Yang Y, Wang ZL, Yang XZ, Lu ZD, Xu CF. Lipid-assisted PEG- b-PLA nanoparticles with ultrahigh SN38 loading capability for efficient cancer therapy. Biomater Sci 2023; 11:7445-7457. [PMID: 37819252 DOI: 10.1039/d3bm01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The topoisomerase I inhibitor, 7-ethyl-10-hydroxycamptothecin (SN38), has demonstrated potent anticancer activity. However, its clinical application is hindered by its low solubility and high crystallization propensity, which further complicates its encapsulation into nanoparticles for systemic delivery. Herein, we explore the utilization of lipid-assisted poly(ethylene glycol)-block-poly(D,L-lactide) (PEG-b-PLA) nanoparticles to achieve ultrahigh loading capability for SN38. Through the introduction of cationic, anionic, or neutral lipids, the SN38 loading efficiency and loading capacity is elevated to >90% and >10% respectively. These lipids efficiently attenuate the intermolecular π-π stacking of SN38, thereby disrupting its crystalline structure. Moreover, we assess the therapeutic activity of SN38-loaded formulations in various tumor models and identify an anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG)-assisted formulation that exhibits the highest anticancer activity and has favorable biosafety. Overall, our findings present a simple and robust strategy to achieve ultrahigh loading efficiency of SN38 using commonly employed PEG-b-PLA nanoparticles, opening up a new avenue for the systemic delivery of SN38.
Collapse
Affiliation(s)
- Xiaoyi Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China.
| | - Jieyi Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China.
| | - Yanfang Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China.
| | - Zi-Lu Wang
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China.
| | - Xian-Zhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P.R. China
| | - Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China.
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
14
|
Yuan M, Chen T, Jin L, Zhang P, Xie L, Zhou S, Fan L, Wang L, Zhang C, Tang N, Guo L, Xie C, Duo Y, Li L, Shi L. A carrier-free supramolecular nano-twin-drug for overcoming irinotecan-resistance and enhancing efficacy against colorectal cancer. J Nanobiotechnology 2023; 21:393. [PMID: 37898773 PMCID: PMC10612220 DOI: 10.1186/s12951-023-02157-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Irinotecan (Ir) is commonly employed as a first-line chemotherapeutic treatment for colorectal cancer (CRC). However, tremendous impediments remain to be addressed to surmount drug resistance and ameliorate adverse events. Poly-ADP-Ribose Polymerase (PARP) participates in the maintenance of genome stability and the repair of DNA damage, thus playing a critical role in chemotherapy resistance. In this work, we introduce a novel curative strategy that utilizes nanoparticles (NPs) prepared by dynamic supramolecular co-assembly of Ir and a PARP inhibitor (PARPi) niraparib (Nir) through π-π stacking and hydrogen bond interactions. The Ir and Nir self-assembled Nano-Twin-Drug of (Nir-Ir NPs) could enhance the therapeutic effect on CRC by synergistically inhibiting the DNA damage repair pathway and activating the tumor cell apoptosis process without obvious toxicity. In addition, the Nir-Ir NPs could effectively reverse irinotecan-resistance by inhibiting the expression of multiple resistance protein-1 (MRP-1). Overall, our study underscores the distinctive advantages and potential of Nir-Ir NPs as a complementary strategy to chemotherapy by simultaneously overcoming the Ir resistance and improving the anti-tumor efficacy against CRC.
Collapse
Affiliation(s)
- Miaomiao Yuan
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Tong Chen
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, 47 Youyi Road, Shenzhen, 518001, China.
| | - Luoyijun Xie
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Shuyi Zhou
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lianfeng Fan
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Li Wang
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cai Zhang
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Ning Tang
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - LiHao Guo
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengmei Xie
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ling Li
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China.
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
15
|
Pai FT, Lin WJ. Synergistic cytotoxicity of irinotecan combined with polysaccharide-based nanoparticles for colorectal carcinoma. BIOMATERIALS ADVANCES 2023; 153:213577. [PMID: 37572599 DOI: 10.1016/j.bioadv.2023.213577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Functional polymeric nanoparticles (NPs) with antitumor potential were combined with the topoisomerase I inhibitor, irinotecan (IRT), to enhance cytotoxicity against colorectal cancers. The negatively charged γ-polyglutamic acid (γ-PGA) or fucoidan (FCD) was complexed with the positively charged chitosan (CS) to encapsulate IRT. The size of the γ-PGA/CS/IRT NPs and FCD/CS/IRT NPs were 146.0 ± 8.0 nm and 230.8 ± 2.5 nm, respectively, with polydispersity index ≤0.3. The cellular uptake ability of FCD/CS-FITC NPs was better than that of γ-PGA/CS-FITC NPs, especially in p-selectin positive HCT116 colorectal cancer cells (4.8 ± 0.8 μg/mL vs 11.4 ± 2.2 μg/mL). The IC50 of FCD/CS/IRT NPs was 2.4 times lower than that of γ-PGA/CS/IRT NPs in HCT116 cells (4.8 ± 0.8 μg/mL vs 11.4 ± 2.2 μg/mL), indicating its superior antitumor potential. The combination of irinotecan and fucoidan-based NPs exhibited a synergistic effect (CI <1), resulting in better anticancer activity of FCD/CS/IRT NPs than irinotecan alone. The apoptosis-related proteins, caspase 3, caspase 9, and poly(ADP-ribose) polymerase (PARP), were prominently increased in FCD/CS/IRT NPs-treated HCT116 cells by 2.3 folds, 3.5 folds, and 6.3 folds, respectively. All results support that fucoidan-based irinotecan-loaded nanoparticles possess the ability to effectively enhance cellular uptake and induce synergistic apoptosis of colorectal cancer cells.
