1
|
Bruštíková K, Ryabchenko B, Žáčková S, Šroller V, Forstová J, Horníková L. Mouse polyomavirus infection induces lamin reorganisation. FEBS J 2024; 291:5133-5155. [PMID: 39288210 PMCID: PMC11616003 DOI: 10.1111/febs.17275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
The nuclear lamina is a dense network of intermediate filaments beneath the inner nuclear membrane. Composed of A-type lamins (lamin A/C) and B-type lamins (lamins B1 and B2), the nuclear lamina provides a scaffold for the nuclear envelope and chromatin, thereby maintaining the structural integrity of the nucleus. A-type lamins are also found inside the nucleus where they interact with chromatin and participate in gene regulation. Viruses replicating in the cell nucleus have to overcome the nuclear envelope during the initial phase of infection and during the nuclear egress of viral progeny. Here, we focused on the role of lamins in the replication cycle of a dsDNA virus, mouse polyomavirus. We detected accumulation of the major capsid protein VP1 at the nuclear periphery, defects in nuclear lamina staining and different lamin A/C phosphorylation patterns in the late phase of mouse polyomavirus infection, but the nuclear envelope remained intact. An absence of lamin A/C did not affect the formation of replication complexes but did slow virus propagation. Based on our findings, we propose that the nuclear lamina is a scaffold for replication complex formation and that lamin A/C has a crucial role in the early phases of infection with mouse polyomavirus.
Collapse
Affiliation(s)
- Kateřina Bruštíková
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Boris Ryabchenko
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Sandra Žáčková
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
- Present address:
Virology Department, Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesPragueCzech Republic
| | - Vojtěch Šroller
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jitka Forstová
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Lenka Horníková
- Department of Genetics and Microbiology, BIOCEV, Faculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|
2
|
Lopuszynski J, Wang J, Zahid M. Beyond Transduction: Anti-Inflammatory Effects of Cell Penetrating Peptides. Molecules 2024; 29:4088. [PMID: 39274936 PMCID: PMC11397606 DOI: 10.3390/molecules29174088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
One of the bottlenecks to bringing new therapies to the clinic has been a lack of vectors for delivering novel therapeutics in a targeted manner. Cell penetrating peptides (CPPs) have received a lot of attention and have been the subject of numerous developments since their identification nearly three decades ago. Known for their transduction abilities, they have generally been considered inert vectors. In this review, we present a schema for their classification, highlight what is known about their mechanism of transduction, and outline the existing literature as well as our own experience, vis a vis the intrinsic anti-inflammatory properties that certain CPPs exhibit. Given the inflammatory responses associated with viral vectors, CPPs represent a viable alternative to such vectors; furthermore, the anti-inflammatory properties of CPPs, mostly through inhibition of the NF-κB pathway, are encouraging. Much more work in relevant animal models, toxicity studies in large animal models, and ultimately human trials are needed before their potential is fully realized.
Collapse
Affiliation(s)
| | | | - Maliha Zahid
- Department of Cardiovascular Medicine, Guggenheim Gu 9-01B, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Moço PD, Dash S, Kamen AA. Enhancement of adeno-associated virus serotype 6 transduction into T cells with cell-penetrating peptides. J Gene Med 2024; 26:e3627. [PMID: 37957034 DOI: 10.1002/jgm.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Adeno-associated viruses (AAVs) are gaining interest in the development of cellular immunotherapy. Compared to other viral vectors, AAVs can reduce the risk of insertional oncogenesis. AAV serotype 6 (AAV6) shows the highest efficiency for transducing T cells. Nevertheless, a multiplicity of infection (MOI) of up to one million viral genomes per cell is required to transduce the target cells effectively. Cell-penetrating peptides (CPPs) are short, positively charged peptides that easily translocate the plasma membranes and can facilitate the cellular uptake of a wide variety of cargoes, including small molecules, nucleic acids, drugs, proteins and viral vectors. METHODS The present study evaluated five CPPs (Antp, TAT-HA2, LAH4, TAT1 and TAT2) on their effects on enhancing transduction of AAV6 packaging a green fluorescent protein transgene into Jurkat T cell line. RESULTS Vector incubation with peptides TAT-HA2 and LAH4 at a final concentration of 0.2 mm resulted in an approximately two-fold increase in transduced cells. At the lowest MOI tested (1.25 × 104 ), using LAH4 resulted in a 10-fold increase in transduction efficiency. The peptide LAH4 increased the uptake of AAV6 viral particles in both Jurkat cells and mouse primary T cells. Regardless of the large size of the AAV6-LAH4 complexes, their internalization does not appear to depend on macropinocytosis. CONCLUSIONS Overall, the present study reports an approach to significantly improve the delivery of transgenes into T cells using AAV6 vectors. Notably, the peptides TAT-HA2 and LAH4 contribute to improving the use of AAV6 as a gene delivery vector for the engineering of T cells.
