1
|
Petit N, Chang YYJ, Lobianco FA, Hodgkinson T, Browne S. Hyaluronic acid as a versatile building block for the development of biofunctional hydrogels: In vitro models and preclinical innovations. Mater Today Bio 2025; 31:101596. [PMID: 40083836 PMCID: PMC11903855 DOI: 10.1016/j.mtbio.2025.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Hyaluronic acid (HyA) is a non-sulphated linear polysaccharide found abundantly in the extracellular matrix, known for its biocompatibility and versatility in tissue engineering. Chemical modifications of HyA, including methacrylate, acrylate, click chemistry, norbornene, or host-guest chemistry, are necessary for the formation of stable hydrogels with tuneable biophysical characteristics. These modifications enable precise control over stiffness, swelling, degradation, and advanced functionalities such as shear-thinning, self-healing, and injectability. Functionalisation further enhances hydrogel bioactivity, enabling controlled cell adhesion, modulation of cell behaviour, hydrogel degradation, and release profiles, as well as inflammation modulation or bacterial growth inhibition. These are achieved by conjugating proteins, peptides, antibodies, or reactive chemical groups. HyA hydrogels find broad applications both in vitro and in vivo. In vitro, HyA-based hydrogels can support the development of models to understand fundamental processes in health and mechanisms behind disease progression, serving as highly tuneable extracellular matrix mimetics. As therapeutic interventions, injectable or implantable HyA-based hydrogels have been developed to repair a range of tissues, including cartilage, bone, muscle, and skin defects. However, issues remain to be addressed before widespread adoption of HyA-based hydrogels as clinical options. Future innovations for HyA hydrogels include its establishment as an enabling technology for the delivery of novel therapeutics, with a particular focus on immunomodulatory molecules, and the development of more dynamic, tissue-mimetic HyA-based hydrogels.
Collapse
Affiliation(s)
- Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Yu-yin Joanne Chang
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Franz Acker Lobianco
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Tom Hodgkinson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
2
|
Zhen Y, Zhou X, Xiong A, Yan Y, Zhang X. A dual-drive strategy for enhanced protein crystallization with sodium alginate/hyaluronic acid film: Protein adsorption and supersaturation regulation. Int J Biol Macromol 2025; 293:139377. [PMID: 39743111 DOI: 10.1016/j.ijbiomac.2024.139377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Protein crystallization is essential for determining the three-dimensional structures of biomacromolecules and advancing biopharmaceutical development, yet it remains a major challenge in structural biology due to common issues like slow nucleation rates and inconsistent crystal quality. Herein, a dual-drive crystallization (DDC) strategy, relying on a composite film of sodium alginate (SA) and hyaluronic acid (HA), is reported to synergistically regulate both protein adsorption and solution supersaturation. Driven by the electrostatic interactions of SA and the water absorption properties of HA, the SA/HA film achieves enhanced crystallization efficiency and controlled crystal quality mainly. It significantly reduces lysozyme nucleation time by over 66.0 % and better controls crystal size distribution. Molecular simulations further reveal a strong electrostatic interaction energy of -17.0 kcal·mol-1 between protein and SA, which enhances protein adsorption and then promotes cluster formation, nucleation, and crystal growth. Additionally, the DDC strategy efficiently promotes the crystallization of both thaumatin and proteinase K, enhancing the crystallization success rate for proteins with opposite charges. These results highlight the advantages and promising potential of SA/HA film-assisted protein crystallization for effectively producing protein crystals suitable for diverse applications.
Collapse
Affiliation(s)
- Yuxi Zhen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojie Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aoran Xiong
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yizhen Yan
- Department of Engineering and Design, School of Engineering and Information, University of Sussex, Brighton BN1 9RH, United Kingdom.
