1
|
Argenziano M, Spagnolo R, Cavalli R. What are the future applications of chitosan nanobubbles in drug delivery? Expert Opin Drug Deliv 2025:1-3. [PMID: 39903218 DOI: 10.1080/17425247.2025.2462761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Rita Spagnolo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Sehgal V, Pandey SP, Singh PK. Prospects of charged cyclodextrins in biomedical applications. Carbohydr Polym 2024; 323:121348. [PMID: 37940240 DOI: 10.1016/j.carbpol.2023.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 11/10/2023]
Abstract
Cyclodextrins (CDs), recognized for their unique ability to form inclusion complexes, have seen broad utilization across various scientific fields. Recently, there has been a surge of interest in the use of charged cyclodextrins for biomedical applications, owing to their enhanced properties, such as superior solubility and improved molecular recognition compared to neutral CDs. Despite the growing literature, a comprehensive review of the biomedical utilisations of multi-charged cyclodextrins is scarce. This review provides a comprehensive exploration of the emerging prospects of charged cyclodextrin-based assemblies in the field of biomedical applications. Focusing on drug delivery systems, the review details how charged CDs enhance drug solubility and stability, reduce toxicity, and enable targeted and controlled drug release. Furthermore, the review highlights the role of charged CDs in gene therapy, notably their potential for DNA/RNA binding, cellular uptake, degradation protection, and targeted gene delivery. The promising potential of charged CDs in antibacterial and antiviral therapies, including photodynamic therapies, biofilm control, and viral replication inhibition, is discussed. Concluding with a future outlook, this review highlights the potential challenges and advancements that could propel charged CDs to the forefront of biomedicine.
Collapse
Affiliation(s)
- Vidhi Sehgal
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), 400 056, India
| | - Shrishti P Pandey
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), 400 056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India.
| |
Collapse
|
3
|
Argenziano M, Arduino I, Rittà M, Molinar C, Feyles E, Lembo D, Cavalli R, Donalisio M. Enhanced Anti-Herpetic Activity of Valacyclovir Loaded in Sulfobutyl-ether-β-cyclodextrin-decorated Chitosan Nanodroplets. Microorganisms 2023; 11:2460. [PMID: 37894118 PMCID: PMC10609596 DOI: 10.3390/microorganisms11102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Valacyclovir (VACV) was developed as a prodrug of the most common anti-herpetic drug Acyclovir (ACV), aiming to enhance its bioavailability. Nevertheless, prolonged VACV oral treatment may lead to the development of important side effects. Nanotechnology-based formulations for vaginal administration represent a promising approach to increase the concentration of the drug at the site of infection, limiting systemic drug exposure and reducing systemic toxicity. In this study, VACV-loaded nanodroplet (ND) formulations, optimized for vaginal delivery, were designed. Cell-based assays were then carried out to evaluate the antiviral activity of VACV loaded in the ND system. The chitosan-shelled ND exhibited an average diameter of about 400 nm and a VACV encapsulation efficiency of approximately 91% and was characterized by a prolonged and sustained release of VACV. Moreover, a modification of chitosan shell with an anionic cyclodextrin, sulfobutyl ether β-cyclodextrin (SBEβCD), as a physical cross-linker, increased the stability and mucoadhesion capability of the nanosystem. Biological experiments showed that SBEβCD-chitosan NDs enhanced VACV antiviral activity against the herpes simplex viruses type 1 and 2, most likely due to the long-term controlled release of VACV loaded in the ND and an improved delivery of the drug in sub-cellular compartments.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Irene Arduino
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Massimo Rittà
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Chiara Molinar
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Elisa Feyles
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| |
Collapse
|
4
|
Ma T, Ma X, Lin Z, Zhang J, Yang P, Csupász T, Tóth I, Misirlic-Dencic S, Isakovic AM, Lembo D, Donalisio M, Kortz U. Gallium(III)- and Thallium(III)-Encapsulated Polyoxopalladates: Synthesis, Structure, Multinuclear NMR, and Biological Activity Studies. Inorg Chem 2023; 62:13195-13204. [PMID: 37555777 DOI: 10.1021/acs.inorgchem.3c01530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Three gallium(III)- and thallium(III)-containing polyoxopalladates (POPs) have been synthesized and structurally characterized in the solid state and in solution, namely, the phosphate-capped 12-palladate nanocubes [XPd12O8(PO4)8]13- (X = GaIII, GaPd12P8; X = TlIII, TlPd12P8) and the 23-palladate double-cube [Tl2IIIPd23P14O70(OH)2]20- (Tl2Pd23P14). The cuboid POPs, GaPd12P8 and TlPd12P8, are solution stable as verified by the respective 31P, 71Ga, and 205Tl nuclear magnetic resonance (NMR) spectra. Of prime interest, the spin-spin coupling schemes allowed for an intimate study of the solution behavior of the TlIII-containing POPs via a combination of 31P and 205Tl NMR, including the stoichiometry of the major fragments of Tl2Pd23P14. Moreover, biological studies demonstrated the antitumor and antiviral activity of GaPd12P8 and TlPd12P8, which were validated to be as efficient as cis-platinum against human melanoma and acute promyelocytic leukemia cells. Furthermore, GaPd12P8 and TlPd12P8 exerted inhibitory activity against two herpetic viruses, HSV-2 and HCMV, in a dose-response manner.
