1
|
Cohrs M, Clottens N, Ramaut P, Braeckmans K, De Smedt S, Bauters T, Svilenov HL. Impact of pneumatic tube transportation on the aggregation of monoclonal antibodies in clinical practice. Eur J Pharm Sci 2024:106952. [PMID: 39481661 DOI: 10.1016/j.ejps.2024.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Postproduction handling and in-hospital transportation of antibody drugs cause mechanical stress, including interfacial and shear stress, that can induce antibody unfolding and aggregation. The handling practices differ significantly between hospitals and the impact on protein stability is unknown. For example, the mechanical stress caused by transport via pneumatic tube systems (PTS) on therapeutic antibody aggregation is a potential safety and quality gap. The aim of this study was to investigate whether mechanical stress and PTS transportation in a hospital cause aggregation of five commonly used antibody drugs diluted in infusion bags. Orthogonal analytical methods showed that the handling and PTS transportation in this hospital did not cause aggregation of the investigated mAbs. The absence of aggregation could be explained by the reduction of interfacial stress due to headspace removal from the infusion bags and a mechanical sensor indicated that there was also only a moderate amount of mechanical stress caused by transportation with this particular PTS. Although this case study focuses on five antibody drugs and the practices in one hospital, the work demonstrates how to evaluate whether other handling and transportation practices cause significant mechanical stress that could compromise the quality and safety of antibody drugs.
Collapse
Affiliation(s)
- Michaela Cohrs
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Nele Clottens
- Pharmacy Department, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Pieter Ramaut
- Pharmacy Department, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Stefaan De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Tiene Bauters
- Pharmacy Department, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium,.
| | - Hristo L Svilenov
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Biopharmaceutical Technology, TUM School of Life Sciences, Technical University of Munich, Emil-Erlenmeyer-Forum 5, 85354 Freising, Germany.
| |
Collapse
|
2
|
Hada S, Shin IJ, Park HE, Kim KH, Kim KJ, Jeong SH, Kim NA. In-use stability of Rituximab and IVIG during intravenous infusion: Impact of peristaltic pump, IV bags, flow rate, and plastic syringes. Int J Pharm 2024; 663:124577. [PMID: 39137820 DOI: 10.1016/j.ijpharm.2024.124577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
This study investigates the impact of intravenous (IV) infusion protocols on the stability of Intravenous Immunoglobulin G (IVIG) and Rituximab, with a particular focus on subvisible particle generation. Infusion set based on peristaltic movement (Medifusion DI-2000 pump) was compared to a gravity-based infusion system (Accu-Drip) at different flow rates. The impacts of different diluents (0.9 % saline and 5.0 % dextrose) and plastic syringes with or without silicone oil (SO) were also investigated. The results from the aforementioned particular case demonstrated that peristaltic pumps generated high levels of subvisible particles (prominently < 25 µm), exacerbated by increasing flow rates, specifically in formulations lacking surfactants. Other factors, such as diluent type and syringe composition, also increased the number of subvisible particles. Strategies that can help overcome these complications include surfactant addition as well as the use of SO-free syringes and a gravity infusion system, which aid in reducing particle formation and preserving antibody monomer during administration. Altogether, these findings highlight the importance of the careful selection of formulations and infusion protocols to minimize particle generation during IV infusion both for patients' safety and treatment efficacy.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - I Jeong Shin
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ha Eun Park
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Ki Hyun Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Kwang Joon Kim
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Nam Ah Kim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea; Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Republic of Korea.
| |
Collapse
|
3
|
Çağlayan U, Gündoğdu S, Ramos TM, Syberg K. Intravenous hypertonic fluids as a source of human microplastic exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104411. [PMID: 38452961 DOI: 10.1016/j.etap.2024.104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
This study investigates the presence of microplastics (MPs) in hypertonic fluid solutions, a widely used medical treatment packaged predominantly in plastic. For this purpose, in this study, 13 hypertonic fluid samples from different brands and two different types of packaging (polypropylene and polyvinyl chloride) were analyzed using visual particle counting, µ-Raman microscopy and ATR-FTIR. The results reveal the pervasive presence of MPs in all samples, with an estimated average concentration of 62.82 ± 72.38 MPs/1000 mL. There was no statistically significant difference in MP concentration between PP and PVC packaging. The particles predominantly consisted of fragments (74.1%) and fibers (25.9%), ranging in size from 0.04 to 2.37 mm. µ-Raman analysis identified 12 synthetic polymers as well as cellulose, with polyethylene and cellulose being the most prevalent. In conclusion, this study underscores the alarming presence of MPs in hypertonic fluid solutions, raising concerns about potential health risks.
