1
|
Chai T, Zhang M, Wang S, Feng J, Feng X, Shao S, Lu C, Jin G. Based on sodium alginate coatings and dendritic copolymeric modification of curcumin delivery system: pH-sensitive nanospheres and strong tumor cytotoxicity. Int J Biol Macromol 2025; 284:137962. [PMID: 39603291 DOI: 10.1016/j.ijbiomac.2024.137962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
This study aims to construct a novel drug delivery strategy to address the poor bioavailability and biostability of curcumin. A curcumin delivery strategy, basing on post-polymerization modification of poly(2-vinyl-4,4-dimethyl azlactone) to obtain conjugates of curcumin and dendritic polymers, combined with sodium alginate coating is reported. The curcumin-polymer conjugates were shown to have good fluorescence properties with fluorescence quantum yields of 0.486 and 0.470, respectively. The composites were characterized as spherical nanoparticles with a desirable particle size of 221.7 nm and massive negatively charged surfaces. These aesthetic properties make it an acceptable drug delivery and release vehicle. In vitro release experiments showed that release of curcumin from the conjugates was controllable and acid-sensitive, which is expected to guide delivery targeting to cancer sites. In addition, biodistribution studies of the gastrointestinal tract of mice showed high levels of exposure. The results of cell imaging showed that conjugates have strong permeability to cancer cell membranes. They have been shown to have strong targeting and inhibitory effects on a variety of cancer cells, with an inhibition rate of up to about 90 %. Therefore, such novel vector designs show great potential in drug delivery mechanism research and cancer therapy.
Collapse
Affiliation(s)
- Tiantian Chai
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Mengtong Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiankang Feng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xibing Feng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Shihe Shao
- Department of Gastroenterology, Yixing Hospital affiliated to Jiangsu University, Yixing 214200, PR China.
| | - Chichong Lu
- Department of Chemistry, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Yang B, Wu X, Zeng J, Song J, Qi T, Yang Y, Liu D, Mo Y, He M, Feng L, Jia X. A Multi-Component Nano-Co-Delivery System Utilizing Astragalus Polysaccharides as Carriers for Improving Biopharmaceutical Properties of Astragalus Flavonoids. Int J Nanomedicine 2023; 18:6705-6724. [PMID: 38026532 PMCID: PMC10656867 DOI: 10.2147/ijn.s434196] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Enhancing the dissolution, permeation and absorption of active components with low solubility and poor permeability is crucial for maximizing therapeutic efficacy and optimizing functionality. The objective of this study is to investigate the potential of natural polysaccharides as carriers to improve the biopharmaceutical properties of active components. Methods In this study, we employed four representative flavonoids in Astragali Radix, namely Calycosin-7-O-β-D-glucoside (CAG), Ononin (ON), Calycosin (CA) and Formononetin (FMN), as a demonstration to evaluate the potential of Astragalus polysaccharides (APS) as carriers to improve the biopharmaceutical properties, sush as solubility, permeability, and absorption in vivo. In addition, the microstructure of the flavonoids-APS complexes was characterized, and the interaction mechanism between APS and flavonoids was investigated using multispectral technique and molecular dynamics simulation. Results The results showed that APS can self-assemble into aggregates with a porous structure and large surface area in aqueous solutions. These aggregates can be loaded with flavonoids through weak intermolecular interactions, such as hydrogen bonding, thereby improving their gastrointestinal stability, solubility, permeability and absorption in vivo. Conclusion We discovered the self-assembly properties of APS and its potential as carriers. Compared with introducing external excipients, the utilization of natural polysaccharides in plants as carriers may have a unique advantage in enhancing dissolution, permeation and absorption.
