1
|
Han M, Hou M, Yang S, Gao Z. Oral responsive delivery systems for probiotics targeting the intestinal tract. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39424610 DOI: 10.1002/jsfa.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
The increasing prevalence of health issues, driven by sedentary lifestyles and unhealthy diets in modern society, has led to a growing demand for natural dietary supplements to support overall health and well-being. Probiotic dietary supplements have garnered widespread recognition for their potential health benefits. However, their efficacy is often hindered by the hostile conditions of the gastrointestinal tract. To surmount this challenge, biomaterial-based microencapsulation techniques have been extensively employed to shield probiotics from the harsh environments of stomach acid and bile salts, facilitating their precise delivery to the colon for optimal nutritional effects. With consideration of the distinctive gastrointestinal tract milieu, probiotic delivery systems have been categorized into pH-responsive release, enzyme-responsive release, redox-responsive release and pressure-triggered release systems. These responsive delivery systems have not only demonstrated improved probiotic survival rates in the stomach, but also successful release in the intestines, facilitating enhanced adhesion and colonization of probiotics within the gut. Consequently, these responsive delivery systems contribute to the effectiveness of probiotic supplementation in intervening with gastrointestinal diseases. This review provides a comprehensive overview of the diverse oral responsive delivery systems tailored for probiotics targeting the intestinal tract. Furthermore, the review critically examines the limitations and future prospects of these approaches. This review offers valuable guidance for the effective delivery of probiotics to the intestinal tract, enhancing the potential of probiotics as dietary supplements to promote gastrointestinal health and well-being. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuang Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Cao F, Lu S, Wang L, Zheng M, Young Quek S. Modified porous starch for enhanced properties: Synthesis, characterization and applications. Food Chem 2023; 415:135765. [PMID: 36854239 DOI: 10.1016/j.foodchem.2023.135765] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
Native starches have low water solubility at room temperature and poor stability, which demand modifications to overcome. Porous starch as a modified one shows enhanced adsorptive efficiency and solubility compared with its native starch. In contrast, some inherent disadvantages exist, such as weak mechanical strength and low thermal resistance. Fortunately, modified porous starches have been developed to perform well in adsorption capacity and stability. Modified porous starch can be prepared by esterification, crosslinking, oxidation and multiple modifications to the porous starch. The characterization of modified porous starch can be achieved through various analytical techniques. Modified porous starch can be utilized as highly efficient adsorbents and encapsulants for various compounds and applied in various fields. This review dealt with the progress in the preparation, structural characterization and application of modified porous starch. The objective is to provide a reference for its development, utilization, and future research directions.
Collapse
Affiliation(s)
- Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengmin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Meiyu Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Provincial Key Laboratory of Fruit and Vegetables Postharvest and Processing Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Post-Harvest Handling of Fruits, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
3
|
Xu Y, Dong M, Xiao H, Young Quek S, Ogawa Y, Ma G, Zhang C. Advances in spray-dried probiotic microcapsules for targeted delivery: a review. Crit Rev Food Sci Nutr 2023; 64:11222-11238. [PMID: 37459278 DOI: 10.1080/10408398.2023.2235424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Probiotics have gained significant attention owing to their roles in regulating human health. Recently, spray drying has been considered as a promising technique to produce probiotic powders due to its advantages of high efficiency, cost-saving, and good powder properties. However, the severe environmental conditions from drying and digestion can significantly reduce cell viability, resulting in poor bioaccessibility and bioavailability of live cells. Therefore, there is a need to develop effective targeted delivery systems using spray drying to protect bacteria and to maintain their physiological functions in the targeted sites. This review highlights recent studies about spray-dried targeted delivery vehicles for probiotics, focusing on key strategies to protect bacteria when encountering external stresses, the formation mechanism of particles, the targeted release and colonization mechanisms of live cells in particles with different structures. Advances in the targeted delivery of live probiotics via spray-dried vehicles are still in their early stages. To increase the possibilities for industrialization and commercialization, functional improvement of microcapsules in terms of protection, targeted release, and colonization of bacteria, as well as the effect of spray drying on bacterial physiological functions in the host, need to be further investigated.
Collapse
Affiliation(s)
- Yuyan Xu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongmei Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Yukiharu Ogawa
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Guangyuan Ma
- Jiangsu Innovation Center of Marine Biological Resources, Nanjing, China
| | - Chuang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Sanya Institute of Nanjing Agricultural University, Sanya, China
| |
Collapse
|
4
|
Kiepś J, Juzwa W, Dembczyński R. Imaging Flow Cytometry Demonstrates Physiological and Morphological Diversity within Treated Probiotic Bacteria Groups. Int J Mol Sci 2023; 24:ijms24076841. [PMID: 37047813 PMCID: PMC10095186 DOI: 10.3390/ijms24076841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Probiotic bacteria can be introduced to stresses during the culturing phase as an alternative to the use of protectants and coating substances during drying. Accurate enumeration of the bacterial count in a probiotic formulation can be provided using imaging flow cytometry (IFC). IFC overcomes the weak points of conventional, commonly used flow cytometry by combining its statistical power with the imaging content of microscopy in one system. Traditional flow cytometers only collect the fluorescence signal intensities, while IFC provides many more steps as it correlates the data on the measured parameters of fluorescence light with digitally processed images of the analyzed cells. As an alternative to standard methods (plate cell counts and traditional flow cytometry) IFC provides additional insight into the physiology and morphology of the cell. The use of complementary dyes (RedoxSensorTM Green and propidium iodide) allows for the designation of groups based on their metabolic activity and membrane damage. Additionally, cell sorting is incorporated to assess each group in terms of growth on different media (MRS-Agar and MRS broth). Results show that the groups with intermediate metabolic activity and some degree of cellular damage correspond with the description of viable but nonculturable cells.