Collapse
Affiliation(s)
- Uğur Çağlayan
- Central Research Laboratory, Cukurova University, Adana, Turkiye
| | - Sedat Gündoğdu
- Faculty of Fisheries, Cukurova University, Adana, Turkiye.
| | - Tiffany M Ramos
- Department of Science and Environment, Roskilde University, Denmark
| | - Kristian Syberg
- Department of Science and Environment, Roskilde University, Denmark
| |
Collapse
|
4
|
Sabaté-Martínez C, Paulsson M, González-Suárez S, Elofsson U, Fureby AM, Wahlgren M, López-Cabezas C. How are we handling protein drugs in hospitals? A human factors and systems engineering approach to compare two hospitals and suggest a best practice. Int J Qual Health Care 2024; 36:mzae020. [PMID: 38462489 PMCID: PMC11002458 DOI: 10.1093/intqhc/mzae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Biopharmaceuticals are complex biological molecules that require careful storage and handling to ensure medication integrity. In this study, a work system analysis of real-world protein drug (PD) handling was performed with the following goals: identify main barriers and facilitators for successful adherence to accepted recommendations in PD handling, analyse differences in two organizations, and define a Best Current Practice in the real-life handling of PDs based on the results of the work system analysis. Observational study was held in two university hospitals in Spain and Sweden. Based on the Systems Engineering Initiative for Patient Safety (SEIPS) model, the tools chosen were: the PETT scan, in order to indicate the presence of barriers or facilitators for the PETT components (People, Environment, Tools, Tasks); the Tasks and tools matrices to construct a checklist to record direct observations during the real-life handling of biopharmaceuticals, and the Journey map to depict the work process. Observations were performed between March and November 2022. Each episode of direct observation included a single protein drug in some point of the supply chain and considered all the elements in the work system. Based on the results of the work system analysis and the literature review, the authors propose a list of items which could be assumed as Best Current Practice for PDs handling in hospitals. There were a total of 34 observations involving 19 PDs. Regarding People involved in the work process, there was a diversity of professionals with different previous training and knowledge, leading to an information gap. With respect to Environment, some structural and organizational differences between hospitals lead to risks related to the time exposure of PDs to room temperature and mechanical stress. Some differences also existed in the Tools and Tasks involved in the process, being especially relevant to the lack of compatibility information of PDs with new technologies, such as pneumatic tube system, robotic reconstitution, or closed-system transfer devices. Finally, 15 suggestions for best current practice are proposed. Main barriers found for compliance with accepted recommendations were related to the information gap detected in professionals involved in the handling of protein drugs, unmonitored temperature, and the lack of compatibility information of protein drugs with some new technologies. By applying a Human Factors and Systems Engineering Approach, the comparison of two European hospitals has led to a suggested list of Best Current Practices in the handling of protein drugs in a hospital.