Collapse
Affiliation(s)
- Bing Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaochun Wu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jingqi Zeng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Jinjing Song
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Tianhao Qi
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yanjun Yang
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Dingkun Liu
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Yulin Mo
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Miao He
- College of Pharmacy, Dali University, Dali, Yunnan, People’s Republic of China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, People’s Republic of China
| |
Collapse
|
3
|
Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice. ACS NANO 2023; 17:19810-19831. [PMID: 37812732 PMCID: PMC10604101 DOI: 10.1021/acsnano.3c04037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Low tumor delivery efficiency is a critical barrier in cancer nanomedicine. This study reports an updated version of "Nano-Tumor Database", which increases the number of time-dependent concentration data sets for different nanoparticles (NPs) in tumors from the previous version of 376 data sets with 1732 data points from 200 studies to the current version of 534 data sets with 2345 data points from 297 studies published from 2005 to 2021. Additionally, the current database includes 1972 data sets for five major organs (i.e., liver, spleen, lung, heart, and kidney) with a total of 8461 concentration data points. Tumor delivery and organ distribution are calculated using three pharmacokinetic parameters, including delivery efficiency, maximum concentration, and distribution coefficient. The median tumor delivery efficiency is 0.67% injected dose (ID), which is low but is consistent with previous studies. Employing the best regression model for tumor delivery efficiency, we generate hypothetical scenarios with different combinations of NP factors that may lead to a higher delivery efficiency of >3%ID, which requires further experimentation to confirm. In healthy organs, the highest NP accumulation is in the liver (10.69%ID/g), followed by the spleen 6.93%ID/g and the kidney 3.22%ID/g. Our perspective on how to facilitate NP design and clinical translation is presented. This study reports a substantially expanded "Nano-Tumor Database" and several statistical models that may help nanomedicine design in the future.
Collapse
Affiliation(s)
- Qiran Chen
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Long Yuan
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Wei-Chun Chou
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, Kansas State
University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Department
of Biostatistics College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32608, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State, Kansas
State University, Manhattan, Kansas 66506, United States
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jim E. Riviere
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
- 1
Data Consortium, Kansas State University, Olathe, Kansas 66061, United States
| | - Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
4
|
Liu Y, Zhou M, Wang S, Feng J, Lu C, Jin G. Strategy of eudragit coated curcumin nanoparticles delivery system: Release and cell imaging studies in simulated gastrointestinal microenvironments. Bioorg Chem 2023; 139:106732. [PMID: 37480813 DOI: 10.1016/j.bioorg.2023.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
Curcumin has a broad-spectrum anti-tumor effect and has no toxic side effects. However, the unique diketone structure of curcumin will undergo diketo-enol tautomerism under different acid-base conditions, resulting in its instability under physiological conditions. In addition, the low biocompatibility and absorption rate of curcumin also limit the use of curcumin drugs. In this paper, curcumin was modified by substitution of acryloyl and acrylsulfonyl groups, and four kinds of nanoparticles with regular morphology were prepared using non-toxic and non-irritating acrylic resin as coating material to improve the stability and bioavailability of the compounds. Zeta potential testing shows that the composites surface carries positive charges and have good stability. In the release experiment, four complexes have the potential for slow and controlled release. Imaging of Hela cells with different channels was performed, and the imaging results showed that the complexes could enter the cells and be absorbed by them, demonstrating good imaging performance. MTT experiments have shown that the complexes have certain anti-tumor activity and low cytotoxicity. In general, the complexes synthesized in this paper have potential in the field of drug fluorescence imaging detection. At the same time, this experiment provides a new idea for the design of slow and controlled release of drugs.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Meng Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Shuo Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Jiankang Feng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Chichong Lu
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
5
|
Liu Y, Hu K, Lian G, Zhou M, Lu C, Jin G. Bioactivity and Cell Imaging of Antitumor Fluorescent Agents (Curcumin Derivatives) Coated by Two-Way Embedded Cyclodextrin Strategy. Chem Biodivers 2022; 19:e202200644. [PMID: 36283978 DOI: 10.1002/cbdv.202200644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/25/2022] [Indexed: 12/27/2022]
Abstract
Curcumin has a wide range of pharmacological activities, which can be used to treat tumors, inflammation and other diseases. However, curcumin's poor solubility and low bioavailability limit its application. In this article, the structure of curcumin was modified with boron trifluoride ether to change fluorescent labeling. The compounds were then embedded into the hydrophobic cavity of α-cyclodextrin and hydroxypropyl β-cyclodextrin to form inclusion complexes. The two inclusion complexes have excellent photophysical properties, and the maximum emission wavelength is in the range of 550-565 nm. In addition, the two compounds were applied to the fluorescence imaging of HCT-116 cells and HeLa cells, and the proliferation toxicity of the compounds was detected. Both compounds showed certain inhibitory effects on the proliferation of cancer cells. In short, the fluorescent drug molecule synthesized in this article has great reference value for the development of new dosage forms of curcumin.
