1
|
Zhang L, Zhang H. Recent advances of affibody molecules in biomedical applications. Bioorg Med Chem 2024; 113:117923. [PMID: 39278106 DOI: 10.1016/j.bmc.2024.117923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Affibody molecules are 58-amino-acid peptides with a molecular weight of about 6.5 kDa, derived from the Z domain of Staphylococcal Protein A. Since they have been used as substitutes for antibodies in biomedicine, several therapeutic affibody molecules have been developed for clinical use. Additionally, affibody molecules have been designed for a range of different applications. This review focuses on the progress made in the last five years in the field of affibody molecules and their potential uses in medical imaging, especially in oncology and cancer treatment. It covers areas such as molecular imaging, targeted delivery of toxic drugs, and their use in combination with nanoparticles. We also highlight some current biomedical applications where affibody molecules are commonly used as a "guide." Due to their many advantages, affibody molecules offer significant potential for applications in both biochemical and medical fields.
Collapse
Affiliation(s)
- Liuyanlin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|
2
|
Jia D, Zhao S, Liu H, Zhan X, Zhou Z, Lv M, Tang X, Guo W, Li H, Sun L, Zhong Y, Tian B, Yuan D, Tang X, Fan Q. ICG-labeled PD-L1-antagonistic affibody dimer for tumor imaging and enhancement of tumor photothermal-immunotherapy. Int J Biol Macromol 2024; 269:132058. [PMID: 38704065 DOI: 10.1016/j.ijbiomac.2024.132058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In clinical practice, tumor-targeting diagnosis and immunotherapy against programmed death ligand 1 (PD-L1) have a significant impact. In this research, a PD-L1-antagonistic affibody dimer (ZPD-L1) was successfully prepared through Escherichia coli expression system, and conjugated with the photosensitizer of ICG via N-hydroxysuccinimide (NHS) ester to develop a novel tumor-targeting agent (ICG-ZPD-L1) for both tumor imaging diagnosis and photothermal-immunotherapy simultaneously. In vitro, ZPD-L1 could specifically bind to PD-L1-positive LLC and MC38 tumor cells, and ICG-ZPD-L1-mediated photothermal therapy (PTT) also showed excellent phototoxicity to these tumor cells. In vivo, ICG-ZPD-L1 selectively enriched into the PD-L1-positive MC38 tumor tissues, and the high-contrast optical imaging of tumors was obtained. ICG-ZPD-L1-mediated PTT exhibited a potent anti-tumor effect in vivo due to its remarkable photothermal properties. Furthermore, ICG-ZPD-L1-mediated PTT significantly induced the immunogenic cell death (ICD) of primary tumors, promoted maturation of dendritic cells (DCs), up-regulated anti-tumor immune response, enhanced immunotherapy, and superiorly inhibited the growth of metastatic tumors. In addition, ICG-ZPD-L1 showed favorable biosafety throughout the brief duration of treatment. In summary, these results suggest that ICG-ZPD-L1 is a multifunctional tumor-targeting drug integrating tumor imaging diagnosis and photothermal-immunotherapy, and has great guiding significance for the diagnosis and treatment of clinical PD-L1-positive tumor patients.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Shiqi Zhao
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Huimin Liu
- The Second Hospital of Coal Mining Group, Xuzhou 221011, PR China
| | - Xinyu Zhan
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Zhongxia Zhou
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Mingjia Lv
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Xiufeng Tang
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Wen Guo
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Hui Li
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Lilan Sun
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Yidong Zhong
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Baoqing Tian
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Dandan Yuan
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Xiaohui Tang
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Qing Fan
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| |
Collapse
|
3
|
Schauenburg D, Gao B, Rochet LNC, Schüler D, Coelho JAS, Ng DYW, Chudasama V, Kuan SL, Weil T. Macrocyclic Dual-Locked "Turn-On" Drug for Selective and Traceless Release in Cancer Cells. Angew Chem Int Ed Engl 2024; 63:e202314143. [PMID: 38179812 DOI: 10.1002/anie.202314143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Drug safety and efficacy due to premature release into the bloodstream and poor biodistribution remains a problem despite seminal advances in this area. To circumvent these limitations, we report drug cyclization based on dynamic covalent linkages to devise a dual lock for the small-molecule anticancer drug, camptothecin (CPT). Drug activity is "locked" within the cyclic structure by the redox responsive disulfide and pH-responsive boronic acid-salicylhydroxamate and turns on only in the presence of acidic pH, reactive oxygen species and glutathione through traceless release. Notably, the dual-responsive CPT is more active (100-fold) than the non-cleavable (permanently closed) analogue. We further include a bioorthogonal handle in the backbone for functionalization to generate cyclic-locked, cell-targeting peptide- and protein-CPTs, for targeted delivery of the drug and traceless release in triple negative metastatic breast cancer cells to inhibit cell growth at low nanomolar concentrations.