Collapse
Affiliation(s)
- Clàudia Sabaté-Martínez
- Department of Women’s and Children’s Health, Uppsala University, Akademiska sjukhuset, Entrance 95/96, Uppsala 751 85, Sweden
- Faculty of Pharmacy and Food Science, University of Barcelona, c/Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Mattias Paulsson
- Department of Women’s and Children’s Health, Uppsala University, Akademiska sjukhuset, Entrance 95/96, Uppsala 751 85, Sweden
| | | | - Ulla Elofsson
- RISE Research Institute of Sweden, AB, Box 857, 501 15, Borås, Stockholm 11428, Sweden
| | - Anna Millqvist Fureby
- RISE Research Institute of Sweden, AB, Box 857, 501 15, Borås, Stockholm 11428, Sweden
| | - Marie Wahlgren
- Department of Food Technology, Lund University, P.O. Box 124, Lund 22100, Sweden
| | | |
Collapse
|
5
|
Melo GB, Emerson GG. Anti-complement drugs for the treatment of geographic atrophy and the release of silicone oil. Int J Retina Vitreous 2024; 10:3. [PMID: 38183130 PMCID: PMC10768155 DOI: 10.1186/s40942-023-00523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/07/2024] Open
Abstract
Intravitreal injections are a common procedure in ophthalmology, often using syringes coated with silicone to aid piston movement and needles coated with silicone oil to facilitate penetration of the sclera. Pegcetacoplan and avacincaptad pegol, recently approved for clinical use by the US Food and Drug Administration, have higher viscosity and seem more susceptible to entrap air bubbles compared to anti-VEGF drugs.It is plausible that both anti-complement drugs could be associated with a higher likelihood of introducing silicone oil in the vitreous because of higher viscosity, with potentially higher friction at the inner surface of syringe barrel, in the vicinity of silicone oil. In addition to this, undesirable agitation might be inadvertently promoted by some retina specialists to remove air bubbles from the drug solution.In conclusion, recent reports of silicone oil droplets in the vitreous of patients receiving pegcetacoplan injection might be related to both its viscosity and to agitation of the syringe to remove air bubbles. Since avacincaptad pegol also is viscous, though with different pH, syringe and filter needle, we might expect similar reports for this agent soon. We also recommend further studies be carried not only to clarify the current matter but also the potential association between the combination of agitation, silicone oil and inflammation or any immune response.
Collapse
Affiliation(s)
- Gustavo Barreto Melo
- Department of Ophthalmology, Federal University of São Paulo, Rua Botucatu, 820, São Paulo, Brazil.
| | | |
Collapse
|
6
|
Kim KH, Bhujel R, Maharjan R, Lee JC, Jung HS, Kim HJ, Kim NA, Jeong SH. Biophysical characterization of siRNA-loaded lipid nanoparticles with different PEG content in an aqueous system. Eur J Pharm Biopharm 2023; 190:150-160. [PMID: 37516315 DOI: 10.1016/j.ejpb.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Although lipid nanoparticles (LNP) are potential carriers of various pharmaceutical ingredients, further investigation for maintaining their stability under various environmental stressors must be performed. This study evaluated the influence of PEGylation and stress conditions on the stability of siRNA-loaded LNPs with different concentrations of PEG (0.5 mol%; 0.5 % PEG-LNP and 1.0 mol%; 1.0 % PEG-LNP) anchored to their surface. We applied end-over-end agitation, elevated temperature, and repeated freeze and thaw (F/T) cycles as physicochemical stressors of pH and ionic strength. Dynamic light scattering (DLS), flow imaging microscopy (FIM), and ionic-exchange chromatography (IEX) were to determine the degree of aggregation and change in siRNA content. The results indicate that 0.5 % PEG-LNP resisted aggregation only at low pH levels or with salt, whereas 1.0 % PEG-LNP had increased colloidal stability except at pH 4. 0.5 % PEG-LNP withstood aggregation until 71 °C and three cycles of F/T. In contrast, 1.0 % PEG-LNP maintained colloidal stability at 90 °C and seven F/T cycles. Moreover, 1.0 % PEG-LNP had higher siRNA stability under all stress conditions. Therefore, to ensure the stability of LNP and encapsulated siRNA, the PEG concentration must be carefully controlled while considering LNPs' colloidal instability mechanisms under various stress conditions.
Collapse
Affiliation(s)
- Ki Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ripesh Bhujel
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ravi Maharjan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Jae Chul Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Hun Soon Jung
- EnhancedBio Inc. R&D Center, Seoul 04779, Republic of Korea.
| | - Hye Jeong Kim
- EnhancedBio Inc. R&D Center, Seoul 04779, Republic of Korea.
