1
|
Uchida T. Taste Sensor Assessment of Bitterness in Medicines: Overview and Recent Topics. SENSORS (BASEL, SWITZERLAND) 2024; 24:4799. [PMID: 39123846 PMCID: PMC11314865 DOI: 10.3390/s24154799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
In recent decades, taste sensors have been increasingly utilized to assess the taste of oral medicines, particularly focusing on bitterness, a major obstacle to patient acceptance and adherence. This objective and safe method holds promise for enhancing the development of patient-friendly medicines in pharmaceutical companies. This review article introduces its application in measuring the intensity of bitterness in medicine, confirming the achievement of taste masking, distinguishing taste differences between branded and generic medicines, and identifying substances to suppress bitterness in target medicines. Another application of the sensor is to predict a significant increase in bitterness when medicine is taken with certain foods/beverages or concomitant medication. Additionally, to verify the sensor's predictability, a significant correlation has been demonstrated between the output of a bitter-sensitive sensor designed for drug bitterness (BT0) and the bitterness responses of the human taste receptor hT2R14 from BitterDB (huji.ac.il). As a recent advancement, a novel taste sensor equipped with lipid/polymer membranes modified by 3-Br-2,6-dihydroxybenzoic acid (2,6-DHBA), based on the concept of allostery, is introduced. This sensor successfully predicts the bitterness of non-charged pharmaceuticals with xanthine skeletons, such as caffeine or related compounds. Finally, the future prospects of taste sensors are discussed.
Collapse
Affiliation(s)
- Takahiro Uchida
- Food and Health Innovation Center, Nakamura Gakuen University, 5-7-1, Befu, Jonan-ku, Fukuoka 814-0198, Japan;
- Faculty of Pharmaceutical Science, Mukogawa Women’s University, 11-68, Koshien 9-Bancho, Nishinomiya 663-8179, Japan
| |
Collapse
|
2
|
Qi M, Su X, Li Z, Huang H, Wang J, Lin N, Kong X. Bibliometric analysis of research progress on tetramethylpyrazine and its effects on ischemia-reperfusion injury. Pharmacol Ther 2024; 259:108656. [PMID: 38735486 DOI: 10.1016/j.pharmthera.2024.108656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
In recent decades, natural products have attracted worldwide attention and become one of the most important resources for pharmacological industries and medical sciences to identify novel drug candidates for disease treatment. Tetramethylpyrazine (TMP) is an alkaloid extracted from Ligusticum chuanxiong Hort., which has shown great therapeutic potential in cardiovascular and cerebrovascular diseases, liver and renal injury, as well as cancer. In this review, we analyzed 1270 papers published on the Web of Science Core Collection from 2002 to 2022 and found that TMP exerted significant protective effects on ischemia-reperfusion (I/R) injury that is the cause of pathological damages in a variety of conditions, such as ischemic stroke, myocardial infarction, acute kidney injury, and liver transplantation. TMP is limited in clinical applications to some extent due to its rapid metabolism, a short biological half-life and poor bioavailability. Obviously, the structural modification, administration methods and dosage forms of TMP need to be further investigated in order to improve its bioavailability. This review summarizes the clinical applications of TMP, elucidates its potential mechanisms in protecting I/R injury, provides strategies to improve bioavailability, which presents a comprehensive understanding of the important compound. Hopefully, the information and knowledge from this review can help researchers and physicians to better improve the applications of TMP in the clinic.
Collapse
Affiliation(s)
- Mingzhu Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuohang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Helan Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingbo Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Hao X, Zhang Y, Sun Y, Liu M, Wang Q, Zhao X, He X. Polymorphs of a 1:1 salt of sulfadiazine and piperazine-relative stability, dissolution studies, pharmacokinetics and anti-meningitis efficiency. Eur J Pharm Sci 2023; 188:106503. [PMID: 37339709 DOI: 10.1016/j.ejps.2023.106503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Two new salt forms of sulfadiazine (SDZ) and piperazine (PIP) were synthesized and characterized. Out of the two polymorphs (SDZ-PIP Ⅰ and SDZ-PIP II), SDZ-PIP Ⅱ is the more stable form at low temperature, room temperature and high temperature. The solution-mediated phase transformation result shows that SDZ-PIP II can transform into pure SDZ within 15 s in phosphate buffer at 37 °C, which leads to a loss in solubility advantage. The addition of 2 mg/mL PVP K30, a polymeric crystallization inhibitor, maintains the solubility advantage and permits supersaturation for a longer period of time. SDZ-PIP II showed 2.5 times the solubility of SDZ alone. The area under the curve (AUC) of SDZ-PIP II with 2 mg/mL PVP K30 was approximately 165% of that of SDZ alone. Moreover, SDZ-PIP II with PVP K30 was more effective than SDZ alone in treating meningitis. Therefore, the SDZ-PIP II salt improves the solubility, bioavailability, and anti-meningitis activity of SDZ.