Collapse
Affiliation(s)
- Ying Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China (G.F. Jin
| | - Kaibo Hu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China (G.F. Jin
| | - Guangchang Lian
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China (G.F. Jin
| | - Meng Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China (G.F. Jin
| | - Chichong Lu
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China (G.F. Jin
| |
Collapse
|
6
|
Zhang H, Wei S, Zhang Y, Pan A, Adu-Frimpong M, Sun C, Qi G. Improving cellular uptake and bioavailability of periplocymarin-linoleic acid prodrug by combining PEGylated liposome. Drug Deliv 2022; 29:2491-2497. [PMID: 35912819 PMCID: PMC9344961 DOI: 10.1080/10717544.2022.2104406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Periplocymarin (PPM), a cardiac glycoside isolated from Cortex periplocae, has a strong anti-tumor effect against various cancer cells. However, cardiotoxicity and rapid metabolism hinder its clinical applications. In this study, small molecule prodrug was integrated into PEGylated liposome to improve the efficiency of periplocymarin in vivo. The periplocymarin-linoleic acid (PL) prodrug was constructed by conjugating the linoleic acid with PPM via esterification, which was further facilitated to form PEGylated liposome (PL-Lip) through film dispersion. Compared with PL self-assembling nano-prodrug (PL-SNP), PL-Lip showed better colloid stability, sustained drug release kinetics, and enhanced cellular uptake by tumor cells. Notably, PL-Lip performed better than PPM and PL-SNP in terms of tumor distribution and pharmacokinetics, which include bioavailability and half-life. Altogether, the prodrug PEGylated liposome represents a good strategy and method for long-circulating and tumor-targeting delivery of periplocymarin with enhanced clinical application prospect.
Collapse
Affiliation(s)
- Huiyun Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Shunru Wei
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Anran Pan
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Congyong Sun
- Department of Central Laboratory, The Affiliated Huai'an No. 1 People's Hospital, Nanjing Medical University, Huai'an, China
| | - Gang Qi
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| |
Collapse
|
7
|
Luo K, Gao Y, Yin S, Yao Y, Yu H, Wang G, Li J. Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer. Acta Biomater 2021; 134:649-663. [PMID: 34289420 DOI: 10.1016/j.actbio.2021.07.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022]
Abstract
Metastasis is one of the major causes of mortality in patients suffering from breast cancer. The signal transducer and activator of transcription 3 (STAT3) is closely related to cancer metastasis. Herein, a multifunctional nanocomplex was developed to simultaneously deliver paclitaxel (PTX) and STAT3 siRNA (siSTAT3) to inhibit tumor growth and prevent metastasis of breast cancer cells. PTX was encapsulated into the synthesized polyethyleneimine-polylactic acid-lipoic acid (PPL) micelle through hydrophobic interaction, while siSTAT3 was condensed onto polyethyleneimine through electrostatic interaction. The surface charge of the drug-loaded nanocomplex (siSTAT3PPLPTX) was then converted to negative by coating with hyaluronic acid (HA). The multifunctional nanocomplex (HA/siSTAT3PPLPTX) effectively entered CD44-overexpressed 4T1 cells via an active targeting mechanism. HA shell was degraded by the concentrated hyaluronidase in the endo/lysosome and the rapid drug release was triggered by the redox micro-environment of cytoplasm. Moreover, HA/siSTAT3PPLPTX showed enhanced cytotoxicity against tumor cells due to a synergistic effect of PTX and siSTAT3. The effective inhibition of tumor metastasis was confirmed by in vitro cell migration and invasion in 4T1 cells. More importantly, a superior antitumor efficacy was observed in orthotopic 4T1 tumor-bearing mice, with no side effects in major organs, and the lung metastasis was strongly inhibited in 4T1 metastasis model. In conclusion, the multifunctional nanocomplex provides a versatile platform for efficient treatment of metastatic cancer through tumor-targeted chemo-gene combined therapy. STATEMENT OF SIGNIFICANCE: Metastasis is one of the major causes of mortality in patients suffering from breast cancer. The signal transducer and activator of transcription 3 (STAT3) is closely related to cancer metastasis. In this study, a multifunctional nanocomplex co-loaded with paclitaxel (PTX) and STAT3 siRNA was constructed and characterized. The co-delivery system exhibited active tumor targeting, effective endo/lysosomal escape, and rapid intracellular drug release. Both in vitro and in vivo studies indicated that the nanocomplex could lead to superior tumor growth inhibition, as well as metastasis suppression by silencing expression of STAT3 and p-STAT3. This present study implies that the nanocomplex could be a potential platform for targeted treatment of metastatic cancer through chemo-gene combined therapy.