| | - Nam Ah Kim
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
7
|
Hada S, Ji S, Na Lee Y, Hyun Kim K, Maharjan R, Ah Kim N, Rantanen J, Hoon Jeong S. Comparative study between a gravity-based and peristaltic pump for intravenous infusion with respect to generation of proteinaceous microparticles. Int J Pharm 2023:123091. [PMID: 37268032 DOI: 10.1016/j.ijpharm.2023.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/12/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Subvisible particles generated during the preparation or administration of biopharmaceuticals might increase the risk of immunogenicity, inflammation, or organ dysfunction. To investigate the impact of an infusion system on the level of subvisible particles, we compared two types of infusion set based on peristaltic movement (Medifusion DI-2000 pump) and a gravity-based infusion system (Accu-Drip) using intravenous immunoglobulin (IVIG) as a model drug. The peristaltic pump was found to be more susceptible to particle generation compared to the gravity infusion set owing to the stress generated due to constant peristaltic motion. Moreover, the 5-µm in-line filter integrated into the tubing of the gravity-based infusion set further contributed to the reduction of particles mostly in the range ≥ 10 µm. Furthermore, the filter was also able to maintain the particle level even after the pre-exposure of samples to silicone oil lubricated syringes, drop shock, or agitation. Overall, this study suggests the need for the selection of an appropriate infusion set equipped with an in-line filter based on the sensitivity of the product.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Sunkyong Ji
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ye Na Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ki Hyun Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Ravi Maharjan
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Nam Ah Kim
- College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
8
|
Hada S, Na KJ, Jeong J, Choi DH, Kim NA, Jeong SH. Evaluation of subvisible particles in human immunoglobulin and lipid nanoparticles repackaged from a multi-dose vial using plastic syringes. Int J Biol Macromol 2023; 232:123439. [PMID: 36716845 DOI: 10.1016/j.ijbiomac.2023.123439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
The multi-dose vial (MDV) is widely used for most biopharmaceuticals that are repackaged in plastic syringes before use. However, subvisible particle formation with the use of plastic syringes containing silicone oil (SO syringes) for handling therapeutic proteins can be problematic. This study aimed to evaluate the extent of and trends in microparticle (>1 μm) formation and accumulation in repackaged syringes from MDVs containing human immunoglobulin (IgG) and lipid nanoparticles (LNPs). Light obscuration (LO) and flow imaging (FI) were used to analyze the microparticles. The number of microparticles observed with the use SO syringes was greater than that with SO-free syringes, and the number of microparticles continuously increased as did the number of times of repackaging in syringes for both drugs. However, a large variation was observed across different brands of SO syringes. In contrast, using a different technique of drug withdrawal from the vial significantly reduced the number of microparticles. Furthermore, the use of filter-integrated needles or the inclusion of stabilizers such as acetyl-arginine and Tween 20 into the formulation also helped reduce particle formation.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Kyung Jun Na
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Junoh Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gyeongnam 621-749, Republic of Korea; College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Republic of Korea.
| | - Nam Ah Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea; College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
9
|
Kim NA, Noh GY, Hada S, Na KJ, Yoon HJ, Park KW, Park YM, Jeong SH. Enhanced protein aggregation suppressor activity of N-acetyl-l-arginine for agitation-induced aggregation with silicone oil and its impact on innate immune responses. Int J Biol Macromol 2022; 216:42-51. [PMID: 35779650 DOI: 10.1016/j.ijbiomac.2022.06.176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/07/2022] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Previously, N-acetyl-l-arginine (NALA) suppressed the aggregation of intravenous immunoglobulins (IVIG) more effectively and with a minimum decrease in transition temperature (Tm) than arginine monohydrochloride. In this study, we performed a comparative study with etanercept (commercial product: Enbrel®), where 25 mM arginine monohydrochloride (arginine) was added to the prefilled syringe. The biophysical properties were investigated using differential scanning calorimetry (DSC), dynamic light scattering (DLS), size-exclusion chromatography (SEC), and flow-imaging microscopy (FI). NALA retained the transition temperature of etanercept better than arginine, where arginine significantly reduced the Tm by increasing its concentration. End-over-end rotation was applied to each formulation for 5 days to accelerate protein aggregation and subvisible particle formation. Higher monomeric content was retained with NALA with a decrease in particle level. Higher aggregation onset temperature (Tagg) was detected for etanercept with NALA than arginine. The results of this comparative study were consistent with previous study, suggesting that NALA could be a better excipient for liquid protein formulations. Agitated IVIG and etanercept were injected into C57BL/6 J female mice to observe immunogenic response after 24 h. In the presence of silicone oil, NALA dramatically reduced IL-1 expression, implying that decreased aggregation was related to reduced immunogenicity of both etanercept and IVIG.