| | - Xiangyang Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
3
|
Nyandoro VO, Ismail EA, Tageldin A, Gafar MA, Peters XQ, Mautsoe R, Omolo CA, Govender T. Potential of nanocarrier-mediated delivery of vancomycin for MRSA infections. Expert Opin Drug Deliv 2025; 22:347-365. [PMID: 39949087 DOI: 10.1080/17425247.2025.2459756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) threatens global health due to its resistance to vancomycin, which is the standard treatment despite limitations, including nephrotoxicity and low intracellular permeability. This necessitates the development of innovative strategies such as nanocarrier-mediated delivery to overcome such limitations. Nanocarriers serve as delivery systems for vancomycin and exhibit inherent antibacterial properties, potentially providing synergism and overcoming MRSA's resistance. Nanocarriers provide sustained release and targeted delivery of vancomycin to the infection site, achieving higher therapeutic concentrations and superior antibacterial activity with reduced doses, which minimizes systemic toxicity. Moreover, leveraging simulations techniques provides more insights on vancomycin-nanocarrier interactions, facilitating the optimization of nanosystems. AREAS COVERED The article discusses the potential of nanocarriers in delivering vancomycin to infection site, reducing systemic toxicity, and potentiating anti-MRSA activity. Additionally, it reviews modeling and simulation studies to provide a deeper understanding of vancomycin-nanocarrier interactions. The literature search included experimental articles from 2017 to 2024, searched in Web of Science, Google scholar, PubMed, and Scopus. EXPERT OPINION Nanocarrier-mediated delivery of vancomycin offers promising approaches to combat MRSA infections by enhancing therapeutic efficacy and reducing systemic toxicity. However, further research is required to optimize these nanoformulations and advance them to clinical trials and practical applications.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics and Pharmaceutical Chemistry, School of Pharmacy, Kabarak University, Kabarak, Kenya
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Relebohile Mautsoe
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, Department of Pharmaceutics, United States International University-Africa, Nairobi, Kenya
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
4
|
Maier MA, dos Santos Adrego F, Jung SA, Boos AM, Pich A. Mechano-Triggered Release of Biomolecules from Supramolecular Hyaluronic Acid Hydrogels. ACS APPLIED POLYMER MATERIALS 2024; 6:13841-13854. [DOI: 10.1021/acsapm.4c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Michael A. Maier
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Fábio dos Santos Adrego
- University Hospital RWTH Aachen, Department for Plastic Surgery, Hand Surgery and Burn Center, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Shannon A. Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Anja M. Boos
- University Hospital RWTH Aachen, Department for Plastic Surgery, Hand Surgery and Burn Center, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Maastricht Institute for Biobased Materials, Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
5
|
Leonardi F, Simonazzi B, Martini FM, D’Angelo P, Foresti R, Botti M. Synthetic and Natural Biomaterials in Veterinary Medicine and Ophthalmology: A Review of Clinical Cases and Experimental Studies. Vet Sci 2024; 11:368. [PMID: 39195822 PMCID: PMC11360824 DOI: 10.3390/vetsci11080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
In recent years, there has been a growing interest in 3D printing technology within the field of bioengineering. This technology offers the ability to create devices with intricate macro- and micro-geometries, as well as specific models. It has particularly gained attention for its potential in personalized medicine, allowing for the production of organ or tissue models tailored to individual patient needs. Further, 3D printing has opened up possibilities to manufacture structures that can substitute, complement, or enhance damaged or dysfunctional organic parts. To apply 3D printing in the medical field, researchers have studied various materials known as biomaterials, each with distinct chemical and physical characteristics. These materials fall into two main categories: hard and soft materials. Each biomaterial needs to possess specific characteristics that are compatible with biological systems, ensuring long-term stability and biocompatibility. In this paper, we aim to review some of the materials used in the biomedical field, with a particular focus on those utilized in veterinary medicine and ophthalmology. We will discuss the significant findings from recent scientific research, focusing on the biocompatibility, structure, applicability, and in vitro and in vivo biological characteristics of two hard and four soft materials. Additionally, we will present the current state and prospects of veterinary ophthalmology.
Collapse
Affiliation(s)
- Fabio Leonardi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Barbara Simonazzi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Filippo Maria Martini
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
| | - Pasquale D’Angelo
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
| | - Ruben Foresti
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
- Department of Medicine and Surgery, University of Parma, 43123 Parma, Italy
- CERT, Center of Excellence for Toxicological Research, 43123 Parma, Italy
| | - Maddalena Botti
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (F.L.); (F.M.M.); (M.B.)
- CNR-IMEM, Italian National Research Council, Institute of Materials for Electronics and Magnetism, 43126 Parma, Italy; (P.D.); (R.F.)
| |
Collapse
|
6
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
7
|
Sun F, Xiao Y, Kong L, Mu H, Wang X, Duan J. An "in control" hyaluronic acid nanogel with light-cleavable for rational use of antibiotics. Heliyon 2024; 10:e33287. [PMID: 39027455 PMCID: PMC11254603 DOI: 10.1016/j.heliyon.2024.e33287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
The consequences caused by bacterial resistance are becoming more and more serious. The rate of antibiotic development is far behind the rate of bacterial resistance, so it is urgent to develop a new drug system. In this study, photoresponsive nanogels based on hyaluronic acid were prepared and loaded with ciprofloxacin as a model molecule. The results showed that the nanogels had the advantages of high stability and good cytocompatibility. The inhibition effect of drug-loaded nanogels after light irradiation on the growth of Staphylococcus aureus and Salmonella typhimurium was significantly better than that before light irradiation, and ciprofloxacin could be released on demand and in control. This strategy is of great significance to reduce the unnecessary use of antibiotics and weaken bacterial resistance.
