1
|
Jennotte O, Koch N, Lechanteur A, Rosoux F, Emmerechts C, Beeckman E, Evrard B. Feasibility study of the use of a homemade direct powder extrusion printer to manufacture printed tablets with an immediate release of a BCS II molecule. Int J Pharm 2023; 646:123506. [PMID: 37832701 DOI: 10.1016/j.ijpharm.2023.123506] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Among the various 3D printing techniques, FDM is the most studied in pharmaceutical research. However, it requires the fabrication of filaments with suitable mechanical properties using HME, which can be laborious and time-consuming. DPE has emerged as a single-step printing technique that can overcome FDM limits as it enables the direct printing of powder blends without the need of filaments. This study demonstrated the manufacturing of cylindrical-shaped printed tablets containing CBD, a BCS II molecule, with an immediate release. Different blends of PEO/E100 and PEO/SOL, each with 10 % of CBD, were printed and tested according to the Eur. Ph. for uncoated tablets. Each printed cylinder met the Eur. Ph. specifications for friability, mass variation and mass uniformity. However, only the E100-based formulations enabled a CBD immediate release, as formulations containing SOL formed a gel once in contact with the dissolution medium, reducing the drug dissolution rate.
Collapse
Affiliation(s)
- O Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium.
| | - N Koch
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - A Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - F Rosoux
- SIRRIS, Collective Centre of the Belgian Technology Industry, 4102 Liege Science Park, Belgium
| | - C Emmerechts
- SIRRIS, Collective Centre of the Belgian Technology Industry, 4102 Liege Science Park, Belgium
| | - E Beeckman
- SIRRIS, Collective Centre of the Belgian Technology Industry, 4102 Liege Science Park, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| |
Collapse
|
2
|
Durga Prasad Reddy R, Sharma V. Investigations of hybrid infill pattern in additive manufactured tablets: A novel approach towards tunable drug release. J Biomed Mater Res B Appl Biomater 2023; 111:1869-1882. [PMID: 37294096 DOI: 10.1002/jbm.b.35290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
The significance of 3D printing has risen exponentially in biomedical and pharmaceutical applications. Its potential in the field of fabricating drug delivery systems, by virtue of processing biocompatible polymers, has been very lucrative. This work aims to tap the interstitial drug delivery kinetics that are often inaccessible through machine-specific infill patterns in additive manufactured tablets fabricated using PVA biopolymer as an excipient. In this regard, a myo-inositol containing tablet has been printed using Fused Deposition Modeling preceded by Hot Melt Extrusion drug loading route. Two machine-specific infill patterns were taken, namely straight and grid. Later, these two distinct patterns were juxtaposed to obtain novel hybrid infill patterns in the tablets. Then, these tablets and their filament were subjected to various thermal, mechanical, imaging and pharmaceutical characterization tests to assess the feasibility of the research attempt. Finally, dissolution tests were conducted to evaluate their dissolution behavior over a time period. The characterization tests proved the scientific viability of this attempt along with amorphous existence of drug in the polymeric filament. The dissolution results showed favorable drug release by achieving interstitial dissolution timings with surface area/volume (SA/V) ratio being found to be the principal factor.
