1
|
Alfutaimani AS, Alharbi NK, S. Alahmari A, A. Alqabbani A, Aldayel AM. Exploring the landscape of Lipid Nanoparticles (LNPs): A comprehensive review of LNPs types and biological sources of lipids. Int J Pharm X 2024; 8:100305. [PMID: 39669003 PMCID: PMC11635012 DOI: 10.1016/j.ijpx.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as promising carriers for delivering therapeutic agents, including mRNA-based immunotherapies, in various biomedical applications. The use of LNPs allows for efficient delivery of drugs, resulting in enhanced targeted delivery to specific tissues or cells. These LNPs can be categorized into several types, including liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-polymer hybrid nanoparticles. The preparation of LNPs involves the manipulation of their structural, dimensional, compositional, and physical characteristics via the use of different methods in the industry. Lipids used to construct LNPs can also be derived from various biological sources, such as natural lipids extracted from plants, animals, or microorganisms. This review dives into the different types of LNPs and their preparation methods. More importantly, it discusses all possible biological sources that are known to supply lipids for the creation of LNPs. Natural lipid reservoirs have surfaced as promising sources for generating LNPs. The use of LNPs in drug delivery is expected to increase significantly in the coming years. Herein, we suggest some environmentally friendly and biocompatible sources that can produce lipids for future LNPs production.
Collapse
Affiliation(s)
- Alanood S. Alfutaimani
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Nouf K. Alharbi
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
| | - Amirah S. Alahmari
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University (PNU), P.O Box 84428, Riyadh 11671, Saudi Arabia
| | - Almaha A. Alqabbani
- The Ear, Nose, and Throat (ENT) Department at King Salman Hospital, Riyadh 12769, Saudi Arabia
| | - Abdulaziz M. Aldayel
- Nanomedicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Riyadh 11426, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), Riyadh 11426, Saudi Arabia
| |
Collapse
|
2
|
Ekhator C, Qureshi MQ, Zuberi AW, Hussain M, Sangroula N, Yerra S, Devi M, Naseem MA, Bellegarde SB, Pendyala PR. Advances and Opportunities in Nanoparticle Drug Delivery for Central Nervous System Disorders: A Review of Current Advances. Cureus 2023; 15:e44302. [PMID: 37649926 PMCID: PMC10463100 DOI: 10.7759/cureus.44302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/01/2023] Open
Abstract
This narrative review provides an overview of the current advances, challenges, and opportunities in nanoparticle drug delivery for central nervous system (CNS) disorders. The treatment of central nervous system disorders is challenging due to the blood-brain barrier (BBB), which limits the delivery of therapeutic agents to the brain. Promising approaches to address these issues and improve the efficacy of CNS disease therapies are provided by nanoparticle-based drug delivery systems. Nanoparticles, such as liposomes, polymeric nanoparticles, dendrimers, and solid lipid nanoparticles, can be modified to enhance targeting, stability, and drug-release patterns. They allow for the encapsulation of a variety of therapeutic compounds and can be functionalized with ligands or antibodies for active targeting, minimizing off-target effects. Additionally, nanoparticles can circumvent drug resistance processes and provide versatile platforms for applications that combine therapeutic and diagnostic functions. Although the delivery of CNS medications using nanoparticles has advanced significantly, there are still challenges to be resolved. These include understanding the BBB interactions, doing long-term safety studies, and scaling up the production. However, improvements in nanotechnology and a deeper comprehension of CNS disorders provide opportunities to enhance treatment results and address unmet medical requirements. Future research and ongoing clinical trials are required to further explore the potential of nanoparticle drug delivery for CNS disorders.