Collapse
Affiliation(s)
- Nam Ah Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea; College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Ga Yeon Noh
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Kyung Jun Na
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea
| | - Hee-Jung Yoon
- Division of Health and Kinesiology, Incheon National University, Incheon 22012, Republic of Korea
| | - Ki-Woong Park
- Division of Health and Kinesiology, Incheon National University, Incheon 22012, Republic of Korea.
| | - Young-Min Park
- Division of Health and Kinesiology, Incheon National University, Incheon 22012, Republic of Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
10
|
Gjølberg TT, Lode HE, Melo GB, Mester S, Probst C, Sivertsen MS, Jørstad ØK, Andersen JT, Moe MC. A Silicone Oil-Free Syringe Tailored for Intravitreal Injection of Biologics. FRONTIERS IN OPHTHALMOLOGY 2022; 2:882013. [PMID: 38983507 PMCID: PMC11182194 DOI: 10.3389/fopht.2022.882013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 07/11/2024]
Abstract
Intravitreal injections (IVI) of biologics targeting vascular endothelial growth factor (anti-VEGF) led to a paradigm shift in the management and prognosis of prevalent retinal conditions. Yet, IVI are typically performed with syringes that are neither developed nor approved for this purpose. Notably, syringes lubricated with silicone oil (SiO) are extensively used despite multiple reports showing that such syringes can cause deposition of SiO droplets in the vitreous body and patient discomfort. Thus, there is a need for SiO-free substitutes specifically tailored for IVI. Here, we report on the development and testing of such a syringe. This syringe has no dead volume, and its design allows for high-accuracy dosing. Also, it permits pharmaceutical compounding and storage of bevacizumab, ranibizumab, and aflibercept for up to 30 days without compromising their functional binding or transport properties. Finally, the new syringe demonstrated a favorable safety profile regarding release of SiO compared to SiO lubricated alternatives, including commercially prefilled syringes. Accordingly, the newly developed syringe is an appealing alternative for IVI.
Collapse
Affiliation(s)
- Torleif T Gjølberg
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Pharmacology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Heidrun E Lode
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Pharmacology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gustavo B Melo
- Department of Ophthalmology, Federal University of São Paulo, São Paulo, Brazil
- Department of Ophthalmology, Hospital de Olhos de Sergipe, Aracaju, Brazil
| | - Simone Mester
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Pharmacology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Christine Probst
- Department of Research and Development Sciences, Luminex Corporation, Seattle, WA, United States
| | - Magne S Sivertsen
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Øystein K Jørstad
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Pharmacology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Morten C Moe
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Freeze-Dried Biopharmaceutical Formulations are Surprisingly Less Stable than Liquid Formulations during Dropping. Pharm Res 2022; 39:795-803. [PMID: 35314998 DOI: 10.1007/s11095-022-03235-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
PURPOSES This article describes an interesting phenomenon in which optimized freeze-dried (FD) biopharmaceutical formulations are generally more prone to degradation than their liquid counterparts during dropping and proposes an underlying cause for this surprising phenomenon. METHODS Two monoclonal antibodies (mAbs) and a fusion protein (FP) were used as model biopharmaceuticals. The stability after dropping stress was determined by ultraviolet-visible (UV-Vis), size exclusion high-performance liquid chromatography (SE-HPLC), micro-flow imaging (MFI), and dynamic light scattering (DLS). RESULTS Contrary to what we would normally assume, the FD formulations of the three biopharmaceuticals studied here generally showed much higher amounts of protein sub-visible particles (SbVPs) than liquid formulations after applying the same dropping stress as determined by MFI and DLS. Traditional techniques, such as UV-Vis and SE-HPLC, could hardly detect such degradation. CONCLUSIONS We propose that the higher temperature caused by dropping for the FD powders than the liquid formulations was probably one of the root causes for the higher amount of particles formed for the FD powders. We also recommend that dropping stress should be included for early-stage screening and choosing liquid versus FD biopharmaceutical formulations.