Collapse
Affiliation(s)
- Tian Ma
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Xiang Ma
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Zhengguo Lin
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, P. R. China
| | - Jiayao Zhang
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| | - Peng Yang
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Tibor Csupász
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Imre Tóth
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Sonja Misirlic-Dencic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Center of Excellence for Redox Medicine, 11000 Belgrade, Serbia
| | - Andjelka M Isakovic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Center of Excellence for Redox Medicine, 11000 Belgrade, Serbia
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, 10043 Orbassano, Italy
| | - Manuela Donalisio
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, 10043 Orbassano, Italy
| | - Ulrich Kortz
- School of Science, Constructor University, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
5
|
Yin W, Ding L. Nanocarrier-based drug delivery system in herpes simplex virus treatment. Future Virol 2023. [DOI: 10.2217/fvl-2022-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Herpes simplex virus (HSV) is a highly contagious DNA virus that affects the majority of people worldwide. HSV establishes a latent infection in the ganglia, where it can reactivate, leading to recurrent disease. Currently, there are many experimental vaccines against HSV, but none have been used to treat herpes infections. At the same time, the therapeutic effect of existing anti-HSV drugs is limited. Nanocarriers, which deliver drugs to specific targets, have been used in different diseases, including viral infections. Nanocarriers could be designed to encapsulate drugs and directly target infected cells. This review will describe in detail the use of nanocarriers for targeted therapy of HSV infection.
Collapse
Affiliation(s)
- Wei Yin
- Department of Radiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science & Technology, Xianning, China
| | - Liqiong Ding
- Department of Pharmaceutics, School of Pharmacy, Hubei University of Science & Technology, Xianning, China
| |
Collapse
|
6
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses 2023; 15:647. [PMID: 36992356 PMCID: PMC10054433 DOI: 10.3390/v15030647] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
7
|
Mutlu-Ağardan NB, Tort S, Aydoğduoğlu Ş, Kıymacı ME. A New Insight to Silver Sulfadiazine Antibacterial Dressings: Nanoparticle-Loaded Nanofibers for Controlled Drug Delivery. AAPS PharmSciTech 2022; 24:8. [PMID: 36451066 DOI: 10.1208/s12249-022-02465-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022] Open
Abstract
The aim of this study was formulating a new-generation antibacterial dressing in a form of polymer-based hybrid nanofiber-nanoparticles, effective on Gram-negative and Gram-positive bacteria using silver sulfadiazine (SSD), an FDA-approved topical antibiotic. In this study, SSD nanoparticles were prepared with chitosan for taking the advantage of antibacterial and wound healing properties. Chitosan nanoparticles of SSD were prepared by using tripolyphosphate (TPP) or sulfobutylether-β-cyclodextrin (SBE-β-CD) as crosslinkers via ionic gelation method and then loaded to PVP-K30 and PVP-K90 nanofibers to obtain polymer-based nanofiber-nanoparticles. SSD-loaded chitosan nanoparticles prepared with SBE-β-CD had lower particle size (359.6 ± 19.9 nm) and polydispersity index (0.364 ± 0.113) as well, indicating a more desired particle size distribution but lower encapsulation efficiency (56.04% ± 4.33). It was found that loading drug in SBE-β-CD crosslinked nanoparticles and dispersing in nanofiber matrix lowered SSD release compared to TPP crosslinked nanoparticle-loaded nanofibers. Drug release obtained by both TPP or SBE-β-CD crosslinked nanoparticle-loaded PVP-K30 nanofibers is significantly higher than nanoparticle-loaded PVP-K90 nanofibers, indicating that SSD release was mainly affected by polymer type. SSD nanoparticle-loaded PVP-K30 nanofibers were found to be effective against Gram-negative (Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii) and Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis). SSD release was sustained by PVP-K90, resulting in lower antibacterial efficiency especially against Gram-positive bacteria. PVP-K30-based nanofiber-CS nanoparticle hybrids offer a new platform by combining and improving advantages of nanofibers and nanoparticles for obtaining controlled drug release and antibacterial efficacy.
Collapse
Affiliation(s)
- N Başaran Mutlu-Ağardan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06630, Ankara, Turkey.