Collapse
Affiliation(s)
- R Durga Prasad Reddy
- Department of Mechanical and Industrial Engineering, Additive and Subtractive Manufacturing (ASM) Laboratory, IIT Roorkee, Roorkee, India
| | - Varun Sharma
- Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee, India
| |
Collapse
|
3
|
Pires FQ, Gross IP, Sa-Barreto LL, Gratieri T, Gelfuso GM, Bao SN, Cunha-Filho M. In-situ formation of nanoparticles from drug-loaded 3D polymeric matrices. Eur J Pharm Sci 2023; 188:106517. [PMID: 37406970 DOI: 10.1016/j.ejps.2023.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The in-situ formation of nanoparticles from polymer-based solid medicines, although previously described, has been overlooked despite its potential to interfere with oral drug bioavailability. Such polymeric pharmaceuticals are becoming increasingly common on the market and can become even more popular due to the dizzying advance of 3D printing medicines. Hence, this work aimed to study this phenomenon during the dissolution of 3D printed tablets produced with three different polymers, hydroxypropylmethylcellulose acetate succinate (HPMCAS), polyvinyl alcohol (PVA), and Eudragit RL PO® (EUD RL) combined with plasticizers and the model drug naringenin (NAR). The components' interaction, dissolution behavior, and characteristics of the formed particles were investigated employing thermal, spectroscopic, mechanical, and chromatographic assays. All the systems generated stable spherical-shaped particles throughout 24 h, encapsulating over 25% of NAR. Results suggest encapsulation efficiencies variations may depend on interactions between polymer-drug, drug-plasticizer, and polymer-plasticizer, which formed stable nanoparticles even in the drug absence, as observed with the HPMCAS and EUD RL formulations. Additionally, components solubility in the medium and previous formulation treatments are also a decisive factor for nanoparticle formation. In particular, the treatment provided by hot-melt extrusion and FDM 3D printing affected the dissolution efficiency enhancing the interaction between the components, reverberating on particle size and particle formation kinetics mainly for HPMCAS and EUD RL. In conclusion, the 3D printing process influences the in-situ formation of nanoparticles, which can directly affect oral drug bioavailability and needs to be monitored.
Collapse
Affiliation(s)
- Felipe Q Pires
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Idejan P Gross
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Livia L Sa-Barreto
- University of Brasilia, Faculty of Ceilandia, 72220-900, Brasília, DF, Brazil
| | - Tais Gratieri
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil
| | - Sonia N Bao
- University of Brasilia, Institute of Biological Sciences, Laboratório de Microscopia e Microanálise. 70910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- University of Brasilia, School of Health Sciences, Laboratory of Food, Drugs and Cosmetics (LTMAC), 70.910-900, Brasília, DF, Brazil.
| |
Collapse
|
4
|
Digkas T, Porfire A, Van Renterghem J, Samaro A, Borodi G, Vervaet C, Crișan AG, Iurian S, De Beer T, Tomuta I. Development of Diclofenac Sodium 3D Printed Cylindrical and Tubular-Shaped Tablets through Hot Melt Extrusion and Fused Deposition Modelling Techniques. Pharmaceuticals (Basel) 2023; 16:1062. [PMID: 37630976 PMCID: PMC10459775 DOI: 10.3390/ph16081062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
The present study aimed to develop 3D printed dosage forms, using custom-made filaments loaded with diclofenac sodium (DS). The printed tablets were developed by implementing a quality by design (QbD) approach. Filaments with adequate FDM 3D printing characteristics were produced via hot melt extrusion (HME). Their formulation included DS as active substance, polyvinyl alcohol (PVA) as a polymer, different types of plasticisers (mannitol, erythritol, isomalt, maltodextrin and PEG) and superdisintegrants (crospovidone and croscarmellose sodium). The physicochemical and mechanical properties of the extruded filaments were investigated through differential scanning calorimetry (DSC), X-ray diffraction (XRD) and tensile measurements. In addition, cylindrical-shaped and tubular-shaped 3D dosage forms were printed, and their dissolution behaviour was assessed via various drug release kinetic models. DSC and XRD results demonstrated the amorphous dispersion of DS into the polymeric filaments. Moreover, the 3D printed tablets, regardless of their composition, exhibited a DS release of nearly 90% after 45 min at pH 6.8, while their release behaviour was effectively described by the Korsmeyer-Peppas model. Notably, the novel tube design, which was anticipated to increase the drug release rate, proved the opposite based on the in vitro dissolution study results. Additionally, the use of crospovidone increased DS release rate, whereas croscarmellose sodium decreased it.
Collapse
Affiliation(s)
- Tryfon Digkas
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (T.D.); (J.V.R.); (T.D.B.)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.G.C.); (S.I.); (I.T.)
| | - Jeroen Van Renterghem
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (T.D.); (J.V.R.); (T.D.B.)
| | - Aseel Samaro
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.S.); (C.V.)
| | - Gheorghe Borodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (A.S.); (C.V.)
| | - Andrea Gabriela Crișan
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.G.C.); (S.I.); (I.T.)