Collapse
Affiliation(s)
- Feifei Sun
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, China
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yao Xiao
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Kong
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xing Wang
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
8
|
Shukla P, Sinha R, Anand S, Srivastava P, Mishra A. Tapping on the Potential of Hyaluronic Acid: from Production to Application. Appl Biochem Biotechnol 2023; 195:7132-7157. [PMID: 36961510 DOI: 10.1007/s12010-023-04461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
The manufacture, purification, and applications of hyaluronic acid (HA) are discussed in this article. Concerning the growing need for affordable, high-quality HA, it is essential to consider diverse production techniques using renewable resources that pose little risk of cross-contamination. Many microorganisms can now be used to produce HA without limiting the availability of raw materials and in an environmentally friendly manner. The production of HA has been associated with Streptococci A and C, explicitly S. zooepidemicus and S. equi. Different fermentation techniques, including the continuous, batch, fed-batch, and repeated batch culture, have been explored to increase the formation of HA, particularly from S. zooepidemicus. The topic of current interest also involves a complex broth rich in metabolites and residual substrates, intensifying downstream processes to achieve high recovery rates and purity. Although there are already established methods for commercial HA production, the anticipated growth in trade and the diversification of application opportunities necessitate the development of new procedures to produce HA with escalated productivity, specified molecular weights, and purity. In this report, we have enacted the advancement of HA technical research by analyzing bacterial biomanufacturing elements, upstream and downstream methodologies, and commercial-scale HA scenarios.
Collapse
Affiliation(s)
- Priya Shukla
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Shubhankar Anand
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
9
|
R JA, Narayan S. A Systematic Review of Different Classes of Biopolymers and Their Use as Antimicrobial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2023. [DOI: 10.1134/s1068162023020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
10
|
Zamboni F, Wong CK, Collins MN. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioact Mater 2023; 19:458-473. [PMID: 35574061 PMCID: PMC9079116 DOI: 10.1016/j.bioactmat.2022.04.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/05/2022] [Accepted: 04/23/2022] [Indexed: 12/21/2022] Open
Abstract
The relationships between hyaluronic acid (HA) and pathological microorganisms incite new understandings on microbial infection, tissue penetration, disease progression and lastly, potential treatments. These understandings are important for the advancement of next generation antimicrobial therapeutical strategies for the control of healthcare-associated infections. Herein, this review will focus on the interplay between HA, bacteria, fungi, and viruses. This review will also comprehensively detail and discuss the antimicrobial activity displayed by various HA molecular weights for a variety of biomedical and pharmaceutical applications, including microbiology, pharmaceutics, and tissue engineering.
Collapse
Affiliation(s)
- Fernanda Zamboni
- Bernal Institute, School of Engineering, University of Limerick, Ireland
- Health Research Institute, University of Limerick, Ireland
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Ireland
- Health Research Institute, University of Limerick, Ireland
| |
Collapse
|
11
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Hongyan T, Xuebin W, Jincheng W, Guosheng W. Preparation and properties of potassium alginate soil conditioner microspheres coated with poly(N-isopropyl acrylamide) microgel membrane. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
13
|
Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int J Mol Sci 2022; 23:ijms232214372. [PMID: 36430855 PMCID: PMC9695447 DOI: 10.3390/ijms232214372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this review is to give an updated perspective about the methods for chemical modifications of hyaluronic acid (HA) toward the development of new applications in medical devices and material engineering. After a brief introduction on chemical, structural and biological features of this important natural polysaccharide, the most important methods for chemical and physical modifications are disclosed, discussing both on the formation of new covalent bonds and the interaction with other natural polysaccharides. These strategies are of paramount importance in the production of new medical devices and materials with improved properties. In particular, the use of HA in the development of new materials by means of additive manufacturing techniques as electro fluid dynamics, i.e., electrospinning for micro to nanofibres, and three-dimensional bioprinting is also discussed.