Collapse
Affiliation(s)
- Xinghui Hao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000 China
| | - Yuqing Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000 China
| | - Yanling Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000 China
| | - Mengge Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000 China
| | - Qiru Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000 China
| | - Xinghua Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000 China.
| | - Xin He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000 China.
| |
Collapse
|
4
|
Rocha B, de Morais LA, Viana MC, Carneiro G. Promising strategies for improving oral bioavailability of poor water-soluble drugs. Expert Opin Drug Discov 2023; 18:615-627. [PMID: 37157841 DOI: 10.1080/17460441.2023.2211801] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Oral administration of poorly water-soluble drugs (PWSDs) is generally related to low bioavailability, leading to high drug doses, multiple side effects, and low patient compliance. Thus, different strategies have been developed to increase drug solubility and dissolution in the gastrointestinal tract, opening new venues for these drugs. AREAS COVERED This review outlines the current challenges in PWSD formulation development and the strategies to overcome the oral barriers and increase their solubility and bioavailability. Conventional strategies include altering crystalline and molecular structures and modifying oral solid dosage forms. In contrast, novel strategies comprise micro- and nanostructured systems. Recent representative studies involving how these strategies have improved the oral bioavailability of PWSDs were also reviewed and reported. EXPERT OPINION New approaches to enhance PWSD bioavailability have sought to improve water solubility and dissolution rates, drug protection by overcoming biological barriers, and increased absorption. Still, only a handful of studies have focused on quantifying the increase in bioavailability. Improving the oral bioavailability of PWSDs remains an exciting unexplored field of research and has become an important issue for successfully developing pharmaceutical products.
Collapse
Affiliation(s)
- Bruna Rocha
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Letícia Aparecida de Morais
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Mateus Costa Viana
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| | - Guilherme Carneiro
- Department of Pharmacy, Faculty of Biological and Health Sciences, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, Brazil
| |
Collapse
|
5
|
Wang K, Hao Y, Wang C, Zhao X, He X, Sun CC. Simultaneous improvement of physical stability, dissolution, bioavailability, and antithrombus efficacy of Aspirin and Ligustrazine through cocrystallization. Int J Pharm 2022; 616:121541. [PMID: 35124115 DOI: 10.1016/j.ijpharm.2022.121541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/27/2022]
Abstract
A novel 1:1 cocrystal between two cardiovascular drugs, aspirin (ASA) and ligustrazine (tetramethylpyrazine, TMP) has been synthesized and characterized. The structure of this drug-drug cocrystal, ASA-TMP, was determined using single crystal X-ray crystallography. The ASA-TMP cocrystal exhibits a significantly reduced sublimation tendency than TMP. Importantly, cocrystallization simultaneously improves bioavailability of both parent drugs. This suggests the possibility of developing a more effective antithrombosis drug therapy given the synergistic pharmacological effects of the two parent drugs.
Collapse
Affiliation(s)
- Kairu Wang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanshuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xinghua Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Xin He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China.
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Hao X, Li J, Wang C, Zhao X, He X, Sun CC. Profoundly improved photostability of dimetronidazole by cocrystallization. CrystEngComm 2022. [DOI: 10.1039/d2ce00597b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocrystallization with saccharine (SAC) significantly improved photostability of dimetronidazole (DMZ), an veterinary antibiotic.