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.G.C.); (S.I.); (I.T.)
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (T.D.); (J.V.R.); (T.D.B.)
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hațieganu”, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (A.G.C.); (S.I.); (I.T.)
| |
Collapse
|
5
|
Ilieva S, Georgieva D, Petkova V, Dimitrov M. Study and Characterization of Polyvinyl Alcohol-Based Formulations for 3D Printlets Obtained via Fused Deposition Modeling. Pharmaceutics 2023; 15:1867. [PMID: 37514053 PMCID: PMC10384282 DOI: 10.3390/pharmaceutics15071867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Three-dimensional (3D) printing has emerged as a new promising technique for the production of personalized dosage forms and medical devices. Polyvinyl alcohol is prominently used as a source material to produce 3D-printed medicines via fused deposition modeling (FDM)-a technology that combines hot melt extrusion and 3D printing. A preliminary screening of three grades of PVA indicated that partially hydrolyzed PVA with a molecular weight (MW) of 31,000-50,000 and plasticized with sorbitol was most suitable for 3D printing. Paracetamol was used as a model drug. The materials and the produced filaments were characterized by X-ray powder diffraction (XRPD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The complex viscosity (η*) of the polymer melts was determined as a function of the angular frequency (ω) at the printing temperature to assess their printability. Three-dimensional printlets with a 40% infill exhibited an immediate release of the API, while tablets with a higher infill were prone to a prolonged release regardless of the filament drug loading. A factorial design was used to give more insight into the influence of the drug-loading of the filaments and the tablet infill as independent variables on the production of 3D printlets. The Pareto chart confirmed that the infill had a statistically significant effect on the dissolution rate after 45 min, which was chosen as the response variable.
Collapse
Affiliation(s)
- Sofiya Ilieva
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Dilyana Georgieva
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Valentina Petkova
- Department of Organisation and Economics of Pharmacy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| | - Milen Dimitrov
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria
| |
Collapse
|
6
|
Investigation on the use of fused deposition modeling for the production of IR dosage forms containing Timapiprant. Int J Pharm X 2022; 5:100152. [PMID: 36624741 PMCID: PMC9823139 DOI: 10.1016/j.ijpx.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022] Open
Abstract
The present work focused on evaluating the feasibility of fused deposition modeling (FDM) in the development of a dosage form containing Timapiprant (TMP), also known as CHF6532, which is a novel active molecule indicated in the potential treatment of eosinophilic asthma upon oral administration. The resulting product could be an alternative, with potential towards personalization, of immediate release (IR) tablets used in the clinical studies. Formulations based on different polymeric carriers were screened, leading to the identification of a polyvinyl alcohol-based one, which turned out acceptable for versatility in terms of active ingredient content, printability and dissolution performance (i.e. capability to meet the dissolution specification set, envisaging >80% of the drug dissolved within 30 min). Following an in-depth evaluation on the influence of TMP solid state and of the voids volume resulting from printing on dissolution, few prototypes with shapes especially devised for therapy customization were successfully printed and were compliant with the dissolution specification set.
