1
|
Gugu TH, Uronnachi EM, Thawithong E, Srichana T. Spray dried polymyxin B liposome for inhalation against gram-negative bacteria. Pharm Dev Technol 2024; 29:1133-1147. [PMID: 39513323 DOI: 10.1080/10837450.2024.2427186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
This study aimed to provide an alternative and effective delivery system to combat polymyxin B (PMB) toxicity and bacterial resistance through inhalation therapy. PMB was formulated as liposomal dry powder for inhalation using thin-film hydration and spray-dried methods. PMB formulations were characterized physically. The aerodynamic properties were determined using next-generation impactor (NGI). In vitro drug release was done in a phosphate buffer pH 7.4 for 2 h. Cytotoxicity was evaluated by the MTT cell viability assay. Antimicrobiological activities were done using bioassay and flow cytometry. Particle sizes of the spay-dried formulations were between 259.83 ± 9.91 and 518.73 ± 27.08 nm while the zeta potentials ranged between 3.07 ± 0.27 and 4.323 ± 0.36 mV. The Fourier-transform infrared spectroscopy shows no interaction between PMB and other excipients. Differential scanning calorimetry thermograms revealed amorphousness of the formulated powders and SEM revealed spherical PMB formulations. Similarly, mass media aerodynamic diameter results were 1.72-2.75 nm, and FPF was 25%-26%. The cumulative release of the PMB formulations was 90.3 ± 0.6% within 2 h. The killing kinetics revealed total cell death at 12 and 24 h for Pseudomonas aeruginosa and Escherichia coli, respectively. The PMB inhalation liposome showed better activity and was safe for lung-associated cell lines.
Collapse
Affiliation(s)
- Thaddeus Harrison Gugu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka, Nigeria
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Emmanuel Maduabuchi Uronnachi
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Nnamdi Azikiwe University, Awka, Nigeria
| | - Ekawat Thawithong
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
2
|
Bintang MAKM, Nopparat J, Srichana T. In vivo evaluation of nephrotoxicity and neurotoxicity of colistin formulated with sodium deoxycholate sulfate in a mice model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3243-3252. [PMID: 37249614 DOI: 10.1007/s00210-023-02531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Neurotoxicity and nephrotoxicity are the major dose-limiting factors for the clinical use of colistin against multidrug-resistant (MDR) Gram-negative bacteria. This study aimed to investigate the neurotoxic and nephrotoxic effects of colistin formulated with in-house synthesized sodium deoxycholate sulfate (SDCS) in a mouse model. Male mice C57BL/6 were randomly divided into four groups: control (saline solution), colistin (15 mg/kg/day), colistin:SDCS 1:1, and colistin:SDCS 1:2. In the colistin:SDCS treatment groups, the dosage was 15 mg/kg/day colistin equivalent; all mice were treated for 7 successive days. The thermal tolerance, body weight gain and organ weights were measured. The levels of serum blood urea nitrogen (BUN), creatinine (Cr), superoxide dismutase (SOD), and catalase (CAT) were assessed. Histopathological damages were assessed on mice organ. The colistin:SDCS formulations significantly improved thermal pain response of the mice comparable to the control group. The administration did not impair kidney function as evidence from BUN and Cr results; however, the oxidative stress biomarkers decreased in the colistin and colistin-SDCS treated mice. Several abnormalities were observed in the kidney, liver, spleen, and sciatic nerve tissues following colistin treatment, which indicated evidence of toxicity. The colistin-SDCS formulations were associated with less acute toxicity and fewer nephrotoxic and neurotoxic changes compared with the colistin alone group which indicated that SDCS attenuated colistin nephrotoxicity and neurotoxicity. This study highlights the potential application of colistin formulated with SDCS for safer clinical use against MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Muhammad Ali Khumaini Mudhar Bintang
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Jongdee Nopparat
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand.
| |
Collapse
|
3
|
He Q, Yang Z, Zou Z, Qian M, Wang X, Zhang X, Yin Z, Wang J, Ye X, Liu D, Guo M. Combating Escherichia coli O157:H7 with Functionalized Chickpea-Derived Antimicrobial Peptides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205301. [PMID: 36563134 PMCID: PMC9951321 DOI: 10.1002/advs.202205301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The rapid dissemination of antibiotic resistance accelerates the desire for new antibacterial agents. Here, a class of antimicrobial peptides (AMPs) is designed by modifying the structural parameters of a natural chickpea-derived AMP-Leg2, termed "functionalized chickpea-derived Leg2 antimicrobial peptides" (FCLAPs). Among the FCLAPs, KTA and KTR show superior antibacterial efficacy against the foodborne pathogen Escherichia coli (E. coli) O157:H7 (with MICs in the range of 2.5-4.7 µmol L-1 ) and demonstrate satisfactory feasibility in alleviating E. coli O157:H7-induced intestinal infection. Additionally, the low cytotoxicity along with insusceptibility to antimicrobial resistance increases the potential of FCLAPs as appealing antimicrobials. Combining the multi-omics profiling andpeptide-membrane interaction assays, a unique dual-targeting mode of action is characterized. To specify the antibacterial mechanism, microscopical observations, membrane-related physicochemical properties studies, and mass spectrometry assays are further performed. Data indicate that KTA and KTR induce membrane damage by initially targeting the lipopolysaccharide (LPS), thus promoting the peptides to traverse the outer membrane. Subsequently, the peptides intercalate into the peptidoglycan (PGN) layer, blocking its synthesis, and causing a collapse of membrane structure. These findings altogether imply the great potential of KTA and KTR as promising antibacterial candidates in combating the growing threat of E. coli O157:H7.