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06630, Ankara, Turkey
| | - Şeyma Aydoğduoğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06630, Ankara, Turkey
| | - Merve Eylül Kıymacı
- Department of Pharmaceutical Microbiology, Gülhane Faculty of Pharmacy, University of Health Sciences, 06018, Ankara, Turkey
| |
Collapse
|
8
|
SARS-CoV-2 main protease (3CL pro) interaction with acyclovir antiviral drug/methyl-β-cyclodextrin complex: Physiochemical characterization and molecular docking. J Mol Liq 2022; 366:120292. [PMID: 36101854 PMCID: PMC9458544 DOI: 10.1016/j.molliq.2022.120292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/31/2023]
Abstract
During the current outbreak of the novel coronavirus disease 2019 (COVID-19), researchers have examined several antiviral drugs with the potential to inhibit the proliferation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The antiviral drug acyclovir (AVR), which is used to treat COVID-19, in complex with methyl-β-cyclodextrin (Mβ-CD) was examined in the solution and solid phases. UV-visible and fluorescence spectroscopic analyses confirmed that the guest (AVR) was included inside the host (Mβ-CD) cavity. A solid inclusion complex of AVR was prepared by co-precipitation, physical mixing, kneading, and bath sonication methods at a 1:1 ratio of Mβ-CD:AVR. The prepared Mβ-CD:AVR inclusion complex was characterized using Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) analysis. Phase solubility studies indicated the Mβ-CD:AVR inclusion complex exhibited a higher stability constant and linear enhancement in AVR solubility with increasing Mβ-CD concentrations. In silico analysis of the Mβ-CD/AVR inclusion complex confirmed that AVR drugs show potential as inhibitors of SARS-CoV-2 3C-like protease (3CLpro) receptors. Results obtained using the PatchDock and FireDock servers indicated that the most favorable docking ligand was Mβ-CD:AVR, which interacted with SARS-CoV-2 (3CLPro) protease inhibitors with high geometric shape complementarity scores (2522 and 5872) and atomic contact energy (-313.77 and -214.70 kcal mol-1). Our results suggest that the Mβ-CD/AVR inclusion complex inhibits the main protease of SARS-CoV-2, although further wet-lab experiments are needed to verify these findings.
Collapse
|
9
|
Nanoparticles for Antimicrobial Agents Delivery-An Up-to-Date Review. Int J Mol Sci 2022; 23:ijms232213862. [PMID: 36430343 PMCID: PMC9696780 DOI: 10.3390/ijms232213862] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Infectious diseases constitute an increasing threat to public health and medical systems worldwide. Particularly, the emergence of multidrug-resistant pathogens has left the pharmaceutical arsenal unarmed to fight against such severe microbial infections. Thus, the context has called for a paradigm shift in managing bacterial, fungal, viral, and parasitic infections, leading to the collision of medicine with nanotechnology. As a result, renewed research interest has been noted in utilizing various nanoparticles as drug delivery vehicles, aiming to overcome the limitations of current treatment options. In more detail, numerous studies have loaded natural and synthetic antimicrobial agents into different inorganic, lipid, and polymeric-based nanomaterials and tested them against clinically relevant pathogens. In this respect, this paper reviews the most recently reported successfully fabricated nanoformulations that demonstrated a great potential against bacteria, fungi, viruses, and parasites of interest for human medicine.
Collapse
|
10
|
Pardeshi CV, Kothawade RV, Markad AR, Pardeshi SR, Kulkarni AD, Chaudhari PJ, Longhi MR, Dhas N, Naik JB, Surana SJ, Garcia MC. Sulfobutylether-β-cyclodextrin: A functional biopolymer for drug delivery applications. Carbohydr Polym 2022; 301:120347. [DOI: 10.1016/j.carbpol.2022.120347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
|
11
|
Alavi SE, Raza A, Gholami M, Giles M, Al-Sammak R, Ibrahim A, Ebrahimi Shahmabadi H, Sharma LA. Advanced Drug Delivery Platforms for the Treatment of Oral Pathogens. Pharmaceutics 2022; 14:2293. [PMID: 36365112 PMCID: PMC9692332 DOI: 10.3390/pharmaceutics14112293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 08/26/2023] Open
Abstract
The oral cavity is a complex ecosystem accommodating various microorganisms (e.g., bacteria and fungi). Various factors, such as diet change and poor oral hygiene, can change the composition of oral microbiota, resulting in the dysbiosis of the oral micro-environment and the emergence of pathogenic microorganisms, and consequently, oral infectious diseases. Systemic administration is frequently used for drug delivery in the treatment of diseases and is associated with the problems, such as drug resistance and dysbiosis. To overcome these challenges, oral drug delivery systems (DDS) have received considerable attention. In this literature review, the related articles are identified, and their findings, in terms of current therapeutic challenges and the applications of DDSs, especially nanoscopic DDSs, for the treatment of oral infectious diseases are highlighted. DDSs are also discussed in terms of structures and therapeutic agents (e.g., antibiotics, antifungals, antiviral, and ions) that they deliver. In addition, strategies (e.g., theranostics, hydrogel, microparticle, strips/fibers, and pH-sensitive nanoparticles), which can improve the treatment outcome of these diseases, are highlighted.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Max Gholami