Collapse
|
7
|
Ayyoubi S, van Kampen EEM, Kocabas LI, Parulski C, Lechanteur A, Evrard B, De Jager K, Muller E, Wilms EW, Meulenhoff PWC, Ruijgrok EJ. 3D printed, personalized sustained release cortisol for patients with adrenal insufficiency. Int J Pharm 2022; 630:122466. [PMID: 36493969 DOI: 10.1016/j.ijpharm.2022.122466] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The standard of care for patients with Adrenal Insufficiency (AI) is suboptimal. Administration of hydrocortisone three times a day produces plasma cortisol fluctuations associated with negative health outcomes. Furthermore, there is a high inter-individual variability in cortisol need, necessitating a personalized approach. It is hypothesized that a personalized, sustained release formulation would enhance the pharmacotherapy by mimicking the physiological cortisol plasma concentration at a higher level. Therefore, a novel 24 h sustained release 3D printed (3DP) hydrocortisone formulation has been developed (M3DICORT) by coupling hot-melt extrusion with fused deposition modeling. A uniform drug distribution in the 3DP tablets is demonstrated by a content of 101.66 ± 1.60 % with an acceptance value of 4.01. Furthermore, tablets had a stable 24 h dissolution profile where the intra-batch standard deviation was ± 2.8 % and the inter-batch standard deviation was ± 6.8 %. Tablet height and hydrocortisone content were correlated (R2 = 0.996), providing a tool for easy dose personalization. Tablets maintained critical quality attributes, such as dissolution profile (f2 > 60) and content uniformity after process transfer from a single-screw extruder to a twin-screw extruder. Impurities were observed in the final product which should be mitigated before clinical assessment. To our knowledge, M3DICORT is the first 3DP hydrocortisone formulation specifically developed for AI.
Collapse
Affiliation(s)
- S Ayyoubi
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - E E M van Kampen
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - L I Kocabas
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, the Netherlands
| | - C Parulski
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - A Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - B Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Department of Pharmacy, University of Liege (ULiege), Avenue Hippocrate 15, 4000 Liege, Belgium
| | - K De Jager
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - E Muller
- Department of Pharmaceutical Quality Control, The Hague Hospital Pharmacy, Charlotte Jacobslaan 70, 2545 AB The Hague, the Netherlands
| | - E W Wilms
- Department of Pharmaceutical Quality Control, The Hague Hospital Pharmacy, Charlotte Jacobslaan 70, 2545 AB The Hague, the Netherlands
| | - P W C Meulenhoff
- Tridi Pharma B.V. M.H. Trompstraat 7, 3572 XS Utrecht, the Netherlands
| | - E J Ruijgrok
- Department of Hospital Pharmacy, Erasmus University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
8
|
Saggiomo V. A 3D Printer in the Lab: Not Only a Toy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202610. [PMID: 35831252 PMCID: PMC9507339 DOI: 10.1002/advs.202202610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Although 3D printers are becoming more common in households, they are still under-represented in many laboratories worldwide and regarded as toys rather than as laboratory equipment. This short review wants to change this conservative point of view. This mini-review focuses on fused deposition modeling printers and what happens after acquiring your first 3D printer. In short, these printers melt plastic filament and deposit it layer by layer to create the final object. They are getting cheaper and easier to use, and nowadays it is not difficult to find good 3D printers for less than €500. At such a price, a 3D printer is one, if not the most, versatile piece of equipment you can have in a laboratory.
Collapse
Affiliation(s)
- Vittorio Saggiomo
- Department of BioNanoTechnologyWageningen UniversityBornse Weilanden 9Wageningen6708WGThe Netherlands
| |
Collapse
|
9
|
Walsh E, Maclean N, Turner A, Alsuleman M, Prasad E, Halbert G, Ter Horst JH, Markl D. Manufacture of Tablets with Structurally-Controlled Drug Release using Rapid Tooling Injection Moulding. Int J Pharm 2022; 624:121956. [PMID: 35760259 DOI: 10.1016/j.ijpharm.2022.121956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
With advancements in the pharmaceutical industry pushing more towards tailored medicines, novel approaches to tablet manufacture are in high demand. One of the main drivers towards micro-scale batch production is the ability to fine-tune drug release. This study demonstrates the use of rapid tooling injection moulding (RTIM) for tablet manufacture. Tablets were manufactured with varying structural features to alter the surface area whilst maintaining the same volume, resulting in differing specific surface area (SSA). The precision of this technique is evaluated based on eleven polymer formulations, with the tablets displaying < 2% variability in mass. Further tablets were produced containing paracetamol in three different polymer-based formulations to investigate the impact of SSA on the drug release. Significant differences were observed between the formulations based on the polymers polyvinyl alcohol (PVA) and Klucel ELF. The polymer base of the formulation was found to be critical to the sensitivity of the drug release profile to SSA modification. The drug release profile within each formulation was modified by the addition of structural features to increase the SSA.