Collapse
Affiliation(s)
- Xinghui Hao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, Hebei, 071000, China
| | - Jinhui Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
- Hebei Shengxue Dacheng Pharmaceutical (Tangshan) Co., Ltd., 064000, China
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xinghua Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, Hebei, 071000, China
| | - Xin He
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, Hebei 071000, China
- Veterinary Biological Technology Innovation Center of Hebei Province, Baoding, Hebei, 071000, China
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Guan D, Xuan B, Wang C, Long R, Jiang Y, Mao L, Kang J, Wang Z, Chow SF, Zhou Q. Improving the Physicochemical and Biopharmaceutical Properties of Active Pharmaceutical Ingredients Derived from Traditional Chinese Medicine through Cocrystal Engineering. Pharmaceutics 2021; 13:2160. [PMID: 34959440 PMCID: PMC8704577 DOI: 10.3390/pharmaceutics13122160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023] Open
Abstract
Active pharmaceutical ingredients (APIs) extracted and isolated from traditional Chinese medicines (TCMs) are of interest for drug development due to their wide range of biological activities. However, the overwhelming majority of APIs in TCMs (T-APIs), including flavonoids, terpenoids, alkaloids and phenolic acids, are limited by their poor physicochemical and biopharmaceutical properties, such as solubility, dissolution performance, stability and tabletability for drug development. Cocrystallization of these T-APIs with coformers offers unique advantages to modulate physicochemical properties of these drugs without compromising the therapeutic benefits by non-covalent interactions. This review provides a comprehensive overview of current challenges, applications, and future directions of T-API cocrystals, including cocrystal designs, preparation methods, modifications and corresponding mechanisms of physicochemical and biopharmaceutical properties. Moreover, a variety of studies are presented to elucidate the relationship between the crystal structures of cocrystals and their resulting properties, along with the underlying mechanism for such changes. It is believed that a comprehensive understanding of cocrystal engineering could contribute to the development of more bioactive natural compounds into new drugs.
Collapse
Affiliation(s)
- Danyingzi Guan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Chengguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ruitao Long
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Yaqin Jiang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Lina Mao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Jinbing Kang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Ziwen Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Qun Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (D.G.); (R.L.); (Y.J.); (L.M.); (J.K.); (Z.W.)
| |
Collapse
|
8
|
Improving the Solubility, Dissolution, and Bioavailability of Metronidazole via Cocrystallization with Ethyl Gallate. Pharmaceutics 2021; 13:pharmaceutics13040546. [PMID: 33919704 PMCID: PMC8070254 DOI: 10.3390/pharmaceutics13040546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
Metronidazole (MTZ) is an antibacterial drug widely used for the treatment of protozoan and anaerobic infections in humans and animals. However, its low bioavailability necessitates the frequent administration of a high dose to attain an effective plasma concentration profile for therapy. To reduce the dose of MTZ, we have prepared a new cocrystal between MTZ and ethyl gallate (EG). The solid-state properties of MTZ-EG were characterized using complimentary techniques, including thermal, spectroscopic, microscopic, and X-ray crystallographic methods. The MTZ-EG cocrystal exhibits a higher solubility and faster dissolution than MTZ. The bioavailability of MTZ in rats was increased by 36% when MTZ-EG was used.
Collapse
|
9
|
Obaidat R, Aleih H, Mashaqbeh H, Altaani B, Alsmadi MM, Alnaief M. Development and Evaluation of Cocoa Butter Taste Masked Ibuprofen Using Supercritical Carbon Dioxide. AAPS PharmSciTech 2021; 22:106. [PMID: 33719021 DOI: 10.1208/s12249-021-01962-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/10/2021] [Indexed: 02/01/2023] Open
Abstract
Masking the unpleasant taste of the pharmaceutically active ingredients plays a critical role in patient acceptance, particularly for children. This work's primary objective was the preparation of taste-masked ibuprofen microparticles using cocoa butter with the assistance of supercritical fluid technology. Microparticles were prepared by dissolving ibuprofen in melted cocoa butter at 40 °C. The solution was then introduced into a supercritical fluid unit and processed at 10 MPa CO2 pressure for 30 min. The product was collected after depressurizing the system. The effect of the drug to cocoa butter ratio and the supercritical fluid units' configuration on product quality was evaluated and compared with the sample prepared by a conventional method. Physicochemical characterization of the prepared product, including particle size, crystallinity, entrapment efficiency, in vitro drug release, and product taste using a human volunteer panel was conducted. The produced microparticles were in the range of 1.42 to 15.28 μm. The entrapment efficiency of the formulated microparticles ranged from 66 to 81%. The drug:polymer ratio, the configuration of the supercritical fluid unit, and the method of preparation were found to have a critical role in the formulation of ibuprofen microparticles. Taste evaluation using human volunteers showed that microparticles containing 20% drug and processed with supercritical fluid technology were capable of masking the bitter taste of ibuprofen. In conclusion, the dispersion of ibuprofen in cocoa butter using supercritical fluid technology is a a promising innovative method to mask the bitter taste of ibuprofen.
Collapse
|
10
|
Ossowicz P, Janus E, Klebeko J, Światek E, Kardaleva P, Taneva S, Krachmarova E, Rangelov M, Todorova N, Guncheva M. Modulation of the binding affinity of naproxen to bovine serum albumin by conversion of the drug into amino acid ester salts. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|