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Michael Giles
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Rayan Al-Sammak
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Ali Ibrahim
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7717933777, Iran
| | - Lavanya A. Sharma
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia
| |
Collapse
|
12
|
Francese R, Cecone C, Costantino M, Hoti G, Bracco P, Lembo D, Trotta F. Identification of a βCD-Based Hyper-Branched Negatively Charged Polymer as HSV-2 and RSV Inhibitor. Int J Mol Sci 2022; 23:8701. [PMID: 35955832 PMCID: PMC9369026 DOI: 10.3390/ijms23158701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/01/2023] Open
Abstract
Cyclodextrins and cyclodextrin derivatives were demonstrated to improve the antiviral potency of numerous drugs, but also to be endowed with intrinsic antiviral action. They are suitable building blocks for the synthesis of functionalized polymer structures with potential antiviral activity. Accordingly, four water-soluble hyper-branched beta cyclodextrin (βCD)-based anionic polymers were screened against herpes simplex virus (HSV-2), respiratory syncytial virus (RSV), rotavirus (HRoV), and influenza virus (FluVA). They were characterized by FTIR-ATR, TGA, elemental analyses, zeta-potential measurements, and potentiometric titrations, while the antiviral activity was investigated with specific in vitro assays. The polymer with the highest negative charge, pyromellitic dianhydride-linked polymer (P_PMDA), showed significant antiviral action against RSV and HSV-2, by inactivating RSV free particles and by altering HSV-2 binding to the cell. The polymer fraction with the highest molecular weight showed the strongest antiviral activity and both P_PMDA and its active fractions were not toxic for cells. Our results suggest that the polymer virucidal activity against RSV can be exploited to produce new antiviral materials to counteract the virus dissemination through the air or direct contact. Additionally, the strong HSV-2 binding inhibition along with the water solubility of P_PMDA and the acyclovir complexation potential of βCD are attractive features for developing new therapeutic topical options against genital HSV-2 infection.
Collapse
Affiliation(s)
- Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Claudio Cecone
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Matteo Costantino
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Gjylije Hoti
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Pierangiola Bracco
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043 Turin, Italy
| | - Francesco Trotta
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| |
Collapse
|
13
|
Magnetite Nanoparticles Functionalized with Therapeutic Agents for Enhanced ENT Antimicrobial Properties. Antibiotics (Basel) 2022; 11:antibiotics11050623. [PMID: 35625267 PMCID: PMC9137518 DOI: 10.3390/antibiotics11050623] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/25/2022] [Accepted: 05/04/2022] [Indexed: 12/11/2022] Open
Abstract
In the context of inefficient antibiotics, antibacterial alternatives are urgently needed to stop the increasing resistance rates in pathogens. This study reports the fabrication and characterization of four promising magnetite-based antibiotic delivery systems for ENT (ear, nose and throat) applications. Magnetite nanoparticles were functionalized with streptomycin and neomycin and some were entrapped in polymeric spheres. The obtained nanomaterials are stable, with spherical morphology, their size ranging from ~2.8 to ~4.7 nm for antibiotic-coated magnetite nanoparticles, and from submicron sizes up to several microns for polymer-coated magnetite–antibiotic composites. Cell viability and antimicrobial tests demonstrated their biocompatibility on human diploid cells and their antibacterial effect against Gram-negative (Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) opportunistic bacteria. The presence of the polymeric coat proved an enhancement in biocompatibility and a slight reduction in the antimicrobial efficiency of the spheres. Our results support the idea that functional NPs and polymeric microsystems containing functional NPs could be tailored to achieve more biocompatibility or more antimicrobial effect, depending on the bioactive compounds they incorporate and their intended application.