Collapse
Affiliation(s)
- Fang-Ting Pai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| | - Wen Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan; Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan.
| |
Collapse
|
16
|
Dai Y, Qian M, Li Y. Structural Modification Endows Small-Molecular SN38 Derivatives with Multifaceted Functions. Molecules 2023; 28:4931. [PMID: 37446591 DOI: 10.3390/molecules28134931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
As a camptothecin derivative, 7-ethyl-10-hydroxycamptothecin (SN38) combats cancer by inhibiting topoisomerase I. SN38 is one of the most active compounds among camptothecin derivatives. In addition, SN38 is also a theranostic reagent due to its intrinsic fluorescence. However, the poor water solubility, high systemic toxicity and limited action against drug resistance and metastasis of tumor cells of SN38 indicates that there is great space for the structural modification of SN38. From the perspective of chemical modification, this paper summarizes the progress of SN38 in improving solubility, increasing activity, reducing toxicity and possessing multifunction and analyzes the strategies of structure modification to provide a reference for drug development based on SN38.
Collapse
Affiliation(s)
- Yi Dai
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Meng Qian
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yan Li
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| |
Collapse
|
17
|
Sasaki T, Watanabe J, He X, Katagi H, Suri A, Ishi Y, Abe K, Natsumeda M, Frey WH, Zhang P, Hashizume R. Intranasal delivery of nanoliposomal SN-38 for treatment of diffuse midline glioma. J Neurosurg 2023; 138:1570-1579. [PMID: 36599085 DOI: 10.3171/2022.9.jns22715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Diffuse midline gliomas, including diffuse intrinsic pontine gliomas (DIPGs), are among the most malignant and devastating childhood brain cancers. Despite aggressive treatment, nearly all children with these tumors succumb to their disease within 2 years of diagnosis. Due to the anatomical location of the tumors within the pons, surgery is not a treatment option, and distribution of most systematically administered drugs is limited by the blood-brain barrier (BBB). New drug delivery systems that bypass the BBB are desperately needed to improve outcomes of DIPG patients. Intranasal delivery (IND) is a practical and noninvasive drug delivery system that bypasses the BBB and delivers the drugs to the brain through the olfactory and trigeminal neural pathways. In this study, the authors evaluated the efficacy of nanoliposomal (LS) irinotecan (CPT-11) and an active metabolite of CPT-11, 7-ethyl-10-hydroxycamptothecin (SN-38), using IND in DIPG patient-derived xenograft models. METHODS In vitro responses to LS-CPT-11 and LS-SN-38 in DIPG cells were evaluated with cell viability, colony formation, and apoptosis assays. The cellular uptakes of rhodamine-PE (Rhod)-labeled LS-CPT-11 and LS-SN-38 were analyzed with fluorescence microscopy. Mice bearing DIPG patient-derived xenografts were treated with IND of LS-control (empty liposome), LS-CPT-11, or LS-SN-38 by IND for 4 weeks. In vivo responses were measured for tumor growth by serial bioluminescence imaging and animal subject survival. The concentration of SN-38 in the brainstem tumor administered by IND was determined by liquid chromatography-mass spectrometry (LC-MS). Immunohistochemical analyses of the proliferative and apoptotic responses of in vivo tumor cells were performed with Ki-67 and TUNEL staining. RESULTS LS-SN-38 inhibited DIPG cell growth and colony formation and increased apoptosis, outperforming LS-CPT-11. Rhod-labeled LS-SN-38 showed intracellular fluorescence signals beginning at 30 minutes and peaking at 24 hours following treatment. LC-MS analysis revealed an SN-38 concentration in the brainstem tumor of 0.66 ± 0.25 ng/ml (5.43% ± 0.31% of serum concentration). IND of LS-SN-38 delayed tumor growth and significantly prolonged animal survival compared with IND of LS-control (p < 0.0001) and LS-CPT-11 (p = 0.003). IND of LS-SN-38 increased the number of TUNEL-positive cells and decreased the Ki-67-positive cells in the brainstem tumor. CONCLUSIONS This study demonstrates that IND of LS-SN-38 bypasses the BBB and enables efficient and noninvasive drug delivery to the brainstem tumor, providing a promising therapeutic approach for treating DIPG.