Collapse
Affiliation(s)
- Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | | | | | | | | | - Sushanth Yerra
- Internal Medicine, University of Medicine and Health Sciences, Basseterre, KNA
| | | | | | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | - Praful R Pendyala
- Neurology, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| |
Collapse
|
3
|
Kumari L, Choudhari Y, Patel P, Gupta GD, Singh D, Rosenholm JM, Bansal KK, Kurmi BD. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life (Basel) 2023; 13:life13051099. [PMID: 37240744 DOI: 10.3390/life13051099] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
A drug's aqueous solubility is defined as the ability to dissolve in a particular solvent, and it is currently a major hurdle in bringing new drug molecules to the market. According to some estimates, up to 40% of commercialized products and 70-90% of drug candidates in the development stage are poorly soluble, which results in low bioavailability, diminished therapeutic effects, and dosage escalation. Because of this, solubility must be taken into consideration when developing and fabricating pharmaceutical products. To date, a number of approaches have been investigated to address the problem of poor solubility. This review article attempts to summarize several conventional methods utilized to increase the solubility of poorly soluble drugs. These methods include the principles of physical and chemical approaches such as particle size reduction, solid dispersion, supercritical fluid technology, cryogenic technology, inclusion complex formation techniques, and floating granules. It includes structural modification (i.e., prodrug, salt formation, co-crystallization, use of co-solvents, hydrotrophy, polymorphs, amorphous solid dispersions, and pH variation). Various nanotechnological approaches such as liposomes, nanoparticles, dendrimers, micelles, metal organic frameworks, nanogels, nanoemulsions, nanosuspension, carbon nanotubes, and so forth have also been widely investigated for solubility enhancement. All these approaches have brought forward the enhancement of the bioavailability of orally administered drugs by improving the solubility of poorly water-soluble drugs. However, the solubility issues have not been completely resolved, owing to several challenges associated with current approaches, such as reproducibility in large scale production. Considering that there is no universal approach for solving solubility issues, more research is needed to simplify the existing technologies, which could increase the number of commercially available products employing these techniques.
Collapse
Affiliation(s)
- Lakshmi Kumari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Yash Choudhari
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Kuldeep Kumar Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga 142001, Punjab, India
| |
Collapse
|
4
|
Seaberg J, Clegg JR, Bhattacharya R, Mukherjee P. Self-Therapeutic Nanomaterials: Applications in Biology and Medicine. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2023; 62:190-224. [PMID: 36938366 PMCID: PMC10022599 DOI: 10.1016/j.mattod.2022.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Over past decades, nanotechnology has contributed to the biomedical field in areas including detection, diagnosis, and drug delivery via opto-electronic properties or enhancement of biological effects. Though generally considered inert delivery vehicles, a plethora of past and present evidence demonstrates that nanomaterials also exude unique intrinsic biological activity based on composition, shape, and surface functionalization. These intrinsic biological activities, termed self-therapeutic properties, take several forms, including mediation of cell-cell interactions, modulation of interactions between biomolecules, catalytic amplification of biochemical reactions, and alteration of biological signal transduction events. Moreover, study of biomolecule-nanomaterial interactions offers a promising avenue for uncovering the molecular mechanisms of biology and the evolution of disease. In this review, we observe the historical development, synthesis, and characterization of self-therapeutic nanomaterials. Next, we discuss nanomaterial interactions with biological systems, starting with administration and concluding with elimination. Finally, we apply this materials perspective to advances in intrinsic nanotherapies across the biomedical field, from cancer therapy to treatment of microbial infections and tissue regeneration. We conclude with a description of self-therapeutic nanomaterials in clinical trials and share our perspective on the direction of the field in upcoming years.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- M.D./Ph.D. Program, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - John R. Clegg
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
5
|
Pi C, Zhao W, Zeng M, Yuan J, Shen H, Li K, Su Z, Liu Z, Wen J, Song X, Lee RJ, Wei Y, Zhao L. Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Deliv 2022; 29:1878-1891. [PMID: 35748365 PMCID: PMC9246235 DOI: 10.1080/10717544.2022.2086938] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The main aim of this study was to improve the therapeutic potential of a paclitaxel (PTX) and curcumin (CU) combination regimen using solid lipid nanoparticles (SLNs). PTX and CU were successfully co-encapsulated at a predetermined ratio in SLNs (PC-SLNs) with high encapsulation efficiency (CU: 97.6%, PTX: 95.8%), appropriate particle size (121.8 ± 1.69 nm), small PDI (0.267 ± 0.023), and negative zeta potential (–30.4 ± 1.25 mV). Compared with PTX or the combination of CU and PTX (CU + PTX), PC-SLNs can greatly reduce the dose of PTX while still achieving the same therapeutic effect on four cancer cell lines, among which the inhibitory effect on A549 lung cancer cells was the strongest. PC-SLNs improved the area under the curve (CU: 1.40-fold; PTX: 2.88-fold), prolonged the residence time (CU: 6.94-fold; PTX: 2.51-fold), and increased the half-life (CU: 5.62-fold; PTX: 6.46-fold), achieving long circulation. PC-SLNs were used to treat lung cancer in a nude mouse xenograft tumor model and the tumor suppression rate reached 78.42%, while those of PTX and (CU + PTX) were 40.53% and 51.56%, respectively. As PC-SLNs can prevent P-glycoprotein efflux, reverse MDR and downregulate the NF-κB pathway. PC-SLNs are a potential antineoplastic agent that is more effective and less toxic in treating lung cancer.