Collapse
|
14
|
Sangboonruang S, Semakul N, Sookkree S, Kantapan J, Ngo-Giang-Huong N, Khamduang W, Kongyai N, Tragoolpua K. Activity of Propolis Nanoparticles against HSV-2: Promising Approach to Inhibiting Infection and Replication. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082560. [PMID: 35458758 PMCID: PMC9032435 DOI: 10.3390/molecules27082560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Herpes simplex type 2 (HSV-2) infection causes a significant life-long disease. Long-term side effects of antiviral drugs can lead to the emergence of drug resistance. Thus, propolis, a natural product derived from beehives, has been proposed to prevent or treat HSV-2 infections. Unfortunately, therapeutic applications of propolis are still limited due its poor solubility. To overcome this, a nanoparticle-based drug delivery system was employed. An ethanolic extract of propolis (EEP) was encapsulated in nanoparticles composed of poly(lactic-co-glycolic acid) and chitosan using a modified oil-in-water single emulsion by using the solvent evaporation method. The produced nanoparticles (EEP-NPs) had a spherical shape with a size of ~450 nm and presented satisfactory physicochemical properties, including positively charged surface (38.05 ± 7.65 mV), high entrapment efficiency (79.89 ± 13.92%), and sustained release profile. Moreover, EEP-NPs were less cytotoxic on Vero cells and exhibited anti-HSV-2 activity. EEP-NPs had a direct effect on the inactivation of viral particles, and also disrupted the virion entry and release from the host cells. A significant decrease in the expression levels of the HSV-2 replication-related genes (ICP4, ICP27, and gB) was also observed. Our study suggests that EEP-NPs provide a strong anti-HSV-2 activity and serve as a promising platform for the treatment of HSV-2 infections.
Collapse
Affiliation(s)
- Sirikwan Sangboonruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sanonthinee Sookkree
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nicole Ngo-Giang-Huong
- Associated Medical Sciences (AMS)-CMU IRD Research Collaboration, Chiang Mai 50200, Thailand;
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le Développement (IRD), 34394 Montpellier, France
| | - Woottichai Khamduang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Natedao Kongyai
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.K.); (K.T.)
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (S.S.); (W.K.)
- Infectious Diseases Research Unit (IDRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.K.); (K.T.)
| |
Collapse
|
15
|
Han AS, Kim J, Park JW, Jin SG. Novel acyclovir-loaded film-forming gel with enhanced mechanical properties and skin permeability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Scurtu LG, Jinga V, Simionescu O. Fascinating Molecular and Immune Escape Mechanisms in the Treatment of STIs (Syphilis, Gonorrhea, Chlamydia, and Herpes Simplex). Int J Mol Sci 2022; 23:ijms23073550. [PMID: 35408911 PMCID: PMC8998805 DOI: 10.3390/ijms23073550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The incidence of syphilis, gonorrhea, chlamydia, and herpes simplex has increased over the last decade, despite the numerous prevention strategies. Worldwide scientists report a surge in drug-resistant infections, particularly in immunocompromised patients. Antigenic variations in syphilis enable long-term infection, but benzathine penicillin G maintains its efficiency, whereas macrolides should be recommended with caution. Mupirocin and zoliflodacin were recently introduced as therapies against ceftriaxone-resistant gonococcus, which poses a larger global threat. The gastrointestinal and prostatic potential reservoirs of Chlamydia trachomatis may represent the key towards complete eradication. Similar to syphilis, macrolides resistance has to be considered in genital chlamydiosis. Acyclovir-resistant HSV may respond to the novel helicase-primase inhibitors and topical imiquimod, particularly in HIV-positive patients. Novel drugs can overcome these challenges while nanocarriers enhance their potency, particularly in mucosal areas. This review summarizes the most recent and valuable discoveries regarding the immunopathogenic mechanisms of these sexually transmitted infections and discusses the challenges and opportunities of the novel molecules and nanomaterials.
Collapse
Affiliation(s)
- Lucian G. Scurtu
- Department of Dermatology I, Colentina Clinical Hospital, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020125 Bucharest, Romania;
| | - Viorel Jinga
- Department of Urology, Clinical Hospital Prof. Dr. Th. Burghele, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 030167 Bucharest, Romania;
| | - Olga Simionescu
- Department of Dermatology I, Colentina Clinical Hospital, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020125 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
17
|
Shin S, Kwon S, Yeo Y. Meta-Analysis of Drug Delivery Approaches for Treating Intracellular Infections. Pharm Res 2022; 39:1085-1114. [PMID: 35146592 PMCID: PMC8830998 DOI: 10.1007/s11095-022-03188-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
Abstract
This meta-analysis aims to evaluate the trend, methodological quality and completeness of studies on intracellular delivery of antimicrobial agents. PubMed, Embase, and reference lists of related reviews were searched to identify original articles that evaluated carrier-mediated intracellular delivery and pharmacodynamics (PD) of antimicrobial therapeutics against intracellular pathogens in vitro and/or in vivo. A total of 99 studies were included in the analysis. The most commonly targeted intracellular pathogens were bacteria (62.6%), followed by viruses (16.2%) and parasites (15.2%). Twenty-one out of 99 (21.2%) studies performed neither microscopic imaging nor flow cytometric analysis to verify that the carrier particles are present in the infected cells. Only 31.3% of studies provided comparative inhibitory concentrations against a free drug control. Approximately 8% of studies, albeit claimed for intracellular delivery of antimicrobial therapeutics, did not provide any experimental data such as microscopic imaging, flow cytometry, and in vitro PD. Future research on intracellular delivery of antimicrobial agents needs to improve the methodological quality and completeness of supporting data in order to facilitate clinical translation of intracellular delivery platforms for antimicrobial therapeutics.