Collapse
Affiliation(s)
- Takahiro Sasaki
- 1Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 2Department of Neurological Surgery, Wakayama Medical University, Wakayama, Japan
| | - Jun Watanabe
- 3Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 4Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
- 5Department of Neurological Surgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Xingyao He
- 1Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiroaki Katagi
- 1Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amreena Suri
- 3Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 4Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
| | - Yukitomo Ishi
- 3Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 4Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
| | - Kouki Abe
- 3Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 4Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
| | - Manabu Natsumeda
- 5Department of Neurological Surgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - William H Frey
- 6HealthPartners Neuroscience Center, HealthPartners Institute, Saint Paul, Minnesota; and
| | - Peng Zhang
- 1Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 7Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rintaro Hashizume
- 3Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- 4Division of Hematology, Oncology, Neuro-Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Illinois
- 7Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
18
|
Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16030433. [PMID: 36986532 PMCID: PMC10052155 DOI: 10.3390/ph16030433] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Various formulations of polymeric micelles, tiny spherical structures made of polymeric materials, are currently being investigated in preclinical and clinical settings for their potential as nanomedicines. They target specific tissues and prolong circulation in the body, making them promising cancer treatment options. This review focuses on the different types of polymeric materials available to synthesize micelles, as well as the different ways that micelles can be tailored to be responsive to different stimuli. The selection of stimuli-sensitive polymers used in micelle preparation is based on the specific conditions found in the tumor microenvironment. Additionally, clinical trends in using micelles to treat cancer are presented, including what happens to micelles after they are administered. Finally, various cancer drug delivery applications involving micelles are discussed along with their regulatory aspects and future outlooks. As part of this discussion, we will examine current research and development in this field. The challenges and barriers they may have to overcome before they can be widely adopted in clinics will also be discussed.
Collapse
Affiliation(s)
- Qi Wang
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Keerthi Atluri
- Product Development Department, Alcami Corporation, Morrisville, NC 27560, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
19
|
Zhang R, Luo Y, Du C, Wu L, Wang Y, Chen Y, Li S, Jiang X, Xie Y. Synthesis and biological evaluation of novel SN38-glucose conjugate for colorectal cancer treatment. Bioorg Med Chem Lett 2023; 81:129128. [PMID: 36639036 DOI: 10.1016/j.bmcl.2023.129128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
7-Ethyl-10-hydroxycamptothecin (SN38), the bioactive metabolite of irinotecan (CPT-11), has been shown to be 100-1000 times more effective than CPT-11. However, the poor water solubility and bioavailability of SN38 constrained its clinical application. In this study, we synthesized a novel SN38-glucose conjugate (FSY04) to address this issue. Our in vitro studies indicated that FSY04 had a potent inhibitory ability against colorectal cancer (CRC) cell lines of SW-480 and HCT-116 compared to the inhibitory capacity of CPT-11. Interestingly, FSY04 possessed lower cytotoxicity against normal cell lines of LO2 and 293T in contrast with CPT-11. Moreover, FSY04 is more active than CPT-11 in inducing apoptosis, inhibiting migration, and invasion. In vivo experiments suggested that half of the equivalent of FSY04 inhibited the growth of SW480 in the xenograft tumor model better than one equivalent of CPT-11. Our data demonstrated FSY04 to be a promising agent in CRC therapy.
Collapse
Affiliation(s)
- Ruiming Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Yi Luo
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chenghao Du
- Department of Biological Sciences, USC Dana and David Dornsife College of Letters, Arts and Sciences, Los Angeles 90089, USA
| | - Ling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Yankang Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China
| | - Yuanduan Chen
- Guizhou Jinqianguo Biotechnology Co. Ltd., Bijie 551714, PR China
| | - Shouqian Li
- Guizhou Jinqianguo Biotechnology Co. Ltd., Bijie 551714, PR China
| | - Xin Jiang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
20
|
Liu YH, Chen LC, Cheng WT, Wei PS, Hsieh CM, Sheu MT, Lin SY, Ho HO, Lin HL. Synergistic Combination of Irinotecan and Rapamycin Orally Delivered by Nanoemulsion for Enhancing Therapeutic Efficacy of Pancreatic Cancer. Pharmaceutics 2023; 15:pharmaceutics15020473. [PMID: 36839795 PMCID: PMC9963937 DOI: 10.3390/pharmaceutics15020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, combining different types of therapy has emerged as an advanced strategy for cancer treatment. In these combination therapies, oral delivery of anticancer drugs is more convenient and compliant. This study developed an irinotecan/rapamycin-loaded oral lecithin-based self-nanoemulsifying nanoemulsion preconcentrate (LBSNENPir/ra) and evaluated its synergistic combination effects on pancreatic cancer. LBSNENP loaded with irinotecan and rapamycin at a ratio of 1:1 (LBSNENPir10/ra10) had a better drug release profile and smaller particle size (<200 nm) than the drug powder. Moreover, LBSNENPir10/ra10 exhibited a strong synergistic effect (combination index [CI] < 1.0) in cell viability and combination effect studies. In the tumor inhibition study, the antitumor activity of LBSNENPir10/ra10/sily20 against MIA PaCa-2 (a human pancreatic cancer cell line) was significantly increased compared with the other groups. When administered with rapamycin and silymarin, the area under the curve and the maximum concentration of irinotecan significantly improved compared with the control. We successfully developed an irinotecan/rapamycin-loaded oral self-nanoemulsifying nanoemulsion system to achieve treatment efficacy for pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ling-Chun Chen
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
| | - Wen-Ting Cheng
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
| | - Pu-Sheng Wei
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Ming Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Shyr-Yi Lin
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hsiu-O Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (H.-O.H.); (H.-L.L.)