Collapse
|
14
|
Alipoor R, Ayan M, Hamblin MR, Ranjbar R, Rashki S. Hyaluronic Acid-Based Nanomaterials as a New Approach to the Treatment and Prevention of Bacterial Infections. Front Bioeng Biotechnol 2022; 10:913912. [PMID: 35757807 PMCID: PMC9213665 DOI: 10.3389/fbioe.2022.913912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial contamination of medical devices is a great concern for public health and an increasing risk for hospital-acquired infections. The ongoing increase in antibiotic-resistant bacterial strains highlights the urgent need to find new effective alternatives to antibiotics. Hyaluronic acid (HA) is a valuable polymer in biomedical applications, partly due to its bactericidal effects on different platforms such as contact lenses, cleaning solutions, wound dressings, cosmetic formulations, etc. Because the pure form of HA is rapidly hydrolyzed, nanotechnology-based approaches have been investigated to improve its clinical utility. Moreover, a combination of HA with other bactericidal molecules could improve the antibacterial effects on drug-resistant bacterial strains, and improve the management of hard-to-heal wound infections. This review summarizes the structure, production, and properties of HA, and its various platforms as a carrier in drug delivery. Herein, we discuss recent works on numerous types of HA-based nanoparticles to overcome the limitations of traditional antibiotics in the treatment of bacterial infections. Advances in the fabrication of controlled release of antimicrobial agents from HA-based nanosystems can allow the complete eradication of pathogenic microorganisms.
Collapse
Affiliation(s)
- Reza Alipoor
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Somaye Rashki
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Dubashynskaya NV, Bokatyi AN, Gasilova ER, Dobrodumov AV, Dubrovskii YA, Knyazeva ES, Nashchekina YA, Demyanova EV, Skorik YA. Hyaluronan-colistin conjugates: Synthesis, characterization, and prospects for medical applications. Int J Biol Macromol 2022; 215:243-252. [PMID: 35724903 DOI: 10.1016/j.ijbiomac.2022.06.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
The development of nanotechnology-based antibiotic delivery systems (nanoantibiotics) is an important challenge in the effort to combat microbial multidrug resistance. These systems have improved biopharmaceutical characteristics by increasing local bioavailability and reducing systemic toxicity and the number and frequency of drug side effects. Conjugation of low -molecular -weight antibacterial agents with natural polysaccharides is an effective strategy for developing optimal targeted delivery systems with programmed release and reduced cytotoxicity. This study describes the synthesis of conjugates of colistin (CT) and hyaluronic acid (HA) using carbodiimide chemistry to conjugate the amino groups of CT with the carboxyl groups of HA. The obtained polysaccharide carriers had a degree of substitution (DS) with CT molecules of 3-10 %, and the CT content was 129-377 μg/mg. The size of the fabricated particles was 300-600 nm; in addition, there were conjugates in the form of single macromolecules (30-50 nm). The ζ-potential of developed systems was about -20 mV. In vitro release studies at pH 7.4 and pH 5.2 showed slow hydrolysis of amide bonds, with a CT release of 1-5 % after 24 h. The conjugates retained antimicrobial activity depending on the DS: at DS 8 %, the minimum inhibitory concentration (MIC) of the conjugate corresponded to the MIC of free CT. The resulting systems also reduced CT nephrotoxicity by 20-50 %. These new conjugates of CT with HA are promising for the development of nanodrugs for safe and effective antimicrobial therapy.
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation; Institute of Chemistry, St. Petersburg State University, Universitetskii 26, St. Petersburg, Petrodvorets, 198504, Russian Federation
| | - Ekaterina R Gasilova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yaroslav A Dubrovskii
- Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation
| | - Elena S Knyazeva
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Yuliya A Nashchekina
- Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky 4, St. Petersburg 194064, Russian Federation
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
16
|
Li J, Xiang H, Zhang Q, Miao X. Polysaccharide-Based Transdermal Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15050602. [PMID: 35631428 PMCID: PMC9146969 DOI: 10.3390/ph15050602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Materials derived from natural plants and animals have great potential for transdermal drug delivery. Polysaccharides are widely derived from marine, herbal, and microbial sources. Compared with synthetic polymers, polysaccharides have the advantages of non-toxicity and biodegradability, ease of modification, biocompatibility, targeting, and antibacterial properties. Currently, polysaccharide-based transdermal drug delivery vehicles, such as hydrogel, film, microneedle (MN), and tissue scaffolds are being developed. The addition of polysaccharides allows these vehicles to exhibit better-swelling properties, mechanical strength, tensile strength, etc. Due to the stratum corneum’s resistance, the transdermal drug delivery system cannot deliver drugs as efficiently as desired. The charge and hydration of polysaccharides allow them to react with the skin and promote drug penetration. In addition, polysaccharide-based nanotechnology enhances drug utilization efficiency. Various diseases are currently treated by polysaccharide-based transdermal drug delivery devices and exhibit promising futures. The most current knowledge on these excellent materials will be thoroughly discussed by reviewing polysaccharide-based transdermal drug delivery strategies.