Collapse
Affiliation(s)
- Sooyoung Shin
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| | - Soonbum Kwon
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA. .,Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
18
|
Ayipo YO, Bakare AA, Badeggi UM, Jimoh AA, Lawal A, Mordi MN. Recent advances on therapeutic potentials of gold and silver nanobiomaterials for human viral diseases. CURRENT RESEARCH IN CHEMICAL BIOLOGY 2022; 2:100021. [PMID: 35815068 PMCID: PMC8806017 DOI: 10.1016/j.crchbi.2022.100021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viral diseases are prominent among the widely spread infections threatening human well-being. Real-life clinical successes of the few available therapeutics are challenged by pathogenic resistance and suboptimal delivery to target sites. Nanotechnology has aided the design of functionalised and non-functionalised Au and Ag nanobiomaterials through physical, chemical and biological (green synthesis) methods with improved antiviral efficacy and delivery. In this review, innovative designs as well as interesting antiviral activities of the nanotechnology-inclined biomaterials of Au and Ag, reported in the last 5 years were critically overviewed against several viral diseases affecting man. These include influenza, respiratory syncytial, adenovirus, severe acute respiratory syndromes (SARS), rotavirus, norovirus, measles, chikungunya, HIV, herpes simplex virus, dengue, polio, enterovirus and rift valley fever virus. Notably identified among the nanotechnologically designed promising antiviral agents include AuNP-M2e peptide vaccine, AgNP of cinnamon bark extract and AgNP of oseltamivir for influenza, PVP coated AgNP for RSV, PVP-AgNPs for SARS-CoV-2, AuNRs of a peptide pregnancy-induce d hypertension and AuNP nanocarriers of antigen for MERS-CoV and SARS-CoV respectively. Others are AgNPs of collagen and Bacillus subtilis for rotavirus, AgNPs labelled Ag30-SiO 2 for murine norovirus in water, AuNPs of Allium sativum and AgNPs of ribavirin for measles, AgNPs of Citrus limetta and Andrographis Paniculata for Chikungunya, AuNPs of efavirenz and stavudine, and AgNPs-curcumin for HIV, NPAuG3-S8 for HSV, AgNPs of Moringa oleifera and Bruguiera cylindrica for dengue while AgNPs of polyethyleneimine and siRNA analogues displayed potency against enterovirus. The highlighted candidates are recommended for further translational studies towards antiviral therapeutic designs.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete, P. M. B. 1530, Ilorin 240001, Nigeria
| | - Ajibola Abdulahi Bakare
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Umar Muhammad Badeggi
- Department of Chemistry, Ibrahim Badamasi Babangida University Lapai, P. M. B. 11, Minna 4947, Nigeria
- Department of Chemistry, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Akeem Adebayo Jimoh
- Department of Chemistry and Industrial Chemistry, Kwara State University, Malete, P. M. B. 1530, Ilorin 240001, Nigeria
| | - Amudat Lawal
- Department of Chemistry, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
19
|
Argenziano M, Bessone F, Dianzani C, Cucci MA, Grattarola M, Pizzimenti S, Cavalli R. Ultrasound-Responsive Nrf2-Targeting siRNA-Loaded Nanobubbles for Enhancing the Treatment of Melanoma. Pharmaceutics 2022; 14:341. [PMID: 35214073 PMCID: PMC8878772 DOI: 10.3390/pharmaceutics14020341] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
The siRNA-mediated inhibition of nuclear factor E2-related factor 2 (Nrf2) can be an attractive approach to overcome chemoresistance in various malignant tumors, including melanoma. This work aims at designing a new type of chitosan-shelled nanobubble for the delivery of siRNA against Nrf2 in combination with an ultrasound. A new preparation method based on a water-oil-water (W/O/W) double-emulsion was purposely developed for siRNA encapsulation in aqueous droplets within a nanobubble core. Stable, very small NB formulations were obtained, with sizes of about 100 nm and a positive surface charge. siRNA was efficiently loaded in NBs, reaching an encapsulation efficiency of about 90%. siNrf2-NBs downregulated the target gene in M14 cells, sensitizing the resistant melanoma cells to the cisplatin treatment. The combination with US favored NB cell uptake and transfection efficiency. Based on the results, nanobubbles have shown to be a promising US responsive tool for siRNA delivery, able to overcome chemoresistance in melanoma cancer cells.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| | - Federica Bessone
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| | - Marie Angèle Cucci
- Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (M.A.C.); (M.G.); (S.P.)