| | - Hong-Liang Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-O.H.); (H.-L.L.)
| |
Collapse
|
21
|
Zhong ZX, Li XZ, Liu JT, Qin N, Duan HQ, Duan XC. Disulfide Bond-Based SN38 Prodrug Nanoassemblies with High Drug Loading and Reduction-Triggered Drug Release for Pancreatic Cancer Therapy. Int J Nanomedicine 2023; 18:1281-1298. [PMID: 36945256 PMCID: PMC10024910 DOI: 10.2147/ijn.s404848] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Purpose Chemotherapy is a significant and effective therapeutic strategy that is frequently utilized in the treatment of cancer. Small molecular prodrug-based nanoassemblies (SMPDNAs) combine the benefits of both prodrugs and nanomedicine into a single nanoassembly with high drug loading, increased stability, and improved biocompatibility. Methods In this study, a disulfide bond inserted 7-ethyl-10-hydroxycamptothecin (SN38) prodrug was rationally designed and then used to prepare nanoassemblies (SNSS NAs) that were selectively activated by rich glutathione (GSH) in the tumor site. The characterization of SNSS NAs and the in vitro and in vivo evaluation of their antitumor effect on a pancreatic cancer model were performed. Results In vitro findings demonstrated that SNSS NAs exhibited GSH-induced SN38 release and cytotoxicity. SNSS NAs have demonstrated a passive targeting effect on tumor tissues, a superior antitumor effect compared to irinotecan (CPT-11), and satisfactory biocompatibility with double dosage treatment. Conclusion The SNSS NAs developed in this study provide a new method for the preparation of SN38-based nano-delivery systems with improved antitumor effect and biosafety.
Collapse
Affiliation(s)
- Zhi-Xin Zhong
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Xu-Zhao Li
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Jin-Tao Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Nan Qin
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Hong-Quan Duan
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Correspondence: Hong-Quan Duan; Xiao-Chuan Duan, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, 22, Qi Xiang Tai Road, Tianjin, 300070, People’s Republic of China, Tel +86-22-83336680, Fax +86-22-83336560, Email ;
| | - Xiao-Chuan Duan
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| |
Collapse
|
22
|
Chen W, Sheng P, Chen Y, Liang Y, Wu S, Jia L, He X, Zhang CF, Wang CZ, Yuan CS. Hypoxia-responsive Immunostimulatory Nanomedicines Synergize with Checkpoint Blockade Immunotherapy for Potentiating Cancer Immunotherapy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023. [PMID: 37033201 DOI: 10.1016/j.cej.2022.134869] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inducing cell death while simultaneously enhancing antitumor immune responses is a promising therapeutic approach for multiple cancers. Celastrol (Cel) and 7-ethyl-10-hydroxycamptothecin (SN38) have contrasting physicochemical properties, but strong synergy in immunogenic cell death induction and anticancer activity. Herein, a hypoxia-sensitive nanosystem (CS@TAP) was designed to demonstrate effective immunotherapy for colorectal cancer by systemic delivery of an immunostimulatory chemotherapy combination. Furthermore, the combination of CS@TAP with anti-PD-L1 mAb (αPD-L1) exhibited a significant therapeutic benefit of delaying tumor growth and increased local doses of immunogenic signaling and T-cell infiltration, ultimately extending survival. We conclude that CS@TAP is an effective inducer of immunogenic cell death (ICD) in cancer immunotherapy. Therefore, this study provides an encouraging strategy to synergistically induce immunogenic cell death to enhance tumor cytotoxic T lymphocytes (CTLs) infiltration for anticancer immunotherapy.
Collapse
Affiliation(s)
- Weiguo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Sheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujiang Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sixin Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Liying Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
23
|
Chen W, Sheng P, Chen Y, Liang Y, Wu S, Jia L, He X, Zhang CF, Wang CZ, Yuan CS. Hypoxia-responsive Immunostimulatory Nanomedicines Synergize with Checkpoint Blockade Immunotherapy for Potentiating Cancer Immunotherapy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 451:138781. [PMID: 37033201 PMCID: PMC10079280 DOI: 10.1016/j.cej.2022.138781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Inducing cell death while simultaneously enhancing antitumor immune responses is a promising therapeutic approach for multiple cancers. Celastrol (Cel) and 7-ethyl-10-hydroxycamptothecin (SN38) have contrasting physicochemical properties, but strong synergy in immunogenic cell death induction and anticancer activity. Herein, a hypoxia-sensitive nanosystem (CS@TAP) was designed to demonstrate effective immunotherapy for colorectal cancer by systemic delivery of an immunostimulatory chemotherapy combination. Furthermore, the combination of CS@TAP with anti-PD-L1 mAb (αPD-L1) exhibited a significant therapeutic benefit of delaying tumor growth and increased local doses of immunogenic signaling and T-cell infiltration, ultimately extending survival. We conclude that CS@TAP is an effective inducer of immunogenic cell death (ICD) in cancer immunotherapy. Therefore, this study provides an encouraging strategy to synergistically induce immunogenic cell death to enhance tumor cytotoxic T lymphocytes (CTLs) infiltration for anticancer immunotherapy.