Collapse
Affiliation(s)
- Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Zhilian Su
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd, Luzhou, Sichuan, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Shapingba, P. R. China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, P. R. China.,Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Republic of Korea
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| |
Collapse
|
6
|
Nutraceutical-Based Nanoformulations for Breast and Ovarian Cancer Treatment. Int J Mol Sci 2022; 23:ijms231912032. [PMID: 36233349 PMCID: PMC9569679 DOI: 10.3390/ijms231912032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Different strategies have been investigated for a more satisfactory treatment of advanced breast cancer, including the adjuvant use of omega-3 polyunsaturated fatty acids (PUFAs). These nutritional compounds have been shown to possess potent anti-inflammatory and antiangiogenic activities, the capacity to affect transduction pathways/receptors involved in cell growth and to reprogram tumor microenvironment. Omega-3 PUFA-containing nanoformulations designed for drug delivery in breast cancer were shown to potentiate the effects of enclosed drugs, enhance drug delivery to target sites, and minimize drug-induced side effects. We have critically analyzed here the results of the most recent studies investigating the effects of omega-3 PUFA-containing nanoformulations in breast cancer. The anti-neoplastic efficacy of omega-3 PUFAs has also been convincingly demonstrated by using preclinical in vivo models of ovarian cancer. The results obtained are critically analyzed here and seem to provide a sufficient rationale to move to still lacking interventional clinical trials, as well as to evaluate possible advantages of enclosing omega-3 PUFAs to drug-delivery nanosystems for ovarian cancer. Future perspectives in this area are also provided.
Collapse
|
7
|
How to Treat Melanoma? The Current Status of Innovative Nanotechnological Strategies and the Role of Minimally Invasive Approaches like PTT and PDT. Pharmaceutics 2022; 14:pharmaceutics14091817. [PMID: 36145569 PMCID: PMC9504126 DOI: 10.3390/pharmaceutics14091817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer, the incidence and mortality of which are increasing worldwide. Its extensive degree of heterogeneity has limited its response to existing therapies. For many years the therapeutic strategies were limited to surgery, radiotherapy, and chemotherapy. Fortunately, advances in knowledge have allowed the development of new therapeutic strategies. Despite the undoubted progress, alternative therapies are still under research. In this context, nanotechnology is also positioned as a strong and promising tool to develop nanosystems that act as drug carriers and/or light absorbents to potentially improve photothermal and photodynamic therapies outcomes. This review describes the latest advances in nanotechnology field in the treatment of melanoma from 2011 to 2022. The challenges in the translation of nanotechnology-based therapies to clinical applications are also discussed. To sum up, great progress has been made in the field of nanotechnology-based therapies, and our understanding in this field has greatly improved. Although few therapies based on nanoparticulate systems have advanced to clinical trials, it is expected that a large number will come into clinical use in the near future. With its high sensitivity, specificity, and multiplexed measurement capacity, it provides great opportunities to improve melanoma treatment, which will ultimately lead to enhanced patient survival rates.
Collapse
|
8
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Pharmaceutical nanoformulation strategies to spatiotemporally manipulate oxidative stress for improving cancer therapies — exemplified by polyunsaturated fatty acids and other ROS-modulating agents. Drug Deliv Transl Res 2022; 12:2303-2334. [DOI: 10.1007/s13346-021-01104-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
|
10
|
Fu F, Huang Z, Wang W, Wang W, Ma X, Wang L, Huang Y, Hu P, Pan X, Wu C. Interaction between bovine serum albumin and Solutol® HS 15 micelles: A two-stage and concentration-dependent process. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
El Moukhtari SH, Rodríguez-Nogales C, Blanco-Prieto MJ. Oral lipid nanomedicines: Current status and future perspectives in cancer treatment. Adv Drug Deliv Rev 2021; 173:238-251. [PMID: 33774117 DOI: 10.1016/j.addr.2021.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Oral anticancer drugs have earned a seat at the table, as the need for homecare treatment in oncology has increased. Interest in this field is growing as a result of their proven efficacy, lower costs and positive patient uptake. However, the gastrointestinal barrier is still the main obstacle to surmount in chemotherapeutic oral delivery. Anticancer nanomedicines have been proposed to solve this quandary. Among these, lipid nanoparticles are described to be efficiently absorbed while protecting drugs from early degradation in hostile environments. Their intestinal lymphatic tropism or mucoadhesive/penetrative properties give them unique characteristics for oral administration. Considering that chronic cancer cases are increasing over time, it is important to be able to provide treatments with low toxicity and low prices. The challenges, opportunities and therapeutic perspectives of lipid nanoparticles in this area will be discussed in this review, taking into consideration the pre-clinical and clinical progress made in the last decade.