| | - Margherita Grattarola
- Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (M.A.C.); (M.G.); (S.P.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, 10125 Turin, Italy; (M.A.C.); (M.G.); (S.P.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (M.A.); (F.B.); (C.D.)
| |
Collapse
|
20
|
Jaber N, Al‐Remawi M, Al‐Akayleh F, Al‐Muhtaseb N, Al‐Adham ISI, Collier PJ. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19. J Appl Microbiol 2022; 132:41-58. [PMID: 34218488 PMCID: PMC8447037 DOI: 10.1111/jam.15202] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is an abundant organic polysaccharide, which can be relatively easily obtained by chemical modification of animal or fungal source materials. Chitosan and its derivatives have been shown to exhibit direct antiviral activity, to be useful vaccine adjuvants and to have potential anti-SARS-CoV-2 activity. This thorough and timely review looks at the recent history of investigations into the role of chitosan and its derivatives as an antiviral agent and proposes a future application in the treatment of endemic SARS-CoV-2.
Collapse
Affiliation(s)
- Nisrein Jaber
- Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Mayyas Al‐Remawi
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Faisal Al‐Akayleh
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Najah Al‐Muhtaseb
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | | | | |
Collapse
|
21
|
Antimicrobial oxygen-loaded nanobubbles as promising tools to promote wound healing in hypoxic human keratinocytes. Toxicol Rep 2022; 9:154-162. [PMID: 35145879 PMCID: PMC8818485 DOI: 10.1016/j.toxrep.2022.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/29/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022] Open
Abstract
Chitosan-shelled/perfluoropentane-filled OLNBs are innovative oxygen nanocarriers. OLNBs are biocompatible with human keratinocytes after cell internalization. OLNBs promote normoxia-like migration of hypoxic human keratinocytes. Chitosan-shelled OLNBs display antimicrobial activity against MRSA and C. albicans. Oxygen-loaded nanobubbles appear promising tools to treat infected chronic wounds.
Chronic wounds (CWs) are typically characterized by persistent hypoxia, exacerbated inflammation, and impaired skin tissue remodeling. Additionally, CWs are often worsened by microbial infections. Oxygen-loaded nanobubbles (OLNBs), displaying a peculiar structure based on oxygen-solving perfluorocarbons such as perfluoropentane in the inner core and polysaccharydes including chitosan in the outer shell, have proven effective in delivering oxygen to hypoxic tissues. Antimicrobial properties have been largely reported for chitosan. In the present work chitosan/perfluoropentane OLNBs were challenged for biocompatibility with human skin cells and ability to promote wound healing processes, as well as for their antimicrobial properties against methicillin-resistant Staphylococcus aureus (MRSA) and Candida albicans. After cellular internalization, OLNBs were not toxic to human keratinocytes (HaCaT), whereas oxygen-free NBs (OFNBs) slightly affected their viability. Hypoxia-dependent inhibition of keratinocyte migratory ability after scratch was fully reversed by OLNBs, but not OFNBs. Both OLNBs and OFNBs exerted chitosan-induced short-term bacteriostatic activity against MRSA (up to 6 h) and long-term fungistatic activity against C. albicans (up to 24 h). Short-term antibacterial activity associated with NB prolonged adhesion to MRSA cell wall (up to 24 h) while long-term antifungal activity followed NB early internalization by C. albicans (already after 3 h of incubation). Taken altogether, these data support chitosan-shelled and perfluoropentane-cored OLNB potential as innovative, promising, non-toxic, and cost-effective antimicrobial devices promoting repair processes to be used for treatment of MRSA- and C. albicans-infected CWs.
Collapse
|
22
|
Jicsinszky L, Martina K, Cravotto G. Cyclodextrins in the antiviral therapy. J Drug Deliv Sci Technol 2021; 64:102589. [PMID: 34035845 PMCID: PMC8135197 DOI: 10.1016/j.jddst.2021.102589] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The main antiviral drug-cyclodextrin interactions, changes in physicochemical and physiological properties of the most commonly used virucides are summarized. The potential complexation of antiviral molecules against the SARS-Cov2 also pointed out the lack of detailed information in designing effective and general medicines against viral infections. The principal problem of the current molecules is the 3D structures of the currently active compounds. Improving the solubility or bioavailability of antiviral molecules is possible, however, there is no universal solution, and the complexation experiments dominantly use the already approved cyclodextrin derivatives. This review discusses the basic properties of the different cyclodextrin derivatives, their potential in antiviral formulations, and the prevention and treatment of viral infections. The biologically active new cyclodextrin derivatives are also discussed.