Collapse
Affiliation(s)
- Kaipei Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yi Gao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Shaoping Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Yawen Yao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China.
| | - Guangji Wang
- Center of Pharmacokinetics, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Juan Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
8
|
Xu C, Yang H, Xiao Z, Zhang T, Guan Z, Chen J, Lai H, Xu X, Huang Y, Huang Z, Zhao C. Reduction-responsive dehydroepiandrosterone prodrug nanoparticles loaded with camptothecin for cancer therapy by enhancing oxidation therapy and cell replication inhibition. Int J Pharm 2021; 603:120671. [PMID: 33961957 DOI: 10.1016/j.ijpharm.2021.120671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/18/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022]
Abstract
The pentose phosphate pathway (PPP) plays a critical role by providing ribulose-5-phosphate (Ru5P) and NADPH for nucleotide synthesis and reduction energy, respectively. Accordingly, blocking the PPP process may be an effective strategy for enhancing oxidation therapy and inhibiting cell replication. Here, we designed a novel reduction-responsive PEGylated prodrug and constructed nanoparticles PsD@CPT to simultaneously deliver a PPP blocker, dehydroepiandrosterone (DHEA), and chemotherapeutic camptothecin (CPT) to integrate amplification of oxidation therapy and enhance cell replication inhibition. Following cellular uptake, DHEA and CPT were released from PsD@CPT in the presence of high glutathione (GSH) levels. As expected, DHEA-mediated reduction level decreases and CPT-induced oxidation level increases synergistically, breaking the redox balance to aggravate cancer oxidative stress. In addition, suppressing nucleotide synthesis by DHEA through the reduction of Ru5P and blocking DNA replication by CPT further motivates a synergistic inhibition effect on tumor cell proliferation. The results showed that PsD@CPT featuring multimodal treatment has satisfactory antitumor activity both in vitro and in vivo. This study provides a new tumor treatment strategy, which combines the amplification of oxidative stress and enhancement of inhibition of cell proliferation based on inhibition of the PPP process.
Collapse
Affiliation(s)
- Congjun Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Haolan Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhanghong Xiao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zilin Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jie Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Hualu Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiaoyu Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
9
|
Opportunities and challenges of fatty acid conjugated therapeutics. Chem Phys Lipids 2021; 236:105053. [PMID: 33484709 DOI: 10.1016/j.chemphyslip.2021.105053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/20/2020] [Accepted: 01/16/2021] [Indexed: 01/03/2023]
Abstract
Instability, poor cellular uptake and unfavorable pharmacokinetics and biodistribution of many therapeutic molecules require modification in their physicochemical properties. The conjugation of these APIs with fatty acids has demonstrated an enhancement in their lipophilicity and stability. The improvement in the formulations that resulted from the conjugation of a drug with a fatty acid includes increased half-life, enhanced cellular uptake and retention, targeted tumor delivery, reduced chemoresistance in cancer, and improved blood-brain-barrier (BBB) penetration. In this review, various therapeutic molecules, including small molecules, peptides and oligonucleotides, that have been conjugated with fatty acid have been thoroughly discussed along with various conjugation strategies. The application of nano-system based delivery is gaining a lot of attention due to its ability to provide controlled drug release, targeting and reducing the extent of side effects. This review also covers various nano-carriers that have been utilized for the delivery of fatty acid drug conjugates. The enhanced lipophilicity of the drug-fatty acid conjugate has shown to enhance the affinity of the drug towards these carriers, thereby increasing the entrapment efficiency and formulation performance.