Collapse
Affiliation(s)
- Dominik Schauenburg
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Bingjie Gao
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Léa N C Rochet
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Darijan Schüler
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - David Y W Ng
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Seah Ling Kuan
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany
| | - Tanja Weil
- Synthesis of Macromolecules, Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Inorganic Chemistry I, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
4
|
Lu J, Zhang A, Zhang F, Linhardt RJ, Zhu Z, Yang Y, Zhang T, Lin Z, Zhang S, Zhao H, Sun P. Ganoderenic acid D-loaded functionalized graphene oxide-based carrier for active targeting therapy of cervical carcinoma. Biomed Pharmacother 2023; 164:114947. [PMID: 37269813 DOI: 10.1016/j.biopha.2023.114947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Ganoderenic acid D (GAD), extracted from the Chinese herb Ganoderma lucidum, was loaded onto a graphene oxide-polyethylene glycol-anti-epidermal growth factor receptor (GO-PEG-EGFR) carrier to develop a targeting antitumor nanocomposite (GO-PEG@GAD). The carrier was fabricated from PEG and anti-EGFR aptamer modified GO. Targeting was mediated by the grafted anti-EGFR aptamer, which targets the membrane of HeLa cells. Physicochemical properties were characterized by transmission electron microscopy, dynamic light scattering, X-ray powder diffraction, and Fourier transform infrared spectroscopy. High loading content (77.3 % ± 1.08 %) and encapsulation efficiency (89.1 % ± 2.11 %) were achieved. Drug release continued for approximately 100 h. The targeting effect both in vitro and in vivo was confirmed by confocal laser scanning microscopy (CLSM) and imaging analysis system. The mass of the subcutaneous implanted tumor was significantly decreased by 27.27 ± 1.23 % after treatment with GO-PEG@GAD compared with the negative control group. Moreover, the in vivo anti-cervical carcinoma activity of this medicine was due to activation of the intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Jiahui Lu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402 Hangzhou, PR China; College of Food Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, PR China
| | - Anqiang Zhang
- College of Food Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, PR China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 12180 Troy, NY, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 12180 Troy, NY, USA; Departments of Chemistry and Chemical Biology and Biomedical Engineering, Biological Science, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 12180 Troy, NY, USA
| | - Zhihui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402 Hangzhou, PR China
| | - Yanzi Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402 Hangzhou, PR China
| | - Tinghuang Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402 Hangzhou, PR China
| | - Zhibin Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191 Beijing, PR China
| | - Su Zhang
- Zhejiang Provincial Rural Industrial Development Co., Ltd, 310000, Hangzhou, PR China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 311402 Hangzhou, PR China.
| | - Peilong Sun
- College of Food Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, PR China.
| |
Collapse
|
5
|
Gabriele F, Palerma M, Ippoliti R, Angelucci F, Pitari G, Ardini M. Recent Advances on Affibody- and DARPin-Conjugated Nanomaterials in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24108680. [PMID: 37240041 DOI: 10.3390/ijms24108680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Affibodies and designed ankyrin repeat proteins (DARPins) are synthetic proteins originally derived from the Staphylococcus aureus virulence factor protein A and the human ankyrin repeat proteins, respectively. The use of these molecules in healthcare has been recently proposed as they are endowed with biochemical and biophysical features heavily demanded to target and fight diseases, as they have a strong binding affinity, solubility, small size, multiple functionalization sites, biocompatibility, and are easy to produce; furthermore, impressive chemical and thermal stability can be achieved. especially when using affibodies. In this sense, several examples reporting on affibodies and DARPins conjugated to nanomaterials have been published, demonstrating their suitability and feasibility in nanomedicine for cancer therapy. This minireview provides a survey of the most recent studies describing affibody- and DARPin-conjugated zero-dimensional nanomaterials, including inorganic, organic, and biological nanoparticles, nanorods, quantum dots, liposomes, and protein- and DNA-based assemblies for targeted cancer therapy in vitro and in vivo.