Collapse
Affiliation(s)
- László Jicsinszky
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| | - Katia Martina
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| | - Giancarlo Cravotto
- Dept. of Drug Science and Technology, University of Turin, Via Giuria 9, 10125, Torino, Italy
| |
Collapse
|
23
|
Obisesan O, Katata-Seru L, Mufamadi S, Mufhandu H. Applications of Nanoparticles for Herpes Simplex Virus (HSV) and Human Immunodeficiency Virus (HIV) Treatment. J Biomed Nanotechnol 2021; 17:793-808. [PMID: 34082867 DOI: 10.1166/jbn.2021.3074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the growing studies focused on the immunotherapy of hepatocellular carcinoma and proved the preclinical and clinical promises of host antitumor immune response. However, there were still various obstacles in meeting satisfactory clinic need, such as low response rate, primary resistance and secondary resistance to immunotherapy. Tackling these barriers required a deeper understanding of immune underpinnings and a broader understanding of advanced technology. This review described immune microenvironment of liver and HCC which naturally decided the complexity of immunotherapy, and summarized recent immunotherapy focusing on different points. The ever-growing clues indicated that the instant killing of tumor cell and the subsequent relive of immunosuppressive microenvironment were both indis- pensables. The nanotechnology applied in immunotherapy and the combination with intervention technology was also discussed.
Collapse
Affiliation(s)
- Oluwafemi Obisesan
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Lebogang Katata-Seru
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Steven Mufamadi
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| | - Hazel Mufhandu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110000, China
| |
Collapse
|
24
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
25
|
Gherasim O, Grumezescu AM, Ficai A, Grumezescu V, Holban AM, Gălățeanu B, Hudiță A. Composite P(3HB-3HV)-CS Spheres for Enhanced Antibiotic Efficiency. Polymers (Basel) 2021; 13:989. [PMID: 33807077 PMCID: PMC8004896 DOI: 10.3390/polym13060989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 01/17/2023] Open
Abstract
Natural-derived biopolymers are suitable candidates for developing specific and selective performance-enhanced antimicrobial formulations. Composite polymeric particles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and chitosan, P(3HB-3HV)-CS, are herein proposed as biocompatible and biodegradable delivery systems for bioproduced antibiotics: bacitracin (Bac), neomycin (Neo) and kanamycin (Kan). The stimuli-responsive spheres proved efficient platforms for boosting the antibiotic efficiency and antibacterial susceptibility, as evidenced against Gram-positive and Gram-negative strains. Absent or reduced proinflammatory effects were evidenced on macrophages in the case of Bac-/Neo- and Kan-loaded spheres, respectively. Moreover, these systems showed superior ability to sustain and promote the proliferation of dermal fibroblasts, as well as to preserve their ultrastructure (membrane and cytoskeleton integrity) and to exhibit anti-oxidant activity. The antibiotic-loaded P(3HB-3HV)-CS spheres proved efficient alternatives for antibacterial strategies.
Collapse
Affiliation(s)
- Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (A.F.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania; (O.G.); (A.M.G.); (A.F.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, RO-77125 Magurele, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alina Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania;
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.G.); (A.H.)
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (B.G.); (A.H.)
| |
Collapse
|
26
|
Comparative Evaluation of Different Chitosan Species and Derivatives as Candidate Biomaterials for Oxygen-Loaded Nanodroplet Formulations to Treat Chronic Wounds. Mar Drugs 2021; 19:md19020112. [PMID: 33672056 PMCID: PMC7919482 DOI: 10.3390/md19020112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Persistent hypoxia is a main clinical feature of chronic wounds. Intriguingly, oxygen-loaded nanodroplets (OLNDs), filled with oxygen-solving 2H,3H-decafluoropentane and shelled with polysaccharides, have been proposed as a promising tool to counteract hypoxia by releasing a clinically relevant oxygen amount in a time-sustained manner. Here, four different types of chitosan (low or medium weight (LW or MW), glycol-(G-), and methylglycol-(MG-) chitosan) were compared as candidate biopolymers for shell manufacturing. The aim of the work was to design OLND formulations with optimized physico-chemical characteristics, efficacy in oxygen release, and biocompatibility. All OLND formulations displayed spherical morphology, cationic surfaces, ≤500 nm diameters (with LW chitosan-shelled OLNDs being the smallest), high stability, good oxygen encapsulation efficiency, and prolonged oxygen release kinetics. Upon cellular internalization, LW, MW, and G-chitosan-shelled nanodroplets did not significantly affect the viability, health, or metabolic activity of human keratinocytes (HaCaT cell line). On the contrary, MG-chitosan-shelled nanodroplets showed very poor biocompatibility. Combining the physico-chemical and the biological results obtained, LW chitosan emerges as the best candidate biopolymer for future OLND application as a skin device to treat chronic wounds.
Collapse
|