Collapse
Affiliation(s)
- Erin Walsh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK
| | - Natalie Maclean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK
| | - Alice Turner
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK
| | - Moulham Alsuleman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK
| | - Elke Prasad
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK
| | - Gavin Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK
| | - Joop H Ter Horst
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK; Laboratoire Sciences et Méthodes Séparatives, Université de Rouen Normandie, Mont Saint Aignan Cedex, France
| | - Daniel Markl
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK; Centre for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Glasgow, UK.
| |
Collapse
|
10
|
The precision and accuracy of 3D printing of tablets by fused deposition modelling. J Pharm Sci 2022; 111:2814-2826. [DOI: 10.1016/j.xphs.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022]
|
11
|
Manini G, Benali S, Raquez JM, Goole J. Proof of concept of a predictive model of drug release from long-acting implants obtained by fused-deposition modeling. Int J Pharm 2022; 618:121663. [PMID: 35292398 DOI: 10.1016/j.ijpharm.2022.121663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/01/2023]
Abstract
In the pharmaceutical field, there is a growing interest in manufacturing of drug delivery dosage forms adapted to the needs of a large variety of patients. 3D printing has proven to be a powerful tool allowing the adaptation of immediate drug delivery dosage forms. However, there are still few studies focusing on the adaptation of long-acting dosage forms for patient suffering of neurological diseases. In this study, paliperidone palmitate (PP) was chosen as a model drug in combination with different polymers adapted for fused-deposition modeling (FDM). The impact of different printing parameters on the release of PP were investigated. The layer thickness and the infill percentage were studied using a quality by design approach. Indeed, by defining the critical quality attributes (CQA), a proof of concept of a prediction system, and a quality control system were studied through designs of experiments (DoE). The first part of this study was dedicated to the release of PP from a fix geometry. In the second part, the prediction system was developed to require only surface and surface to volume ratio. From that point, it was possible to get rid of a fix geometry and predict the amount of PP released from complex architectures.
Collapse
Affiliation(s)
- Giuseppe Manini
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium; Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium.
| | - Samira Benali
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium
| | - Jean-Marie Raquez
- Laboratory of Polymeric and Composite Materials (LPCM), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons, Place du Parc 23, B-7000 Mons, Belgium
| | - Jonathan Goole
- Laboratory of Pharmaceutics and Biopharmaceutics, Université libre de Bruxelles, Campus de la Plaine, CP207, Boulevard du Triomphe, Brussels 1050, Belgium
| |
Collapse
|
12
|
Gabriela Crisan A, Iurian S, Porfire A, Maria Rus L, Bogdan C, Casian T, Ciceo Lucacel R, Turza A, Porav S, Tomuta I. QbD guided development of immediate release FDM-3D printed tablets with customizable API doses. Int J Pharm 2021; 613:121411. [PMID: 34954001 DOI: 10.1016/j.ijpharm.2021.121411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/31/2022]
Abstract
The objective of this work was to develop a fused deposition modeling (FDM) 3D printed immediate release (IR) tablet with flexibility in adjusting the dose of the active pharmaceutical ingredient (API) by scaling the size of the dosage form and appropriate drug release profile steadiness to the variation of dimensions or thickness of the deposited layers throughout the printing process. Polyvinyl alcohol-based filaments with elevated API content (50% w/w) were prepared by hot melt extrusion (HME), through systematic screening of polymeric formulations with different drug loadings, and their printability was evaluated by means of mechanical characterization. For the tablet fabrication step by 3D printing (3DP), the Quality by Design (QbD) approach was implemented by employing risk management strategies and Design of Experiments (DoE). The effects of the tablet design, tablet size and the layer height settings on the drug release and the API content were investigated. Between the two proposed original tablet architectures, the honeycomb configuration was found to be a suitable candidate for the preparation of IR dosage forms with readily customizable API doses. Also, a predictive model was obtained, which assists the optimization of variables involved in the printing phase and thereby facilitates the tailoring process.