Collapse
|
12
|
Physicochemical factors of bioprocessing impact the stability of therapeutic proteins. Biotechnol Adv 2022; 55:107909. [DOI: 10.1016/j.biotechadv.2022.107909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023]
|
13
|
Linkuvienė V, Ross EL, Crawford L, Weiser SE, Man D, Kay S, Kolhe P, Carpenter JF. Effects of transportation of IV bags containing protein formulations via hospital pneumatic tube system: Particle characterization by multiple methods. J Pharm Sci 2022; 111:1024-1039. [DOI: 10.1016/j.xphs.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 01/01/2023]
|
14
|
Melo GB, Cruz NFS, Monte Agra LL, Emerson GG, Lima LH, Linkuviene V, Maia M, Farah ME, Carpenter JF, Rodrigues EB, Probst C. Silicone oil-free syringes, siliconized syringes and needles: quantitative assessment of silicone oil release with drugs used for intravitreal injection. Acta Ophthalmol 2021; 99:e1366-e1374. [PMID: 33890418 DOI: 10.1111/aos.14838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/17/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE This study aimed to quantify the amount of silicone oil (SO) released across a variety of syringe and needle models routinely used for intravitreal injection. METHODS The release of SO was assessed in eight models of syringes, two of which were reported to be 'SO-free', and eleven models of needles with unknown SO content. To evaluate SO release within the context of anti-VEGF therapeutics, syringes were evaluated using aflibercept, bevacizumab, buffer, ziv-aflibercept and formulation buffer. All syringe tests were performed with or without agitation by flicking for syringes. Needles were evaluated without agitation only. Samples were fluorescently labelled to identify SO, and triplicate measurements were collected using imaging flow cytometry. RESULTS Seven out of 8 syringe models showed a statistically significant increase in the SO particle count after agitation. The two SO-free syringe models (HSW Norm-Ject, Daikyo Crystal Zenith) released the least SO particles, with or without agitation, whereas the BD Ultra-Fine and Saldanha-Rodrigues syringes released the most. More SO was released when the syringes were prefilled with formulation buffer than with ziv-aflibercept. Syringes filled with aflibercept and bevacizumab had intermediate levels. Agitation increased the release of SO into each of the drug solutions. Silicone oil (SO) was detected in all needles. CONCLUSIONS Agitation of the syringe by flicking leads to a substantial increase in the number of SO particles. Silicone oil (SO)-free syringes had the best performance, but physicians must also be aware that needles are siliconized and also contribute to the injection of SO into the vitreous.
Collapse
Affiliation(s)
- Gustavo Barreto Melo
- Department of Ophthalmology Federal University of São Paulo São Paulo Brazil
- Hospital de Olhos de Sergipe Aracaju Brazil
| | | | - Lydianne Lumack Monte Agra
- Department of Ophthalmology Federal University of São Paulo São Paulo Brazil
- Hospital de Olhos de Sergipe Aracaju Brazil
| | | | - Luiz H. Lima
- Department of Ophthalmology Federal University of São Paulo São Paulo Brazil
| | - Vaida Linkuviene
- Department of Pharmaceutical Sciences University of Colorado Denver CO USA
| | - Maurício Maia
- Department of Ophthalmology Federal University of São Paulo São Paulo Brazil
| | - Michel Eid Farah
- Department of Ophthalmology Federal University of São Paulo São Paulo Brazil
| | - John F. Carpenter
- Department of Pharmaceutical Sciences University of Colorado Denver CO USA
| | - Eduardo Büchele Rodrigues
- Department of Ophthalmology Federal University of São Paulo São Paulo Brazil
- Department of Ophthalmology Saint Louis University School of Medicine Saint Louis MO USA
| | - Christine Probst
- Department of Research and Development Sciences Luminex Corporation Seattle WA USA
| |
Collapse
|
15
|
Melo GB, Shoenfeld Y, Rodrigues EB. The risks behind the widespread use of siliconized syringes in the healthcare practice. Int J Retina Vitreous 2021; 7:66. [PMID: 34717776 PMCID: PMC8557543 DOI: 10.1186/s40942-021-00338-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
Injections are widely performed in the healthcare practice. Silicone has long been thought to be an inert and harmless material. Although used for decades in medical implants, including heart valves, breast implants, and as a tamponade for retinal detachment surgery, silicone oil might have deleterious effects. Agitation of the syringe to expel air at the moment of drug preparation not only leads to silicone oil release but also to therapeutic protein aggregation. Lab studies have shown that silicone oil microdroplets can act as an adjuvant to promote a break in immunological tolerance and induce antibody response. Similarly, recent studies have suggested a causal link between agitation of siliconized syringes and ocular inflammation after intravitreal injection. Systemically, silicone oil has been reported in association with autoimmune diseases and skin granuloma after either direct injection of dermal fillers or secondary leakage from silicone breast implant. However, it has not been established yet a potential link between the silicone oil released by the syringes and such relevant systemic adverse events. Few professionals are aware that agitation of a siliconized syringe might lead to silicone oil release, which, in turn, acts an adjuvant to an increased immunogenicity. We strongly recommend that every healthcare professional be aware of the use of silicone oil in the syringe manufacturing process, the factors that promote its release and the potential complications to the organism. Ultimately, we recommend that safer syringes be widely available.