Collapse
|
12
|
Coppens E, Desmaële D, Mougin J, Tusseau-Nenez S, Couvreur P, Mura S. Gemcitabine Lipid Prodrugs: The Key Role of the Lipid Moiety on the Self-Assembly into Nanoparticles. Bioconjug Chem 2021; 32:782-793. [PMID: 33797231 DOI: 10.1021/acs.bioconjchem.1c00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A small library of amphiphilic prodrugs has been synthesized by conjugation of gemcitabine (Gem) (a hydrophilic nucleoside analogue) to a series of lipid moieties and investigated for their capacity to spontaneously self-assemble into nanosized objects by simple nanoprecipitation. Four of these conjugates formed stable nanoparticles (NPs), while with the others, immediate aggregation occurred, whatever the tested experimental conditions. Whether such capacity could have been predicted based on the prodrug physicochemical features was a matter of question. Among various parameters, the hydrophilic-lipophilic balance (HLB) value seemed to hold a predictive character. Indeed, we identified a threshold value which well correlated with the tendency (or not) of the synthesized prodrugs to form stable nanoparticles. Such a hypothesis was further confirmed by broadening the analysis to Gem and other nucleoside prodrugs already described in the literature. We also observed that, in the case of Gem prodrugs, the lipid moiety affected not only the colloidal properties but also the in vitro anticancer efficacy of the resulting nanoparticles. Overall, this study provides a useful demonstration of the predictive potential of the HLB value for lipid prodrug NP formulation and highlights the need of their opportune in vitro screening, as optimal drug loading does not always translate in an efficient biological activity.
Collapse
Affiliation(s)
- Eleonore Coppens
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Didier Desmaële
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Julie Mougin
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Sandrine Tusseau-Nenez
- Laboratoire de Physique de la Matière Condensée (PMC), CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Patrick Couvreur
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| | - Simona Mura
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 cedex Châtenay-Malabry, France
| |
Collapse
|
13
|
Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Control Release 2020; 326:556-598. [PMID: 32726650 DOI: 10.1016/j.jconrel.2020.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Many drug molecules that are currently in the market suffer from short half-life, poor absorption, low specificity, rapid degradation, and resistance development. The design and development of lipophilic prodrugs can provide numerous benefits to overcome these challenges. Fatty acids (FAs), which are lipophilic biomolecules constituted of essential components of the living cells, carry out many necessary functions required for the development of efficient prodrugs. Chemical conjugation of FAs to drug molecules may change their pharmacodynamics/pharmacokinetics in vivo and even their toxicity profile. Well-designed FA-based prodrugs can also present other benefits, such as improved oral bioavailability, promoted tumor targeting efficiency, controlled drug release, and enhanced cellular penetration, leading to improved therapeutic efficacy. In this review, we discuss diverse drug molecules conjugated to various unsaturated FAs. Furthermore, various drug-FA conjugates loaded into various nanostructure delivery systems, including liposomes, solid lipid nanoparticles, emulsions, nano-assemblies, micelles, and polymeric nanoparticles, are reviewed. The present review aims to inspire readers to explore new avenues in prodrug design based on the various FAs with or without nanostructured delivery systems.