Collapse
Affiliation(s)
- Weiguo Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Sheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yujiang Chen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Liang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sixin Wu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Liying Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun-Feng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Chong-Zhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| | - Chun-Su Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia & Critical Care, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
24
|
Ezati N, Abdouss M, Rouhani M, Kerr PG, Kowsari E. Novel serotonin decorated molecularly imprinted polymer nanoparticles based on biodegradable materials; A potential self-targeted delivery system for Irinotecan. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Yang C, Xia AJ, Du CH, Hu MX, Gong YL, Tian R, Jiang X, Xie YM. Discovery of highly potent and selective 7-ethyl-10-hydroxycamptothecin-glucose conjugates as potential anti-colorectal cancer agents. Front Pharmacol 2022; 13:1014854. [PMID: 36506586 PMCID: PMC9726873 DOI: 10.3389/fphar.2022.1014854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
7-Ethyl-10-hydroxycamptothecin (SN38), a highly potent metabolite of irinotecan, has an anticancer efficacy 100-1000 folds more than irinotecan in vitro. However, the clinical application of SN38 has been limited due to the very narrow therapeutic window and poor water solubility. Herein, we report the SN38-glucose conjugates (Glu-SN38) that can target cancer cells due to their selective uptake via glucose transporters, which are overexpressed in most cancers. The in vitro antiproliferative activities against human cancer cell lines and normal cells of Glu-SN38 were investigated. One of the conjugates named 5b showed high potency and selectivity against human colorectal cancer cell line HCT116. Furthermore, 5b remarkably inhibited the growth of HCT116 in vivo. These results suggested that 5b could be a promising drug candidate for treating colorectal cancer.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China,Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, Guangdong, China,Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - An-Jie Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Cheng-Hao Du
- Department of Biological Sciences, USC Dana and David Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, United States
| | - Ming-Xing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - You-Ling Gong
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Jiang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Yong-Mei Xie, ; Xin Jiang,
| | - Yong-Mei Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China,*Correspondence: Yong-Mei Xie, ; Xin Jiang,
| |
Collapse
|
26
|
Plant-Derived Bioactive Compounds in Colorectal Cancer: Insights from Combined Regimens with Conventional Chemotherapy to Overcome Drug-Resistance. Biomedicines 2022; 10:biomedicines10081948. [PMID: 36009495 PMCID: PMC9406120 DOI: 10.3390/biomedicines10081948] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Acquired drug resistance represents a major clinical problem and one of the biggest limitations of chemotherapeutic regimens in colorectal cancer. Combination regimens using standard chemotherapeutic agents, together with bioactive natural compounds derived from diet or plants, may be one of the most valuable strategies to overcome drug resistance and re-sensitize chemoresistant cells. In this review, we highlight the effect of combined regimens based on conventional chemotherapeutics in conjunction with well-tolerated plant-derived bioactive compounds, mainly curcumin, resveratrol, and EGCG, with emphasis on the molecular mechanisms associated with the acquired drug resistance.
Collapse
|
27
|
Zhou Y, Li X, Luo W, Zhu J, Zhao J, Wang M, Sang L, Chang B, Wang B. Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment. Front Pharmacol 2022; 13:903259. [PMID: 35770084 PMCID: PMC9234177 DOI: 10.3389/fphar.2022.903259] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Allicin is the main active ingredient in freshly-crushed garlic and some other allium plants, and its anticancer effect on cancers of digestive system has been confirmed in many studies. The aim of this review is to summarize epidemiological studies and in vitro and in vivo investigations on the anticancer effects of allicin and its secondary metabolites, as well as their biological functions. In epidemiological studies of esophageal cancer, liver cancer, pancreatic cancer, and biliary tract cancer, the anticancer effect of garlic has been confirmed consistently. However, the results obtained from epidemiological studies in gastric cancer and colon cancer are inconsistent. In vitro studies demonstrated that allicin and its secondary metabolites play an antitumor role by inhibiting tumor cell proliferation, inducing apoptosis, controlling tumor invasion and metastasis, decreasing angiogenesis, suppressing Helicobacter pylori, enhancing the efficacy of chemotherapeutic drugs, and reducing the damage caused by chemotherapeutic drugs. In vivo studies further demonstrate that allicin and its secondary metabolites inhibit cancers of the digestive system. This review describes the mechanisms against cancers of digestive system and therapeutic potential of allicin and its secondary metabolites.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- The Second Clinical College, China Medical University, Shenyang, China