Collapse
Affiliation(s)
- Gustavo Barreto Melo
- Department of Ophthalmology, Federal University of São Paulo/Paulista School of Medicine, São Paulo, Brazil. .,Hospital de Olhos de Sergipe, Rua Campo Do Brito, 995, Aracaju, Brazil.
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Aviv University School of Medicine, Tel-Aviv, Israel
| | - Eduardo Büchele Rodrigues
- Department of Ophthalmology, SSM Health Saint Louis University Hospital, Saint Louis University, Saint Louis, USA
| |
Collapse
|
16
|
Off-label use of plastic syringes with silicone oil for intravenous infusion bags of antibodies. Eur J Pharm Biopharm 2021; 166:205-215. [PMID: 34237379 DOI: 10.1016/j.ejpb.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022]
Abstract
The formation of particulates in post-manufacture biopharmaceuticals continues to be a major concern in medical treatment. This study was designed to evaluate the content of micro-sized particles using flow imaging of antibodies in intravenous infusion bags. Intravenous immunoglobulin (IVIG) and Avastin® were selected as model drugs and plastic syringes with and without silicone oil (SO) were used to transfer the drugs into the bags (0.9% saline or 5% dextrose). Antibodies exposed to SO had significantly increased levels of microparticles in both diluents, suggesting SO accelerates particle formation, especially at a higher antibody concentration. Even before the drop stress, their count exceeded the USP guideline. Dropping the bags in the presence of SO produced larger microparticles. Meanwhile, air bubbles were retained longer in saline suggesting more protein film formation on its air-water interface. Overall, both drugs were conformationally stable and produced less particles in dextrose than in saline.
Collapse
|
17
|
Kim NA, Yu HW, Noh GY, Park SK, Kang W, Jeong SH. Protein microbeadification to achieve highly concentrated protein formulation with reversible properties and in vivo pharmacokinetics after reconstitution. Int J Biol Macromol 2021; 185:935-948. [PMID: 34237365 DOI: 10.1016/j.ijbiomac.2021.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
A protein precipitation technique was optimized to produce biophysically stable 'protein microbeads', applicable to highly concentrated protein formulation. Initially, production of BSA microbeads was performed using rapid dehydration by vortexing in organic solvents followed by cold ethanol treatment and a vacuum drying. Out of four solvents, n-octanol produced the most reversible microbeads upon reconstitution. A Shirasu porous glass (SPG) membrane emulsification technique was utilized to enhance the size distribution and manufacturing process of the protein microbeads with a marketized human IgG solution. Process variants such as dehydration time, temperature, excipients, drying conditions, and initial protein concentration were evaluated in terms of the quality of IgG microbeads and their reversibility. The hydrophobized SPG membrane produced a narrow size distribution of the microbeads, which were further enhanced by shorter dehydration time, low temperature, minimized the residual solvents, lower initial protein concentration, and addition of trehalose to the IgG solution. Final reversibility of the IgG microbeads with trehalose was over 99% at both low and high protein concentrations. Moreover, the formulation was highly stable under repeated mechanical shocks and at an elevated temperature compared to its liquid state. Its in vivo pharmacokinetic profiles in rats were consistent before and after the 'microbeadification'.
Collapse
Affiliation(s)
- Nam Ah Kim
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea.
| | - Hyun Woo Yu
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea
| | - Ga Yeon Noh
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea
| | - Sang-Koo Park
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong Hoon Jeong
- College of Pharmacy, Dongguk University-Seoul, Gyeonggi 13026, Republic of Korea.
| |
Collapse
|