Collapse
Affiliation(s)
- Qiao He
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhehao Yang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhipeng Zou
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mengyan Qian
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xiaolei Wang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Zhongping Yin
- Jiangxi Key Laboratory of Natural Products and Functional FoodsJiangxi Agricultural UniversityNanchangJiangxi Province330045P. R. China
| | - Jinhai Wang
- Department of Colorectal SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Xingqian Ye
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Donghong Liu
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| | - Mingming Guo
- College of Biosystems Engineering and Food ScienceNational‐Local Joint Engineering Laboratory of Intelligent Food Technology and EquipmentZhejiang Key Laboratory for Agro‐Food ProcessingZhejiang UniversityHangzhouZhejiang Province310058P. R. China
- Fuli Institute of Food ScienceZhejiang UniversityHangzhouZhejiang Province310058P. R. China
| |
Collapse
|
4
|
Wang XY, Xie J. Response to Cold Adaption in Acinetobacter johnsonii XY27 from Spoiled Bigeye Tuna ( Thunnus obesus): Membrane Protein Composition and Protein Biomarker Identification by Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10000-10010. [PMID: 35919963 DOI: 10.1021/acs.jafc.2c03303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acinetobacter johnsonii is one of the major food-spoilage bacteria and can survive under cold stress. In this study, the membrane composition, membrane permeability, and energy transduction of A. johnsonii XY27 cultured at 4 and 30 °C were examined comparatively by flow cytometry combined with liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The Na+/K+ATPase activity, alkaline phosphatase and ATPase activity, fluorescence intensity, and cell viability in A. johnsonii XY27 increased with the decrease in cultivation temperature. The polyunsaturated fatty acid and monounsaturated fatty acids have a higher content in A. johnsonii XY27 cultured at 4 °C compared to that cultured at 30 °C, in which the contents of methyl palmitoleate, methyl myristoleate, and methyl oleate increased dramatically with decreasing temperature. Comparative proteomics analysis revealed that 31 proteins were downregulated and 4 proteins were upregulated, in which catalase-peroxidase 1 and cold shock proteins as biomarker proteins could effectively control A. johnsonii during cold adaptation.
Collapse
Affiliation(s)
- Xin-Yun Wang
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai Ocean University, Shanghai 201306, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai Ocean University, Shanghai 201306, China
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
5
|
Nourbakhsh F, Lotfalizadeh M, Badpeyma M, Shakeri A, Soheili V. From plants to antimicrobials: Natural products against bacterial membranes. Phytother Res 2021; 36:33-52. [PMID: 34532918 DOI: 10.1002/ptr.7275] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 07/16/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Bacterial membrane barrier provides a cytoplasmic environment for organelles of bacteria. The membrane is composed of lipid compounds containing phosphatide protein and a minimal amount of sugars, and is responsible for intercellular transfers of chemicals. Several antimicrobials have been found that affect bacterial cytoplasmic membranes. These compounds generally disrupt the organization of the membrane or perforate it. By destroying the membrane, the drugs can permeate and replace the effective macromolecules necessary for cell life. Furthermore, they can disrupt electrical gradients of the cells through impairment of the membrane integrity. In recent years, considering the spread of microbial resistance and the side effects of antibiotics, natural antimicrobial compounds have been studied by researchers extensively. These molecules are the best alternative for controlling bacterial infections and reducing drug resistance due to the lack of severe side effects, low cost of production, and biocompatibility. Better understanding of the natural compounds' mechanisms against bacteria provides improved strategies for antimicrobial therapies. In this review, natural products with antibacterial activities focusing on membrane damaging mechanisms were described. However, further high-quality research studies are needed to confirm the clinical efficacy of these natural products.
Collapse
Affiliation(s)
- Fahimeh Nourbakhsh
- Medical Toxicology Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Lotfalizadeh
- Department of Obstetrics and Gynecology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Badpeyma
- Student Research Committee, Department of Clinical Nutrition, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Soheili
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Gao N, Zhang J, Pan Z, Zhao X, Ma X, Zhang H. Biodegradation of Atrazine by Mixed Bacteria of Klebsiella variicola Strain FH-1 and Arthrobacter sp. NJ-1. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:481-489. [PMID: 32914331 DOI: 10.1007/s00128-020-02966-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
The purpose of this study is to enhance the biodegradability of atrazine with FH-1 and NJ-1 alone by selecting the mixing ratio, optimizing the culture medium and conditions. The results showed that FH-1 and NJ-1 have the best biodegradation effect on atrazine being mixed in a volume ratio of 3:2. In a single factor experiment, sucrose and NH4Cl provided carbon and nitrogen sources for the mixed bacteria. Subsequently, composition of fermentation medium was further optimized using Box-Behnken design of response surface methodology. Based on the results, growth of mixed bacteria and biodegradation of atrazine performed best effects with a biodegradation rate of 85.6% when sucrose and NH4Cl amounts were 35.30 g/L and 10.28 g/L. The optimal medium condition was 10% inoculum of mixed bacteria, with initial atrazine concentration of 50 mg/L, neutral or weakly alkaline pH value, 30°C. The biodegradation rate reached 97.4%, 11.8% higher than the unoptimized condition.
Collapse
Affiliation(s)
- Ning Gao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Jinpeng Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Zequn Pan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaofeng Zhao
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Xiulan Ma
- College of Resource and Environment, Jilin Agricultural University, Changchun, 130118, China
| | - Hao Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|