Collapse
Affiliation(s)
- Andrea Gabriela Crisan
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
| | - Sonia Iurian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
| | - Lucia Maria Rus
- Department of Drug Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Catalina Bogdan
- Department of Dermopharmacy and Cosmetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, 12 I. Creangă Street, 400010 Cluj-Napoca, Romania.
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
| | - Raluca Ciceo Lucacel
- Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Romania; Interdisciplinary Research Institute on Bio-Nano-Science, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Alexandru Turza
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania.
| | - Sebastian Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania.
| | - Ioan Tomuta
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Henry S, De Wever L, Vanhoorne V, De Beer T, Vervaet C. Influence of Print Settings on the Critical Quality Attributes of Extrusion-Based 3D-Printed Caplets: A Quality-by-Design Approach. Pharmaceutics 2021; 13:pharmaceutics13122068. [PMID: 34959349 PMCID: PMC8708825 DOI: 10.3390/pharmaceutics13122068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Extrusion-based 3D-printing is an easy-to-use, cheap manufacturing technique that could be used to produce tailored precision medicines. The technique has an almost unlimited versatility since a multitude of print parameters can easily be adapted. Unfortunately, little is known of the effect of these print parameters on the critical quality attributes of the resulting printlets. In this study, practical guidelines and means to adapt certain parameters in order to achieve the desired outcome (e.g., acceptable visual quality and flexible dosing) are stipulated for medical 3D-printing using a design-of-experiments approach. The current study aims at elucidating the effect of five print parameters (infill, overlap, number of shells, layer height and layer pattern) on the mechanical properties, dimensions, weight, porosity and dissolution characteristics of a fixed-size caplet consisting of Eudragit EPO (69.3%), Polyox WSR N10 (29.7%) and zolpidem hemitartrate (1%). In terms of the mechanical properties, 3D-printed caplets possessed anisotropy where the vertical compression strength and Brinell hardness exceeded the diametral strength. In general, all 3D-printed caplets possessed acceptable mechanical strength except for a small region of the knowledge space. Dimensional analysis revealed small, statistical significant differences between different runs, although the clinical relevance of this variation is likely negligible. The weight or dose of a caplet can be varied mainly using the infill and overlap and, to a lesser extent, via the layer height and number of shells. The impact on porosity was complicated as this was influenced by many factors and their interactions. Infill was the only statistically relevant factor influencing the dissolution rate of the current formulation. This study unravels the importance of the print parameter overlap, which is a regularly neglected parameter. We also discovered that small dose variations while maintaining the same dissolution profile were possible via modifying the overlap or number of shells. However, large dose variations without affecting the dissolution behaviour could only be accomplished by size modifications of the printlet.
Collapse
Affiliation(s)
- Silke Henry
- Laboratory of Pharmaceutical Technology, Ghent University, 9000 Ghent, Belgium; (S.H.); (L.D.W.); (V.V.)
| | - Lotte De Wever
- Laboratory of Pharmaceutical Technology, Ghent University, 9000 Ghent, Belgium; (S.H.); (L.D.W.); (V.V.)
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Ghent University, 9000 Ghent, Belgium; (S.H.); (L.D.W.); (V.V.)
| | - Thomas De Beer
- Laboratory of Pharmaceutical Process Analytical Technology, Ghent University, 9000 Ghent, Belgium;
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Ghent University, 9000 Ghent, Belgium; (S.H.); (L.D.W.); (V.V.)