Collapse
Affiliation(s)
- Pablo D Moço
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Shantoshini Dash
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Amine A Kamen
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Yang Y, Liu Z, Ma H, Cao M. Application of Peptides in Construction of Nonviral Vectors for Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224076. [PMID: 36432361 PMCID: PMC9693978 DOI: 10.3390/nano12224076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 05/29/2023]
Abstract
Gene therapy, which aims to cure diseases by knocking out, editing, correcting or compensating abnormal genes, provides new strategies for the treatment of tumors, genetic diseases and other diseases that are closely related to human gene abnormalities. In order to deliver genes efficiently to abnormal sites in vivo to achieve therapeutic effects, a variety of gene vectors have been designed. Among them, peptide-based vectors show superior advantages because of their ease of design, perfect biocompatibility and safety. Rationally designed peptides can carry nucleic acids into cells to perform therapeutic effects by overcoming a series of biological barriers including cellular uptake, endosomal escape, nuclear entrance and so on. Moreover, peptides can also be incorporated into other delivery systems as functional segments. In this review, we referred to the biological barriers for gene delivery in vivo and discussed several kinds of peptide-based nonviral gene vectors developed for overcoming these barriers. These vectors can deliver different types of genetic materials into targeted cells/tissues individually or in combination by having specific structure-function relationships. Based on the general review of peptide-based gene delivery systems, the current challenges and future perspectives in development of peptidic nonviral vectors for clinical applications were also put forward, with the aim of providing guidance towards the rational design and development of such systems.
Collapse
Affiliation(s)
- Yujie Yang
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhen Liu
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
5
|
VirPorters: Insights into the action of cationic and histidine-rich cell-penetrating peptides. Int J Pharm 2021; 611:121308. [PMID: 34800617 DOI: 10.1016/j.ijpharm.2021.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022]
Abstract
The utilization of nanoparticles for the intracellular delivery of theranostic agents faces one substantial limitation. Sequestration in intracellular vesicles prevents them from reaching the desired location in the cytoplasm or nucleus to deliver their cargo. We investigated whether three different cell-penetrating peptides (CPPs), namely, octa-arginine R8, polyhistidine KH27K and histidine-rich LAH4, could promote cytosolic and/or nuclear transfer of unique model nanoparticles-pseudovirions derived from murine polyomavirus. Two types of CPP-modified pseudovirions that carry the luciferase reporter gene were created: VirPorters-IN with CPPs genetically attached to the capsid interior and VirPorters-EX with CPPs noncovalently associated with the capsid exterior. We tested their transduction ability by luciferase assay and monitored their presence in subcellular fractions. Our results confirmed the overall effect of CPPs on the intracellular destination of the particles and suggested that KH27K has the potential to improve the cytosolic release of pseudovirions. None of the VirPorters caused endomembrane damage detectable by the Galectin-3 assay. Remarkably, a noncovalent modification was required to promote high transduction of the reporter gene and cytosolic delivery of pseudovirions mediated by LAH4. Together, CPPs in different arrangements have demonstrated their potential to improve pseudovirion invasion into cells, and these findings could be useful for the development of other nanoparticle-based delivery systems.
Collapse
|
6
|
Liu Y, Wan HH, Tian DM, Xu XJ, Bi CL, Zhan XY, Huang BH, Xu YS, Yan LP. Development and Characterization of High Efficacy Cell-Penetrating Peptide via Modulation of the Histidine and Arginine Ratio for Gene Therapy. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4674. [PMID: 34443195 PMCID: PMC8399742 DOI: 10.3390/ma14164674] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022]
Abstract
Cell-penetrating peptides (CPPs), as non-viral gene delivery vectors, are considered with lower immunogenic response, and safer and higher gene capacity than viral systems. In our previous study, a CPP peptide called RALA (arginine rich) presented desirable transfection efficacy and owns a potential clinic use. It is believed that histidine could enhance the endosome escaping ability of CPPs, yet RALA peptide contains only one histidine in each chain. In order to develop novel superior CPPs, by using RALA as a model, we designed a series of peptides named HALA (increased histidine ratio). Both plasmid DNA (pDNA) and siRNA transfection results on three cell lines revealed that the transfection efficacy is better when histidine replacements were on the C-terminal instead of on the N-terminal, and two histidine replacements are superior to three. By investigating the mechanism of endocytosis of the pDNA nanocomplexes, we discovered that there were multiple pathways that led to the process and caveolae played the main role. During the screening, we discovered a novel peptide-HALA2 of high cellular transfection efficacy, which may act as an exciting gene delivery vector for gene therapy. Our findings also bring new insights on the development of novel robust CPPs.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (H.-H.W.)
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
| | - Huan-Huan Wan
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (H.-H.W.)
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
| | - Duo-Mei Tian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
- Department of Emergency and Intensive Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiao-Jun Xu
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China;
| | - Chang-Long Bi
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China;
| | - Xiao-Yong Zhan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
| | - Bi-Hui Huang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
| | - Yun-Sheng Xu
- Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (Y.L.); (H.-H.W.)
| | - Le-Ping Yan
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; (D.-M.T.); (X.-Y.Z.); (B.-H.H.)
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|