Collapse
Affiliation(s)
- Jingyuan Li
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- SDU-ANU Joint Science College, Shandong University, Weihai 264209, China
| | - Hong Xiang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Qian Zhang
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China; (J.L.); (H.X.); (Q.Z.)
- Weihai Changqing Ocean Science Technology Co., Ltd., Weihai 264209, China
- Correspondence: ; Tel.: +86-19806301068
| |
Collapse
|
17
|
Chen Y, Huang Y, Jin Q. Polymeric nanoplatforms for the delivery of antibacterial agents. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education Department of Polymer Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 PR China
| |
Collapse
|
18
|
Kim DJ, Jung MY, Park JH, Pak HJ, Kim M, Chuck RS, Park CY. Moxifloxacin releasing intraocular implant based on a cross-linked hyaluronic acid membrane. Sci Rep 2021; 11:24115. [PMID: 34916593 PMCID: PMC8677739 DOI: 10.1038/s41598-021-03605-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022] Open
Abstract
Intraocular antibiotic delivery is an important technique to prevent bacterial infection after ophthalmic surgery, such as cataract surgery. Conventional drug delivery methods, such as antibiotic eye drops, have limitations for intraocular drug delivery due to the intrinsic barrier effect of the cornea. Therefore, frequent instillation of antibiotic eyedrops is necessary to reach a sufficient bactericidal concentration inside the eye. In this study, an intraocular implant, MXF-HA, that combines hyaluronic acid (HA) and moxifloxacin (MXF) was developed to increase the efficiency of intraocular drug delivery after surgery. MXF-HA is manufactured as a thin, transparent, yellow-tinted membrane. When inserted into the eye in a dry state, MXF-HA is naturally hydrated and settles in the eye, and the MXF contained therein is delivered by hydrolysis of the polymer over time. It was confirmed through in vivo experiments that MXF delivery was maintained in the anterior chamber of the eye at a concentration sufficient to inhibit Pseudomonas aeruginosa and Staphylococcus aureus for more than 5 days after implantation. These results suggest that MXF-HA can be utilized as a potential drug delivery method for the prevention and treatment of bacterial infections after ophthalmic surgery.
Collapse
Affiliation(s)
- Dong Ju Kim
- Department of Ophthalmology, Graduate School of Medicine, Dongguk University, Seoul, South Korea
| | - Mi-Young Jung
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, 814, Siksadong, Ilsan-dong-gu, Goyang, Kyunggido, 410-773, South Korea
| | - Joo-Hee Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, 814, Siksadong, Ilsan-dong-gu, Goyang, Kyunggido, 410-773, South Korea
| | - Ha-Jin Pak
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, 814, Siksadong, Ilsan-dong-gu, Goyang, Kyunggido, 410-773, South Korea
| | - Martha Kim
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, 814, Siksadong, Ilsan-dong-gu, Goyang, Kyunggido, 410-773, South Korea
| | - Roy S Chuck
- Department of Ophthalmology and Visual Sciences, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Choul Yong Park
- Department of Ophthalmology, Dongguk University, Ilsan Hospital, 814, Siksadong, Ilsan-dong-gu, Goyang, Kyunggido, 410-773, South Korea.
| |
Collapse
|
19
|
Kasza K, Gurnani P, Hardie KR, Cámara M, Alexander C. Challenges and solutions in polymer drug delivery for bacterial biofilm treatment: A tissue-by-tissue account. Adv Drug Deliv Rev 2021; 178:113973. [PMID: 34530014 DOI: 10.1016/j.addr.2021.113973] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
To tackle the emerging antibiotic resistance crisis, novel antimicrobial approaches are urgently needed. Bacterial communities (biofilms) are a particular concern in this context. Biofilms are responsible for most human infections and are inherently less susceptible to antibiotic treatments. Biofilms have been linked with several challenging chronic diseases, including implant-associated osteomyelitis and chronic wounds. The specific local environments present in the infected tissues further contribute to the rise in antibiotic resistance by limiting the efficacy of systemic antibiotic therapies and reducing drug concentrations at the infection site, which can lead to reoccurring infections. To overcome the shortcomings of systemic drug delivery, encapsulation within polymeric carriers has been shown to enhance antimicrobial efficacy, permeation and retention at the infection site. In this Review, we present an overview of current strategies for antimicrobial encapsulation within polymeric carriers, comparing challenges and solutions on a tissue-by-tissue basis. We compare challenges and proposed drug delivery solutions from the perspective of the local environments for biofilms found in oral, wound, gastric, urinary tract, bone, pulmonary, vaginal, ocular and middle/inner ear tissues. We will also discuss future challenges and barriers to clinical translation for these therapeutics. The following Review demonstrates there is a significant imbalance between the research focus being placed on different tissue types, with some targets (oral and wound biofims) being extensively more studied than others (vaginal and otitis media biofilms and endocarditis). Furthermore, the importance of the local tissue environment when selecting target therapies is demonstrated, with some materials being optimal choices for certain sites of bacterial infection, while having limited applicability in others.