Collapse
Affiliation(s)
- Federica Gabriele
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Marta Palerma
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
6
|
Pinho JO, Matias M, Godinho-Santos A, Amaral JD, Mendes E, Jesus Perry M, Paula Francisco A, Rodrigues CMP, Manuela Gaspar M. A step forward on the in vitro and in vivo assessment of a novel nanomedicine against melanoma. Int J Pharm 2023; 640:123011. [PMID: 37146952 DOI: 10.1016/j.ijpharm.2023.123011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/11/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Melanoma is the most aggressive form of skin cancer, with increasing incidence and mortality rates. To overcome current treatment limitations, a hybrid molecule (HM) combining a triazene and a ʟ-tyrosine analogue, was recently synthesized, incorporated in long blood circulating liposomes (LIP HM) and validated in an immunocompetent melanoma model. The present work constitutes a step forward in the therapeutic assessment of HM formulations. Here, human melanoma cells, A375 and MNT-1, were used and dacarbazine (DTIC), a triazene drug clinically available as first-line treatment for melanoma, constituted the positive control. In cell cycle analysis, A375 cells, after 24-h incubation with HM (60 μM) and DTIC (70 μM), resulted in a 1.2 fold increase (related to control) in the percentage of cells in G0/G1 phase. The therapeutic activity was evaluated in a human murine melanoma model (subcutaneously injected with A375 cells) to most closely resemble the human pathology. Animals treated with LIP HM exhibited the highest antimelanoma effect resulting in a 6-, 5- and 4-fold reduction on tumor volume compared to negative control, Free HM and DTIC groups, respectively. No toxic side effects were detected. Overall, these results constitute another step forward in the validation of the antimelanoma activity of LIP HM, using a murine model that more accurately simulates the pathology that occurs in human patients.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Mariana Matias
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal.
| | - Ana Godinho-Santos
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Joana D Amaral
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Eduarda Mendes
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Jesus Perry
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Ana Paula Francisco
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Cecília M P Rodrigues
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
7
|
Ghosh P, Tiwari H, Lakkakula J, Roy A, Emran TB, Rashid S, Alghamdi S, Rajab BS, Almehmadi M, Allahyani M, Aljuaid A, Alsaiari AA, Sharma R, Babalghith AO. A decade's worth of impact: Dox loaded liposomes in anticancer activity. MATERIALS TODAY ADVANCES 2022; 16:100313. [DOI: 10.1016/j.mtadv.2022.100313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Liu S, Tong Z, Jiang C, Gao C, Liu B, Mu X, Xu J, Du B, Liu Z, Wang J, Xu J. Ultra-sensitive electrochemiluminescence biosensor for abrin detection based on dual-labeled phage display affibodies and polystyrene nanospheres. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Jia D, Wang F, Lu Y, Hu P, Wang R, Li G, Liu R, Li J, Liu H, Fan Q, Yuan F. Fusion of an EGFR-antagonistic affibody enhances the anti-tumor effect of TRAIL to EGFR positive tumors. Int J Pharm 2022; 620:121746. [DOI: 10.1016/j.ijpharm.2022.121746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/28/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
|
10
|
Liu H, Jia D, Yuan F, Wang F, Wei D, Tang X, Tian B, Zheng S, Sun R, Shi J, Fan Q. Her3-specific affibody mediated tumor targeting delivery of ICG enhanced the photothermal therapy against Her3-positive tumors. Int J Pharm 2022; 617:121609. [PMID: 35217073 DOI: 10.1016/j.ijpharm.2022.121609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/19/2022] [Indexed: 02/08/2023]
Abstract
Photothermal therapy (PTT), mediated by tumor-targeted drug delivery of indocyanine green (ICG), is a promising strategy for cancer therapy. Human epidermal growth factor receptor 3 (Her3) is highly expressed in several solid tumors and is an ideal target for tumor diagnosis and therapy. This study prepared a Her3-specific dimeric affibody (ZHer3) using an Escherichia coli expression system. The affibody could bind explicitly to Her3-positive MCF7 and LS174T cells, rather than to Her3-negative SKOV-3 cells in vitro. ICG was coupled with the ZHer3 affibody (ICG-ZHer3) through an N-hydroxysuccinimide (NHS) ester reactive group for tumor-targeted delivery. As expected, Her3-positive cells were selectively and efficiently killed by ICG-ZHer3-mediated PTT in vitro. In vivo, ICG-ZHer3 preferentially accumulated in Her3-positive LS174T tumor grafts because of the tumor-targeting ability of the ZHer3 affibody. As a result of the local generation of cytotoxic reactive oxygen species and hyperthermia, the growth rates of LS174T tumor grafts were significantly inhibited by ICG-ZHer3-mediated PTT, and ICG-ZHer3 showed good safety performance during short-term treatment. In conclusion, these results demonstrated that ICG-ZHer3 is a promising photosensitizer for PTT against Her3-positive tumors.