- Correspondence:
| |
Collapse
|
14
|
Melnyk LA, Oyewumi MO. Integration of 3D printing technology in pharmaceutical compounding: Progress, prospects, and challenges. ANNALS OF 3D PRINTED MEDICINE 2021. [DOI: 10.1016/j.stlm.2021.100035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
15
|
Pinho LAG, Lima AL, Sa-Barreto LL, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Preformulation Studies to Guide the Production of Medicines by Fused Deposition Modeling 3D Printing. AAPS PharmSciTech 2021; 22:263. [PMID: 34729662 DOI: 10.1208/s12249-021-02114-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Fused deposition modeling (FDM) 3D printing has demonstrated high potential for the production of personalized medicines. However, the heating at high temperatures inherent to this process causes unknown risks to the drug product's stability. The present study aimed to assess the use of a tailored preformulation protocol involving physicochemical assessments, including the rheological profiles of the samples, to guide the development of medicines by FDM 3D printing. For this, polymers commonly used in FDM printing, i.e., high impact polystyrene (HIPS), polylactic acid (PLA), and polyvinyl alcohol (PVA), and their common plasticizers (mineral oil, triethyl citrate, and glycerol, respectively) were evaluated using the thermolabile model drug isoniazid (INH). Samples were analyzed by chemical and physical assays. The results showed that although the drug could produce polymorphs under thermal processing, the polymeric matrix can be a protective element, and no polymorphic transformation was observed. However, incompatibilities between materials might impact their chemical, thermal, and rheological performances. In fact, ternary mixtures of INH, PLA, and TEC showed a major alteration in their viscoelastic behavior besides the chemical changes. On the other hand, the use of plasticizers for HIPS and PVA exhibited positive consequences in drug solubility and rheologic behavior, probably improving sample printability. Thus, the optimization of the FDM 3D printing based on preformulation studies can assist the choice of compatible components and seek suitable processing conditions to obtain pharmaceutical products.
Collapse
|
16
|
Araújo GP, Martins FT, Taveira SF, Cunha-Filho M, Marreto RN. Effects of Formulation and Manufacturing Process on Drug Release from Solid Self-emulsifying Drug Delivery Systems Prepared by High Shear Mixing. AAPS PharmSciTech 2021; 22:254. [PMID: 34668093 DOI: 10.1208/s12249-021-02128-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022] Open
Abstract
This study sought to investigate the influence of formulation and process factors of the high shear mixing (HSM) on the properties of solid self-emulsifying drug delivery systems (S-SEDDS) containing the model drug carvedilol (CAR). Firstly, liquid SEDDS (L-SEDDS) were prepared by mixing castor oil with different proportions of surfactant (Solutol or Kolliphor RH40) and cosolvent (Transcutol or PEG400). A miscible L-SEDDS with high drug solubility (124.3 mg/g) was selected and gave rise to 10% (m/m) CAR loaded-emulsion with reduced particle size. Then, a factorial experimental design involving five component's concentration and two process factors was used to study the solidification of the selected L-SEDDS by HSM. CAR content, diffractometric profile, and in vitro dissolution were determined. Morphological and flow analyses were also performed. Porous and spherical particles with mean sizes ranging from 160 to 210 µm were obtained. Particle size was not affected by any formulation factor studied. Powder flowability, in turn, was influenced by L-SEDDS and crospovidone concentration. CAR in vitro dissolution from S-SEDDS was significantly increased compared to the drug as supplied and was equal (pH 1.2) or lower (pH 6.8) than that determined for L-SEDDS. Colloidal silicon dioxide decreased drug dissolution, whereas an increase in water-soluble diluent lactose and L-SEDDS concentration increased CAR dissolution. The proper selection of liquid and solid constituents proved to be crucial to developing an S-SEDDS by HSM. Indeed, the results obtained here using experimental design contribute to the production of S-SEDDS using an industrially viable process.