Collapse
|
20
|
Juncan AM, Moisă DG, Santini A, Morgovan C, Rus LL, Vonica-Țincu AL, Loghin F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021; 26:molecules26154429. [PMID: 34361586 PMCID: PMC8347214 DOI: 10.3390/molecules26154429] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
This study proposes a review on hyaluronic acid (HA) known as hyaluronan or hyaluronate and its derivates and their application in cosmetic formulations. HA is a glycosaminoglycan constituted from two disaccharides (N-acetylglucosamine and D-glucuronic acid), isolated initially from the vitreous humour of the eye, and subsequently discovered in different tissues or fluids (especially in the articular cartilage and the synovial fluid). It is ubiquitous in vertebrates, including humans, and it is involved in diverse biological processes, such as cell differentiation, embryological development, inflammation, wound healing, etc. HA has many qualities that recommend it over other substances used in skin regeneration, with moisturizing and anti-ageing effects. HA molecular weight influences its penetration into the skin and its biological activity. Considering that, nowadays, hyaluronic acid has a wide use and a multitude of applications (in ophthalmology, arthrology, pneumology, rhinology, aesthetic medicine, oncology, nutrition, and cosmetics), the present study describes the main aspects related to its use in cosmetology. The biological effect of HA on the skin level and its potential adverse effects are discussed. Some available cosmetic products containing HA have been identified from the brand portfolio of most known manufacturers and their composition was evaluated. Further, additional biological effects due to the other active ingredients (plant extracts, vitamins, amino acids, peptides, proteins, saccharides, probiotics, etc.) are presented, as well as a description of their possible toxic effects.
Collapse
Affiliation(s)
- Anca Maria Juncan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
- SC Aviva Cosmetics SRL, 71A Kövari Str., 400217 Cluj-Napoca, Romania
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Dana Georgiana Moisă
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy;
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
- Correspondence: or (A.M.J.); (D.G.M.); (C.M.)
| | - Luca-Liviu Rus
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Andreea Loredana Vonica-Țincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga Str., 550169 Sibiu, Romania; (L.-L.R.); (A.L.V.-Ț.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Str., 400349 Cluj-Napoca, Romania;
| |
Collapse
|
21
|
Dubashynskaya NV, Raik SV, Dubrovskii YA, Shcherbakova ES, Demyanova EV, Shasherina AY, Anufrikov YA, Poshina DN, Dobrodumov AV, Skorik YA. Hyaluronan/colistin polyelectrolyte complexes: Promising antiinfective drug delivery systems. Int J Biol Macromol 2021; 187:157-165. [PMID: 34298050 DOI: 10.1016/j.ijbiomac.2021.07.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Nanotechnology-based modification of known antimicrobial agents is a rational and straightforward way to improve their safety and effectiveness. The aim of this study was to develop colistin (CT)-loaded polymeric carriers based on hyaluronic acid (HA) for potential application as antimicrobial agents against multi-resistant gram-negative microorganisms (including ESKAPE pathogens). CT-containing particles were obtained via a polyelectrolyte interaction between protonated CT amino groups and HA carboxyl groups (the CT-HA complex formation constant [logKCT-HA] was about 5.0). The resulting polyelectrolyte complexes had a size of 210-250 nm and a negative charge (ζ-potential -19 mV), with encapsulation and loading efficiencies of 100% and 20%, respectively. The developed CT delivery systems were characterized by modified release (45% and 85% of CT released in 15 and 60 min, respectively) compared to pure CT (100% CT released in 15 min). In vitro tests showed that the encapsulation of CT in polymer particles did not reduce its pharmacological activity; the minimum inhibitory concentrations of both encapsulated CT and pure CT were 1 μg/mL (against Pseudomonas aeruginosa).