Collapse
|
10
|
Hou C, Ma N, Shen Z, Chi G, Chao S, Pei Y, Chen L, Lu Y, Pei Z. A GSH-Responsive Nanoprodrug System Based on Self-Assembly of Lactose Modified Camptothecin for Targeted Drug Delivery and Combination Chemotherapy. Int J Nanomedicine 2020; 15:10417-10424. [PMID: 33376329 PMCID: PMC7764549 DOI: 10.2147/ijn.s276470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022] Open
Abstract
Background Conventional chemotherapy using small molecular antitumor drugs suffers from several limitations, for instance poor water solubility, high toxicity, and lack of specificity. However, prodrugs constructed by covalent modification of anticancer drugs can overcome these limitations, which are able to release its active form after entering the tumor tissues by specific stimulus response. Methods A GSH-responsive glyco-nanoprodrug system has been constructed by self-assembled of amphiphilic lactosemodified camptothecin prodrug molecular (Lac-SS-CPT) for targeting drug delivery and combination therapy. Results Using HL7702 cells as experimental models, the cytotoxic effects of Lac-SS-CPT were investigated to 10–30 µmol/L for 48 hours. Notably, the cell viability of Lac-SS-CPT to HL7702 cells was higher compared with free CPT which indicated that Lac-SS-CPT can reduce side-effects. Simultaneously, we have evaluated the anticancer efficiency of doxorubicin hydrochloride (DOX)-loaded Lac-SS-CPT glyco-nanoprodrug system (Lac-SS-CPT@DOX), where Lac-SS-CPT@DOX and free DOX incubated with HpeG2 cells and HL7702 cells for 24, 48, and 72 hours, respectively. It turned out that Lac-SS-CPT@DOX encapsulated anticancer drug (DOX) could decrease DOX side-effect on HL7702 cells and increase DOX anticancer efficiency. More importantly, the CPT and DOX were released from Lac-SS-CPT@DOX in HepG2 cells where a higher GSH concentration exists. Moreover, combination therapy efficiency was evaluated, where free DOX and Lac-SS-CPT@DOX incubated with DOX-resistance HepG2 cells (HepG2-ADR cells), respectively. Conclusion The results revealed that the Lac-SS-CPT@DOX could enhance the cytotoxicity of DOX for HepG2-ADR cells and provided a new idea for designing an advanced nano-prodrug system toward combination therapy.
Collapse
Affiliation(s)
- Chenxi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ning Ma
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Guanyu Chi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Lan Chen
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei 061100, People's Republic of China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
11
|
He Z, Jiang H, Zhang X, Zhang H, Cui Z, Sun L, Li H, Qian J, Ma J, Huang J. Nano-delivery vehicle based on chlorin E6, photodynamic therapy, doxorubicin chemotherapy provides targeted treatment of HER-2 negative, ανβ3-positive breast cancer. Pharmacol Res 2020; 160:105184. [PMID: 32946931 DOI: 10.1016/j.phrs.2020.105184] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
The prognosis for patients with HER-2 negative breast cancer is currently poor, largely due to the lack of efficacious targeted therapeutics. Photodynamic nanomaterial technologies have rapidly developed in recent years, but their anti-tumor effects are often limited by poor targeting, low transformation efficiency, toxicity, and other factors. Thus, we prepared a new type of nanoparticles (Ce6/Dox@NPs-cRGD, CDNR) with cyclo(Arg-Gly-Asp-d-Phe-Cys) (c(RGDfC)) that target the ανβ3 receptor. We loaded those nanoparticles (NPs) with a combination of the doxorubicin (Dox) and photosensitizer chlorin E6 (Ce6) to test synergy between chemotherapy and photodynamic therapy (PDT) for the treatment of ανβ3 receptor positive and HER-2 negative breast cancer. Through analysis of the Fourier transform infrared and UV-vis spectra of these NPs, we found that Ce6 and Dox were successfully loaded into the CDNR. According to dynamic light scattering (DLS) analyses, CDNR particles had a diameter of 112.6 nm (polydispersity index 0.11), which was also confirmed via TEM characterization. The zeta potential was about -21.5 mV. Stability studies showed that CDNR particle size was stable in ddH2O, PBS, and DMEM + 5 % FBS for 16 days. The drug loading content of Dox and Ce6 were 5.3 and 6.8 %, respectively. Release studies of CDNR showed that the slow release of Dox was accelerated with increasing GSH concentration, and there was no burst release effect. From studying the absorbance of 9,10-dimethylanthrancene (ABDA), we found that CDNR produces high levels of ROS after excitation with a 670 nm laser, and ROS production increased with increasing radiation time. CDNR was significantly taken up by MCF-7 cells at 6 h because of cRGD targeting. In a CCK8 test, the relative growth rate (RGR) of CDNR +670 nm laser for MCF-7 cells was less than 75 % at 20 μg/mL after 24 h treatment and 15 μg/mL after 48 h treatment. We found that CDNR's effects on RGR were concentration dependent. Live-cell staining with a DCFH-DA kit and flow cytometry assay further supported that a CDNR +670 nm laser provided the maximum chemotherapy-PDT toxicity and production of intracellular ROS, and that cell death was mainly caused by necrosis and apoptosis. In vivo experiments showed that using the cRGD-targeting strategy, CDNR had a stronger affinity and increased half-life relative to Ce6/Dox@NPs in mice with MCF-7 xenograft tumors. Further, the Cmax of CDNR in the transplanted tumor occurred 8 h post-injection (HPI) and there was still detectable signal at 24 HPI. In addition, MCF-7 bearing mice that were treated with CDNR +670 nm PDT at 8 HPI had a significantly decreased tumor volume (P < 0.05) and prolonged survival time compared to other groups. Thus, CDNR plus 670 nm PDT was associated with favorable anti-tumor activity with no appreciable impact on body weight or the major organs in mice, as determined by immunohistochemistry/immunofluorescence and hematoxylin-eosin staining. In conclusion, CDNR with 670 nm laser irradiation represents a promising new potential treatment paradigm for the management of breast cancers that are ανβ3-receptor positive and HER-2 negative.