Collapse
|
17
|
Pinho LAG, Gratieri T, Gelfuso GM, Marreto RN, Cunha-Filho M. Three-dimensional printed personalized drug devices with anatomical fit: a review. J Pharm Pharmacol 2021; 74:1391-1405. [PMID: 34665263 DOI: 10.1093/jpp/rgab146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Three-dimensional printing (3DP) has opened the era of drug personalization, promising to revolutionize the pharmaceutical field with improvements in efficacy, safety and compliance of the treatments. As a result of these investigations, a vast therapeutic field has opened for 3DP-loaded drug devices with an anatomical fit. Along these lines, innovative dosage forms, unimaginable until recently, can be obtained. This review explores 3DP-engineered drug devices described in recent research articles, as well as in patented inventions, and even devices already produced by 3DP with drug-loading potential. KEY FINDINGS 3D drug-loaded stents, implants and prostheses are reviewed, along with devices produced to fit hard-to-attach body parts such as nasal masks, vaginal rings or mouthguards. The most promising 3DP techniques for such devices and the complementary technologies surrounding these inventions are also discussed, particularly the scanners useful for mapping body parts. Health regulatory concerns regarding the new use of such technology are also analysed. SUMMARY The scenario discussed in this review shows that for wearable 3DP drug devices to become a tangible reality to users, it will be necessary to overcome the existing regulatory barriers, create new interfaces with electronic systems and improve the mapping mechanisms of body surfaces.
Collapse
Affiliation(s)
- Ludmila A G Pinho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drug, and Cosmetics (LTMAC), School of Health Sciences, University of Brasilia, Brasília, DF, Brazil
| |
Collapse
|
18
|
Silva IA, Lima AL, Gratieri T, Gelfuso GM, Sa-Barreto LL, Cunha-Filho M. Compatibility and stability studies involving polymers used in fused deposition modeling 3D printing of medicines. J Pharm Anal 2021; 12:424-435. [PMID: 35811629 PMCID: PMC9257448 DOI: 10.1016/j.jpha.2021.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 02/07/2023] Open
Abstract
One of the challenges in developing three-dimensional printed medicines is related to their stability due to the manufacturing conditions involving high temperatures. This work proposed a new protocol for preformulation studies simulating thermal processing and aging of the printed medicines, tested regarding their morphology and thermal, crystallographic, and spectroscopic profiles. Generally, despite the strong drug-polymer interactions observed, the chemical stability of the model drugs was preserved under such conditions. In fact, in the metoprolol and Soluplus® composition, the drug's solubilization in the polymer produced a delay in the drug decomposition, suggesting a protective effect of the matrix. Paracetamol and polyvinyl alcohol mixture, in turn, showed unmistakable signs of thermal instability and chemical decomposition, in addition to physical changes. In the presented context, establishing protocols that simulate processing and storage conditions may be decisive for obtaining stable pharmaceutical dosage forms using three-dimensional printing technology. Preformulation protocol was proposed to guide the development of 3D-printed medicines. Drug models were able to support thermal processing equivalent to FDM/3D printing. Soluplus showed a protective effect for metoprolol after double heating and aging. Paracetamol and PVA mixture demonstrated incompatibility under heating processing.
Collapse
|
19
|
Disrupting 3D printing of medicines with machine learning. Trends Pharmacol Sci 2021; 42:745-757. [PMID: 34238624 DOI: 10.1016/j.tips.2021.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/11/2022]
Abstract
3D printing (3DP) is a progressive technology capable of transforming pharmaceutical development. However, despite its promising advantages, its transition into clinical settings remains slow. To make the vital leap to mainstream clinical practice and improve patient care, 3DP must harness modern technologies. Machine learning (ML), an influential branch of artificial intelligence, may be a key partner for 3DP. Together, 3DP and ML can utilise intelligence based on human learning to accelerate drug product development, ensure stringent quality control (QC), and inspire innovative dosage-form design. With ML's capabilities, streamlined 3DP drug delivery could mark the next era of personalised medicine. This review details how ML can be applied to elevate the 3DP of pharmaceuticals and importantly, how it can expedite 3DP's integration into mainstream healthcare.
Collapse
|
20
|
Mechanical Property and Prediction Model for FDM-3D Printed Polylactic Acid (PLA). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05617-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Zhang J, Thakkar R, Zhang Y, Maniruzzaman M. Structure-function correlation and personalized 3D printed tablets using a quality by design (QbD) approach. Int J Pharm 2020; 590:119945. [DOI: 10.1016/j.ijpharm.2020.119945] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/01/2023]
|