Collapse
Affiliation(s)
- Huimin Liu
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Feifei Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Danfeng Wei
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xiaohui Tang
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Baoqing Tian
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Shuhui Zheng
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Ruohan Sun
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Jing Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| |
Collapse
|
11
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
12
|
Luo R, Liu H, Cheng Z. Protein scaffolds: Antibody alternative for cancer diagnosis and therapy. RSC Chem Biol 2022; 3:830-847. [PMID: 35866165 PMCID: PMC9257619 DOI: 10.1039/d2cb00094f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost. These issues have led scientists to explore and develop novel antibody alternatives. Protein scaffolds are small monomeric proteins with stable tertiary structures and mutable residues, which emerged in the 1990s. By combining robust gene engineering and phage display techniques, libraries with sufficient diversity could be established for target binding scaffold selection. Given the properties of small size, high affinity, and excellent specificity and stability, protein scaffolds have been applied in basic research, and preclinical and clinical fields over the past two decades. To date, more than 20 types of protein scaffolds have been developed, with the most frequently used being affibody, adnectin, ANTICALIN®, DARPins, and knottin. In this review, we focus on the protein scaffold applications in cancer therapy and diagnosis in the last 5 years, and discuss the pros and cons, and strategies of optimization and design. Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost.![]()
Collapse
Affiliation(s)
- Renli Luo
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Hongguang Liu
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
13
|
Jia D, Wang F, Yang Y, Hu P, Song H, Lu Y, Wang R, Li G, Liu R, Li J, Yuan F. Coupling EGFR-Antagonistic Affibody Enhanced Therapeutic Effects of Cisplatin Liposomes in EGFR-expressing Tumor Models. J Pharm Sci 2021; 111:450-457. [PMID: 34547305 DOI: 10.1016/j.xphs.2021.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/11/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) is an efficient target for cancer therapy. In this study, a high-affinity EGFR-antagonistic affibody (ZEGFR) molecule coupled with cisplatin-loaded PEGylated liposomes (LS-DDP) was applied to actively target EGFR+ A431 tumor cells in vitro and in vivo. The LS-DDP coupled with ZEGFR (AS-DDP) had an average size of 140.01 ± 0.84 nm, low polydispersity, a zeta potential of -13.40 ± 0.8 mV, an acceptable encapsulation efficiency of 17.30 ± 1.35%, and released cisplatin in a slow-controlled manner. In vitro, AS-DDP demonstrated a higher amount of platinum intracellular uptake by A431 cells than LS-DDP. The IC50 value of AS-DDP (9.02 ± 1.55 μg/ml) was much lower than that of LS-DDP (16.44 ± 0.87 μg/ml), indicating that the anti-tumor effects of AS-DDP were remarkable due to the modification of ZEGFR. In vivo, the concentration of AS-DDP in the tumor site increased more than 1.76-fold, while an increase in apoptotic cells at 48 h compared to the LS-DDP was also observed, illustrating that AS-DDP possessed excellent tumor-targeting efficiency. As a result, the targeted nano-liposomes achieved greater tumor suppression. Therefore, selective targeting of LS-DDP coupled with ZEGFR enhanced the anti-tumor effects and appeared to be a promising strategy for the treatment of EGFR+ tumors.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Feifei Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Yujiao Yang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Ping Hu
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Hao Song
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/ Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Yue Lu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Rui Wang
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Guangyong Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Renmin Liu
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Jun Li
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252000, PR China
| | - Fengjiao Yuan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China.
| |
Collapse
|