| | - Xingxuan Li
- The Second Clinical College, China Medical University, Shenyang, China
| | - Wenyu Luo
- The Second Clinical College, China Medical University, Shenyang, China
| | - Junfeng Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jingwen Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengyao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Bing Chang,
| | - Bingyuan Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
28
|
Guo B, Wei J, Wang J, Sun Y, Yuan J, Zhong Z, Meng F. CD44-targeting hydrophobic phosphorylated gemcitabine prodrug nanotherapeutics augment lung cancer therapy. Acta Biomater 2022; 145:200-209. [PMID: 35430336 DOI: 10.1016/j.actbio.2022.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022]
Abstract
Gemcitabine (GEM) is among the most used chemotherapies for advanced malignancies including non-small cell lung cancer. The clinical efficacy of GEM is, however, downplayed by its poor bioavailability, short half-life, drug resistance, and dose-limiting toxicities (e.g. myelosuppression). In spite of many approaches exploited to improve the efficacy and safety of GEM, limited success was achieved. The short A6 peptide (sequence: Ac-KPSSPPEE-NH2) is clinically validated for specific binding to CD44 on metastatic tumors. Here, we designed a robust and CD44-specific GEM nanotherapeutics by encapsulating hydrophobic phosphorylated gemcitabine prodrug (HPG) into the core of A6 peptide-functionalized disulfide-crosslinked micelles (A6-mHPG), which exhibited reduction-triggered HPG release and specific targetability to CD44 overexpressing tumor cells. Interestingly, A6 greatly enhanced the internalization and inhibitory activity of micellar HPG (mHPG) in CD44 positive A549 cells, and increased its accumulation in A549 cancerous lung, leading to potent repression of orthotopic tumor growth, depleted toxicity, and marked survival benefits compared to free HPG and mHPG (median survival time: 59 days versus 30 and 45 days, respectively). The targeted delivery of gemcitabine prodrug with disulfide-crosslinked biodegradable micelles appears to be a highly appealing strategy to boost gemcitabine therapy for advance tumors. STATEMENT OF SIGNIFICANCE: Gemcitabine (GEM) though widely used in clinics for treating advanced tumors is associated with poor bioavailability, short half-life and dose-limiting toxicities. Development of clinically translatable GEM formulations to improve its anti-tumor efficacy and safety is of great interest. Here, we report on CD44-targeting GEM nanotherapeutics obtained by encapsulating hydrophobic phosphorylated GEM prodrug (HPG), a single isomer of NUC-1031, into A6 peptide-functionalized disulfide-crosslinked micelles (A6-mHPG). A6-mHPG demonstrates stability against degradation, enhanced internalization and inhibition toward CD44+ cells, and increased accumulation in A549 lung tumor xenografts, leading to potent repression of orthotopic tumor growth, depleted toxicity and marked survival benefits. The targeted delivery of GEM prodrug using A6-mHPG is a highly appealing strategy to GEM cancer therapy.
Collapse
Affiliation(s)
- Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jingyi Wang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yinping Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jiandong Yuan
- BrightGene Bio-Medical Technology Co., Ltd., Suzhou, 215123, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
29
|
He X, Cao Z, Li N, Chu L, Wang J, Zhang C, He X, Lu X, Sun K, Meng Q. Preparation and evaluation of SN-38-loaded MMP-2-responsive polymer micelles. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Liu D, Yu Q, Ning Q, Liu Z, Song J. The relationship between UGT1A1 gene & various diseases and prevention strategies. Drug Metab Rev 2021; 54:1-21. [PMID: 34807779 DOI: 10.1080/03602532.2021.2001493] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
UDP-glucuronyltransferase 1A1 (UGT1A1) is a member of the Phase II metabolic enzyme family and the only enzyme that can metabolize detoxified bilirubin. Inactivation and very low activity of UGT1A1 in the liver can be fatal or lead to lifelong Gilbert's syndrome (GS) and Crigler-Najjar syndrome (CN). To date, more than one hundred UGT1A1 polymorphisms have been discovered. Although most UGT1A1 polymorphisms are not fatal, which diseases might be associated with low activity UGT1A1 or UGT1A1 polymorphisms? This scientific topic has been studied for more than a hundred years, there are still many uncertainties. Herein, this article will summarize all the possibilities of UGT1A1 gene-related diseases, including GS and CN, neurological disease, hepatobiliary disease, metabolic difficulties, gallstone, cardiovascular disease, Crohn's disease (CD) obesity, diabetes, myelosuppression, leukemia, tumorigenesis, etc., and provide guidance for researchers to conduct in-depth study on UGT1A1 gene-related diseases. In addition, this article not only summarizes the prevention strategies of UGT1A1 gene-related diseases, but also puts forward some insights for sharing.