Collapse
Affiliation(s)
- Zelai He
- The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Hao Jiang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining 272000, China
| | - Huijun Zhang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Zhen Cui
- The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Li Sun
- The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Hongwei Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Jing Qian
- The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Jing Ma
- Department of Echocardiography, Shanghai Xuhui Central Hospital, Zhongshan-xuhui Hospital, Fudan University, Shanghai, China
| | - Jingwen Huang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China.
| |
Collapse
|
12
|
Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Control Release 2020; 326:556-598. [PMID: 32726650 DOI: 10.1016/j.jconrel.2020.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Many drug molecules that are currently in the market suffer from short half-life, poor absorption, low specificity, rapid degradation, and resistance development. The design and development of lipophilic prodrugs can provide numerous benefits to overcome these challenges. Fatty acids (FAs), which are lipophilic biomolecules constituted of essential components of the living cells, carry out many necessary functions required for the development of efficient prodrugs. Chemical conjugation of FAs to drug molecules may change their pharmacodynamics/pharmacokinetics in vivo and even their toxicity profile. Well-designed FA-based prodrugs can also present other benefits, such as improved oral bioavailability, promoted tumor targeting efficiency, controlled drug release, and enhanced cellular penetration, leading to improved therapeutic efficacy. In this review, we discuss diverse drug molecules conjugated to various unsaturated FAs. Furthermore, various drug-FA conjugates loaded into various nanostructure delivery systems, including liposomes, solid lipid nanoparticles, emulsions, nano-assemblies, micelles, and polymeric nanoparticles, are reviewed. The present review aims to inspire readers to explore new avenues in prodrug design based on the various FAs with or without nanostructured delivery systems.
Collapse
Affiliation(s)
- Nadia Fattahi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
13
|
Wang W, Fan J, Zhu G, Wang J, Qian Y, Li H, Ju J, Shan L. Targeted Prodrug-Based Self-Assembled Nanoparticles for Cancer Therapy. Int J Nanomedicine 2020; 15:2921-2933. [PMID: 32425524 PMCID: PMC7187935 DOI: 10.2147/ijn.s247443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 01/10/2023] Open
Abstract
Background Targeted prodrug has various applications as drug formulation for tumor therapy. Therefore, amphoteric small-molecule prodrug combined with nanoscale characteristics for the self-assembly of the nano-drug delivery system (DDS) is a highly interesting research topic. Methods and Results In this study, we developed a prodrug self-assembled nanoplatform, 2-glucosamine-fluorescein-5(6)-isothiocyanate-glutamic acid-paclitaxel (2DA-FITC-PTX NPs) by integration of targeted small molecule and nano-DDS with regular structure and perfect targeting ability. 2-glucosamine (DA) and paclitaxel were conjugated as the targeted ligand and anti-tumor chemotherapy drug by amino acid group. 2-DA molecular structure can enhance the targeting ability of prodrug-based 2DA-FITC-PTX NPs and prolong retention time, thereby reducing the toxicity of normal cell/tissue. The fluorescent dye FITC or near-infrared fluorescent dye ICG in prodrug-based DDS was attractive for in vivo optical imaging to study the behavior of 2DA-FITC-PTX NPs. In vitro and in vivo results proved that 2DA-FITC-PTX NPs exhibited excellent targeting ability, anticancer activity, and weak side effects. Conclusion This work demonstrates a new combination of nanomaterials for chemotherapy and may promote prodrug-based DDS clinical applications in the future.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Guang Zhu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Jing Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Yumei Qian
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Hongxia Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Jianming Ju
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Lingling Shan
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| |
Collapse
|