Collapse
Affiliation(s)
- Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Sergei V Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yaroslav A Dubrovskii
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation; Almazov National Medical Research Centre, Akkuratova 2, St. Petersburg 197341, Russian Federation; St. Petersburg State Chemical Pharmaceutical University, Prof. Popova 14, St. Petersburg 197376, Russian Federation
| | - Elena S Shcherbakova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Elena V Demyanova
- State Research Institute of Highly Pure Biopreparations, Pudozhsakya 7, St Petersburg 197110, Russian Federation
| | - Anna Y Shasherina
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Yuri A Anufrikov
- Institute of Chemistry, St. Petersburg State University, Universitetskii 26, Peterhof, St. Petersburg 198504, Russian Federation
| | - Daria N Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Anatoliy V Dobrodumov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
22
|
Biocompatible hyaluronic acid-divinyl sulfone injectable hydrogels for sustained drug release with enhanced antibacterial properties against Staphylococcus aureus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 125:112102. [PMID: 33965111 DOI: 10.1016/j.msec.2021.112102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/10/2021] [Indexed: 12/17/2022]
Abstract
Hyaluronic acid (HA) solutions were crosslinked with divinyl sulfone (DVS) and subsequently loaded with antibiotic molecules to obtain biocompatible and antibacterial injectable hydrogels. The crosslinking degree of the hydrogels was modulated by varying the reaction time and the HA:DVS weight ratio. Synthesized HA-DVS hydrogels were characterized by their rheological properties, pore size, swelling capacity and hydrolytic and thermal degradation. Biocompatibility was assessed by measuring pH, osmolality and by in vitro cytotoxic assay. Acetyl salicylic (AAS) loaded hydrogels display anti-inflammatory properties in vitro, whereas cefuroxime (CFX), tetracycline (TCN) and amoxicillin (AMX) loaded hydrogels show in vitro antibacterial activity against Staphylococcus aureus. The combine use of antibiotics and AAS produces a synergic effect that reduces the S. aureus population up to a log10 reduction (R) of 5.55. Overall results show that antibiotic/AAS loaded HA-DVS hydrogels could be effectively used to combat S. aureus infections and to increase the antibacterial activity of antibiotics commonly used against S. aureus.
Collapse
|
23
|
Gherasim O, Popescu-Pelin G, Florian P, Icriverzi M, Roseanu A, Mitran V, Cimpean A, Socol G. Bioactive Ibuprofen-Loaded PLGA Coatings for Multifunctional Surface Modification of Medical Devices. Polymers (Basel) 2021; 13:polym13091413. [PMID: 33925498 PMCID: PMC8123841 DOI: 10.3390/polym13091413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022] Open
Abstract
To modulate the biofunctionality of implantable medical devices commonly used in clinical practice, their surface modification with bioactive polymeric coatings is an attractive and successful emerging strategy. Biodegradable coatings based on poly(lactic acid-co-glycolic acid), PLGA, represent versatile and safe candidates for surface modification of implantable biomaterials and devices, providing additional tunable ability for topical delivery of desired therapeutic agents. In the present study, Ibuprofen-loaded PLGA coatings (PLGA/IBUP) were obtained by using the dip-coating and drop-casting combined protocol. The composite materials demonstrated long-term drug release under biologically simulated dynamic conditions. Reversible swelling phenomena of polymeric coatings occurred in the first two weeks of testing, accompanied by the gradual matrix degradation and slow release of the therapeutic agent. Irreversible degradation of PLGA coatings occurred after one month, due to copolymer's hydrolysis (evidenced by chemical and structural modifications). After 30 days of dynamic testing, the cumulative release of IBUP was ~250 µg/mL. Excellent cytocompatibility was revealed on human-derived macrophages, fibroblasts and keratinocytes. The results herein evidence the promising potential of PLGA/IBUP coatings to be used for surface modification of medical devices, such as metallic implants and wound dressings.
Collapse
Affiliation(s)
- Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125 Magurele, Ilfov County, Romania; (O.G.); (G.P.-P.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Gheorghe Polizu Street, RO-011061 Bucharest, Romania
| | - Gianina Popescu-Pelin
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125 Magurele, Ilfov County, Romania; (O.G.); (G.P.-P.)
| | - Paula Florian
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest, Romania; (P.F.); (M.I.); (A.R.)
| | - Madalina Icriverzi
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest, Romania; (P.F.); (M.I.); (A.R.)
| | - Anca Roseanu
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest, Romania; (P.F.); (M.I.); (A.R.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, RO-050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, RO-050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125 Magurele, Ilfov County, Romania; (O.G.); (G.P.-P.)