Collapse
Affiliation(s)
- Nadia Fattahi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
14
|
Paliwal R, Paliwal SR, Kenwat R, Kurmi BD, Sahu MK. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat 2020; 30:179-194. [DOI: 10.1080/13543776.2020.1720649] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Rishi Paliwal
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Shivani Rai Paliwal
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Rameshroo Kenwat
- Nanomedicine and Bioengineering Research Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, India
| | - Balak Das Kurmi
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur, India
| | - Mukesh Kumar Sahu
- Department of Pharmaceutics, Columbia Institute of Pharmacy, Raipur, India
| |
Collapse
|
15
|
Valdes SA, Alzhrani RF, Lansakara-P DSP, Cui Z. Effect of a Solid Lipid Nanoparticle Formulation on the Bioavailability of 4-(N)-Docosahexaenoyl 2', 2'-Difluorodeoxycytidine After Oral Administration. AAPS PharmSciTech 2020; 21:77. [PMID: 31970527 DOI: 10.1208/s12249-020-1617-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/26/2019] [Indexed: 11/30/2022] Open
Abstract
Previously, we developed a solid lipid nanoparticle (SLN) formulation of 4-(N)-docosahexaenoyl 2', 2'-difluorodeoxycytidine (DHA-dFdC), a compound with promising antitumor activity. Herein, we studied the feasibility of administering the DHA-dFdC by the oral route using the solid lipid nanoparticles (i.e., DHA-dFdC-SLNs). In simulated gastrointestinal fluids, the DHA-dFdC-SLNs did not aggregate. The release of the DHA-dFdC from the solid lipid nanoparticles in simulated gastrointestinal fluid was slow, but was slightly faster in simulated intestinal fluid than in simulated gastric fluid. In mice orally administered with DHA-dFdC-SLNs, plasma DHA-dFdC concentration vs. time curve has a Tmax of ~ 1.7 h and a Cmax of 17.01 μg/mL. The absolute oral bioavailability of DHA-dFdC when given as DHA-dFdC-SLNs was ~ 68% (based on AUC0-24 h values), while the relative oral bioavailability DHA-dFdC (compared with DHA-dFdC in a Tween 80/ethanol-in-water solution) was 126%. Finally, in mice with pre-establish B16-F10 murine melanoma, oral DHA-dFdC-SLNs increased their survival significantly, as compared with oral administration of the DHA-dFdC solution. It is concluded that the solid lipid nanoparticle formulation increased the bioavailability of the DHA-dFdC upon oral administration, as compared with the DHA-dFdC solution.
Collapse
|
16
|
Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Ther Deliv 2020; 11:851-868. [DOI: 10.4155/tde-2019-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3-PUFAs) are dietary components that have been extensively recognized for their therapeutic value and have shown diverse therapeutic effects including anti-inflammatory, antiarrhythmic, antithrombotic, immunomodulatory and antineoplastic activities. Most of the ω-3-PUFAs are obtained through diet or supplements because the body does not synthesize them. The high instability of ω-3-PUFAs to oxidative deterioration, lower bioavailability at the target tissues and reduced bioactivity of ω-3-PUFAs is an impediment for achieving their therapeutic potential. The present review provides an overview of potential therapeutic activities of ω-3-PUFAs and different novel technical approaches based on nanotechnology, which have been emphasized to overcome instability problems as well as enhance the bioactivity of ω-3-PUFAs. Future prospects related to this area of research are also provided.
Collapse
|
17
|
Oliveira Pinho J, Matias M, Gaspar MM. Emergent Nanotechnological Strategies for Systemic Chemotherapy against Melanoma. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1455. [PMID: 31614947 PMCID: PMC6836019 DOI: 10.3390/nano9101455] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Melanoma is an aggressive form of skin cancer, being one of the deadliest cancers in the world. The current treatment options involve surgery, radiotherapy, targeted therapy, immunotherapy and the use of chemotherapeutic agents. Although the last approach is the most used, the high toxicity and the lack of efficacy in advanced stages of the disease have demanded the search for novel bioactive molecules and/or efficient drug delivery systems. The current review aims to discuss the most recent advances on the elucidation of potential targets for melanoma treatment, such as aquaporin-3 and tyrosinase. In addition, the role of nanotechnology as a valuable strategy to effectively deliver selective drugs is emphasized, either incorporating/encapsulating synthetic molecules or natural-derived compounds in lipid-based nanosystems such as liposomes. Nanoformulated compounds have been explored for their improved anticancer activity against melanoma and promising results have been obtained. Indeed, they displayed improved physicochemical properties and higher accumulation in tumoral tissues, which potentiated the efficacy of the compounds in pre-clinical experiments. Overall, these experiments opened new doors for the discovery and development of more effective drug formulations for melanoma treatment.
Collapse
Affiliation(s)
- Jacinta Oliveira Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|