Collapse
Affiliation(s)
- Dan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China.,Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qi Yu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qing Ning
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jie Song
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, PR China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China
| |
Collapse
|
31
|
Wu D, Li Y, Zhu L, Zhang W, Xu S, Yang Y, Yan Q, Yang G. A biocompatible superparamagnetic chitosan-based nanoplatform enabling targeted SN-38 delivery for colorectal cancer therapy. Carbohydr Polym 2021; 274:118641. [PMID: 34702462 DOI: 10.1016/j.carbpol.2021.118641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022]
Abstract
7-Ethyl-10-hydroxycamptothecin (SN-38) as a potent anti-tumor candidate, suffers the constraints from its poor water solubility, pH-dependent lactone ring stability and the lack of efficient delivery system without losing its activity. Herein, biocompatible superparamagnetic chitosan-based nanocomplexes complexing with water-soluble polymeric prodrug poly(L-glutamic acid)-SN-38 (PGA-SN-38) was engineered for efficient delivery of SN-38. The manufacturing process of colloidal complexes was green, expeditious and facile, with one-shot addition of PGA-SN-38 into chitosan solution without using any organic solvent or surfactant. Upon introducing ultra-small-size superparamagnetic nanoparticles (~10 nm), the developed magnetic nanocomplexes exhibited significantly boosted tumor-targeted accumulation and efficient cellular internalization under a local magnetic field. Notably, the magnetic nanocomplexes achieved distinctly superior targeting and anti-tumor efficacy in the established xenograft colorectal cancer model of mice, with high tumor suppression rate up to 81%. Therefore, this superparamagnetic chitosan-based nanocomplex system could provide a promising platform for the targeted delivery of SN-38 in colorectal cancer therapy.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wangyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shumin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
32
|
Fang T, Ye Z, Chen X, Wang Y, Wan J, Wang H. Repurposing of camptothecin: An esterase-activatable prodrug delivered by a self-emulsifying formulation that improves efficacy in colorectal cancer. Int J Pharm 2021; 599:120399. [PMID: 33647408 DOI: 10.1016/j.ijpharm.2021.120399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/14/2021] [Indexed: 01/05/2023]
Abstract
The global burden of colorectal cancer (CRC), the third most commonly diagnosed malignancy, continues to rise. Therefore, more effective and less toxic therapies are needed for CRC. CPT-11 (also called irinotecan), the standard-of-care treatment for CRC, has only had limited effects on survival outcomes. In vivo, CPT-11 must be converted to an active metabolite, SN38, to exert antitumor activity in the presence of carboxylesterases, but the conversion rate is extremely low (usually less than 8%). To fully harness the active SN38 compound, we showed here that esterification of SN38 using α-linolenic acid (LNA) generated a prodrug (termed LSN38), which can be formulated in pharmaceutically acceptable surfactants, such as polysorbate 80. Upon blending with an aqueous ethanolic solution, the mixture of LSN38/polysorbate 80 formed self-emulsifying nanomicelles (termed LSN38 NMs), enabling systemic injection. Unlike the insufficient release of active SN38 from CPT-11, drug activation from the LSN38 prodrug was quantitative and relied on esterase, which is abundant in cancerous cells. Pharmacokinetics studies revealed that polysorbate 80-based nanomicelles stably constrained the prodrug in the reservoir and prolonged blood circulation compared to CPT-11. Furthermore, LSN38 NMs showed superior therapeutic efficacy against a colorectal xenograft-bearing mouse model that failed to be treated with clinically approved CPT-11. Overall, these studies highlight the feasibility of converting a chemotherapeutic agent that is not miscible or compatible with pharmaceutical surfactants into an injectable self-emulsifying formulation. This approach could be applied to rescue other drugs or drug candidates that are abandoned in the preclinical stages due to pharmaceutical challenges.
Collapse
Affiliation(s)
- Tao Fang
- Jinhua People's Hospital, Jinhua, Zhejiang Province 321000, PR China
| | - Zhijian Ye
- Jinhua People's Hospital, Jinhua, Zhejiang Province 321000, PR China
| | - Xiaona Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, PR China
| | - Yuchen Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, PR China
| | - Jianqin Wan
- The First Affiliated Hospital, Zhejiang University School of Medicine, NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Zhejiang University School of Medicine, NHC Key Laboratory of Combined Multi-Organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
33
|
|
34
|
Xiao H, Sedlařík V. A Rapid and Sensitive HPLC Method for Simultaneous Determination of Irinotecan Hydrochloride and Curcumin in Co-delivered Polymeric Nanoparticles. J Chromatogr Sci 2020; 58:651-660. [PMID: 32627829 DOI: 10.1093/chromsci/bmaa033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/27/2020] [Accepted: 06/05/2020] [Indexed: 02/01/2023]
Abstract
In recent years, a great deal of attention has been paid to the combined use of multiple antitumor drugs for better cancer treatment. The aims of the study are to construct a nanoparticle drug delivery system for the co-delivery of irinotecan hydrochloride and curcumin and to develop an analytical method for simultaneously quantifying these molecules, which is essential for further studies of the co-delivered nano system. The irinotecan hydrochloride and curcumin co-delivered nanoparticle (ICN) were prepared by combinatorially entrapping them into polyethylene glycol-poly lactic acid-co-glycolic acid (PEG-PLGA) polymeric nanoparticles. A simple, sensitive and rapid high-performance liquid chromatography method was developed and validated to simultaneously quantify the compounds in the co-delivered nanoparticle system. Acetonitrile and ultrapure water containing sodium dodecyl sulfate (0.08 mol/L), disodium phosphate (Na2HPO4, 0.002 mol/L) and acetic acid (4%, v/v) were used as the mobile phase and their ratio was set at 50:50. The flow rate was set to 1.0 mL/min, and the temperature in the column oven was maintained at 40°C. The analysis was carried out at 256 and 424 nm to assess irinotecan hydrochloride and curcumin, respectively. Detectors with only one channel can also visualize both analytes in one chromatogram at 379 nm and still demonstrate acceptable sensitivity. The retention times for irinotecan hydrochloride and curium were 3.317 and 5.560 min, respectively. The method developed was confirmed to be sensitive, accurate (recovery, 100 ± 2%), precise (relative standard deviation, RSD ≤ 1%), robust and linear (R2 ≥ 0.9996) in the range from 2.05 to 1050 μg/mL. The presented method has been used to quantify irinotecan hydrochloride and curcumin in the co-delivered ICN nano system to assess the drug delivery quality of the nanoparticles and can also be used for routine analysis because of its simplicity and accuracy.