- Correspondence:
| |
Collapse
|
24
|
Sahiner N, Suner SS, Kurt SB, Can M, Ayyala RS. HA particles as resourceful cancer, steroidal and antibiotic drug delivery device with sustainable and multiple drug release capability. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1832518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Nurettin Sahiner
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, Tampa, Florida, USA
- Chemistry Department, Faculty of Science & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Selin S. Suner
- Chemistry Department, Faculty of Science & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Saliha B. Kurt
- Chemistry Department, Faculty of Science & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mehmet Can
- Chemistry Department, Faculty of Science & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ramesh S. Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, Tampa, Florida, USA
| |
Collapse
|
25
|
Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P. Hyaluronic Acid: Redefining Its Role. Cells 2020; 9:E1743. [PMID: 32708202 PMCID: PMC7409253 DOI: 10.3390/cells9071743] [Citation(s) in RCA: 240] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
The discovery of several unexpected complex biological roles of hyaluronic acid (HA) has promoted new research impetus for biologists and, the clinical interest in several fields of medicine, such as ophthalmology, articular pathologies, cutaneous repair, skin remodeling, vascular prosthesis, adipose tissue engineering, nerve reconstruction and cancer therapy. In addition, the great potential of HA in medicine has stimulated the interest of pharmaceutical companies which, by means of new technologies can produce HA and several new derivatives in order to increase both the residence time in a variety of human tissues and the anti-inflammatory properties. Minor chemical modifications of the molecule, such as the esterification with benzyl alcohol (Hyaff-11® biomaterials), have made possible the production of water-insoluble polymers that have been manufactured in various forms: membranes, gauzes, nonwoven meshes, gels, tubes. All these biomaterials are used as wound-covering, anti-adhesive devices and as scaffolds for tissue engineering, such as epidermis, dermis, micro-vascularized skin, cartilage and bone. In this review, the essential biological functions of HA and the applications of its derivatives for pharmaceutical and tissue regeneration purposes are reviewed.
Collapse
Affiliation(s)
- G. Abatangelo
- Faculty of Medicine, University of Padova, 35121 Padova, Italy
| | - V. Vindigni
- Clinic of Plastic and Reconstructive Surgery, University of Padova, 35128 Padova, Italy; (V.V.); (L.P.)
| | - G. Avruscio
- Department of Cardiac, Thoracic and Vascular Sciences, Angiology Unit, University of Padova, 35128 Padova, Italy;
| | - L. Pandis
- Clinic of Plastic and Reconstructive Surgery, University of Padova, 35128 Padova, Italy; (V.V.); (L.P.)
| | - P. Brun
- Department of Molecular Medicine, Histology unit, University of Padova, 35121 Padova, Italy;
| |
Collapse
|
26
|
Bayer IS. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020; 25:molecules25112649. [PMID: 32517278 PMCID: PMC7321085 DOI: 10.3390/molecules25112649] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Hyaluronic acid (HA) also known as hyaluronan, is a natural polysaccharide—an anionic, non-sulfated glycosaminoglycan—commonly found in our bodies. It occurs in the highest concentrations in the eyes and joints. Today HA is used during certain eye surgeries and in the treatment of dry eye disease. It is a remarkable natural lubricant that can be injected into the knee for patients with knee osteoarthritis. HA has also excellent gelling properties due to its capability to bind water very quickly. As such, it is one the most attractive controlled drug release matrices and as such, it is frequently used in various biomedical applications. Due to its reactivity, HA can be cross-linked or conjugated with assorted bio-macromolecules and it can effectively encapsulate several different types of drugs, even at nanoscale. Moreover, the physiological significance of the interactions between HA and its main membrane receptor, CD44 (a cell-surface glycoprotein that modulates cell–cell interactions, cell adhesion and migration), in pathological processes, e.g., cancer, is well recognized and this has resulted in an extensive amount of studies on cancer drug delivery and tumor targeting. HA acts as a therapeutic but also as a tunable matrix for drug release. Thus, this review focuses on controlled or sustained drug release systems assembled from HA and its derivatives. More specifically, recent advances in controlled release of proteins, antiseptics, antibiotics and cancer targeting drugs from HA and its derivatives were reviewed. It was shown that controlled release from HA has many benefits such as optimum drug concentration maintenance, enhanced therapeutic effects, improved efficiency of treatment with less drug, very low or insignificant toxicity and prolonged in vivo release rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|