Collapse
Affiliation(s)
- Haijun Xiao
- Center of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Vladimír Sedlařík
- Center of Polymer Systems, Tomas Bata University in Zlin, Tr. T. Bati 5678, 760 01 Zlin, Czech Republic
| |
Collapse
|
35
|
Yu T, Tong L, Ao Y, Zhang G, Liu Y, Zhang H. NIR triggered PLGA coated Au-TiO 2 core loaded CPT-11 nanoparticles for human papillary thyroid carcinoma therapy. Drug Deliv 2020; 27:855-863. [PMID: 32515668 PMCID: PMC8216437 DOI: 10.1080/10717544.2020.1775723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MDR (multi-drug resistance) is one of the significant deterrents of effective chemotherapy for malignant growth. One of the powerful ways to deal with defeat of the MDR is to utilize inorganic nanoparticle-intervened tranquilize conveyance to build the medication aggregations in cancerous growth cells. In this work, we have developed the presentation that is accurately made of medication conveyance framework dependent on the TiO2 nanoparticles stacked CPT-11 to defeat the thyroid malignancy cells. The synthesized nanoparticles are characterized by spectroscopy methods (UV–vis, XPS, SEM, TEM, and DLS). The TEM results suggested that the shape of PLGA-Au-TiO2@CPT-11 of nanoparticles is ∼250 nm. After successful synthesis, we have evaluated the MTT of PLGA-Au-TiO2@CPT-11 nanoparticles with and without NIR radiations. Further, the morphological changes were observed using various biochemical stainings, such as acridine orange and ethidium bromide (AO–EB) and nuclear staining through Hoechst-33258. Also, migration and cell invasion were examined. The results show that these PLGA-Au-TiO2@CPT-11 and PLGA-Au-TiO2@CPT-11 + NIR nanoparticles exhibited promising antimetastatic property and reduced the cell invasion activity in B-CPAP and FTC-133 thyroid cancer cell lines. Based on the above findings, these PLGA-Au-TiO2@CPT-11 and PLGA-Au-TiO2@CPT-11 + NIR nanoparticles can be used as a promising candidate for the malignant thyroid cells.
Collapse
Affiliation(s)
- Tianyu Yu
- Department of Thyroid Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lingling Tong
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yu Ao
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
| | - Genmao Zhang
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yunpeng Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hejia Zhang
- Department of Ultrasonography, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
36
|
Wu D, Zhu L, Li Y, Wang H, Xu S, Zhang X, Wu R, Yang G. Superparamagnetic chitosan nanocomplexes for colorectal tumor-targeted delivery of irinotecan. Int J Pharm 2020; 584:119394. [DOI: 10.1016/j.ijpharm.2020.119394] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/11/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
|
37
|
Chen J, He GM, Xian GY, Su XQ, Yu LL, Yao F. Mechanistic biosynthesis of SN-38 coated reduced graphene oxide sheets for photothermal treatment and care of patients with gastric cancer. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111736. [DOI: 10.1016/j.jphotobiol.2019.111736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
38
|
Abstract
Twenty-five years ago, the cytotoxic drug irinotecan (IRT) was first approved in Japan for the treatment of cancer. For more than two decades, the IRT prodrug has largely contributed to the treatment of solid tumors worldwide. Nowadays, this camptothecin derivative targeting topoisomerase 1 remains largely used in combination regimen, like FOLFIRI and FOLFIRINOX, to treat metastatic or advanced solid tumors, such as colon, gastric and pancreatic cancers and others. This review highlights recent discoveries in the field of IRT and its derivatives, including analogues of the active metabolite SN38 (such as FL118), the recently approved liposomal form Nal-IRI and SN38-based immuno-conjugates currently in development (such as sacituzumab govitecan). New information about the IRT mechanism of action are presented, including the discovery of a new protein target, the single-stranded DNA-binding protein FUBP1. Significant progress has been made also to better understand and manage the main limiting toxicities of IRT, chiefly neutropenia and diarrhea. The role of drug-induced inflammation and dysbiosis is underlined and strategies to limit the intestinal toxicity of IRT are discussed (use of β-glucuronidase inhibitors, plant extracts, probiotics). The detailed knowledge of the metabolism of IRT has enabled the identification of potential biomarkers to guide patient selection and to limit drug-induced toxicities, but no robust IRT-specific therapeutic biomarker has been approved yet. IRT is a versatile chemotherapeutic agent which combines well with a variety of anticancer drugs. It offers a large range of drug combinations with cytotoxic agents, targeted products and immuno-active biotherapeutics, to treat a variety of advanced solid carcinoma, sarcoma and cancers with progressive central nervous system diseases. A quarter of century after its first launch, IRT remains an essential anticancer drug, largely prescribed, useful to many patients and scientifically inspiring.
Collapse
|
39
|
Abstract
Smart GSH-responsive camptothecin delivery systems for treatment of tumors and real-time monitoring in vivo and in vitro were described.
Collapse
Affiliation(s)
- Dan Zhang
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation
- School of Mechanical Engineering
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Xiaohui Ji
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Yanhong Gao
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| |
Collapse
|