Collapse
Affiliation(s)
- Jakub Kiepś
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Radosław Dembczyński
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| |
Collapse
|
5
|
Diep E, Schiffman JD. Electrospinning Living Bacteria: A Review of Applications from Agriculture to Health Care. ACS APPLIED BIO MATERIALS 2023; 6:951-964. [PMID: 36791266 DOI: 10.1021/acsabm.2c01055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Living bacteria are used in biotechnologies that lead to improvements in health care, agriculture, and energy. Encapsulating bacteria into flexible and modular electrospun polymer fabrics that maintain their viability will further enable their use. This review will first provide a brief overview of electrospinning before examining the impact of electrospinning parameters, such as precursor composition, applied voltage, and environment on the viability of encapsulated bacteria. Currently, the use of nanofiber scaffolds to deliver live probiotics into the gut is the most researched application space; however, several additional applications, including skin probiotics (wound bandages) and menstruation products have also been explored and will be discussed. The use of bacteria-loaded nanofibers as seed coatings that promote plant growth, for the remediation of contaminated wastewaters, and in energy-generating microbial fuel cells are also covered in this review. In summary, electrospinning is an effective method for encapsulating living microorganisms into dry polymer nanofibers. While these living composite scaffolds hold potential for use across many applications, before their use in commercial products can be realized, numerous challenges and further investigations remain.
Collapse
Affiliation(s)
- Emily Diep
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
6
|
Kowalczyk M, Znamirowska-Piotrowska A, Buniowska-Olejnik M, Pawlos M. Sheep Milk Symbiotic Ice Cream: Effect of Inulin and Apple Fiber on the Survival of Five Probiotic Bacterial Strains during Simulated In Vitro Digestion Conditions. Nutrients 2022; 14:nu14214454. [PMID: 36364717 PMCID: PMC9655080 DOI: 10.3390/nu14214454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
We conducted a study to determine the survival of bacterial cells under in vitro digestion. For this purpose, ice cream mixes were prepared: control, with 4% inulin, 2.5% inulin and 1.5% apple fiber and 4% apple fiber. Each inoculum (pH = 4.60 ± 0.05), containing 9 log cfu g-1 bacteria, at 5% (w/w) was added to the ice cream mixes (Lacticaseibacilluscasei 431, Lactobacillus acidophilus LA-5, Lacticaseibacillus paracasei L-26, Lacticaseibacillusrhamnosus, Bifidobacterium animalis ssp. lactis BB-12) and fermentation was carried out to pH 4.60 ± 0.05. The in vitro digestion method simulated the stages of digestion that occur in the mouth, stomach and small intestine under optimal controlled conditions (pH value, time and temperature). At each stage of digestion, the survival rate of probiotic bacteria was determined using the plate-deep method. As expected, in the oral stage, there was no significant reduction in the viability of the probiotic bacteria in any ice cream group compared to their content before digestion. In the stomach stage, Bifidobacterium animalis ssp. lactis BB-12 strain had the highest viable counts (8.48 log cfu g-1) among the control samples. Furthermore, a 4% addition of inulin to ice cream with Bifidobacterium BB-12 increased gastric juice tolerance and limited strain reduction by only 16.7% compared to the number of bacterial cells before digestion. Regarding ice cream samples with Bifidobacterium BB-12, replacing part of the inulin with apple fiber resulted in increased survival at the stomach stage and a low reduction in the bacterial population of only 15.6% compared to samples before digestion. At the stomach stage, the positive effect of the addition of inulin and apple fiber was also demonstrated for ice cream samples with Lacticaseibacilluscasei 431 (9.47 log cfu g-1), Lactobacillus acidophilus LA-5 (8.06 log cfu g-1) and Lacticaseibacillus paracasei L-26 (5.79 log cfu g-1). This study showed the highest sensitivity to simulated gastric stress for ice cream samples with Lacticaseibacillusrhamnosus (4.54 log cfu g-1). Our study confirmed that the 4% addition of inulin to ice cream increases the survival rate of L. casei and Bifidobacterium BB-12 in simulated intestinal juice with bile by 0.87 and 2.26 log cfu g-1, respectively. The highest viable count in the small intestine stage was observed in ice cream with L. acidophilus. The addition of inulin increased the survival of L. rhamnosus by 10.8% and Bifidobacterium BB-12 by about 22% under conditions of simulated in vitro digestion compared to their control samples. The survival rates of L. casei and L. paracasei were also highly affected by the 4% addition of apple fiber, where the increase under gastrointestinal passage conditions was determined to range from 7.86-11.26% compared to their control counterparts. In comparison, the lowest survival rate was found in the control ice cream with L. rhamnosus (47.40%). In our study at the intestinal stage, only five ice cream groups: a sample with 4% inulin and L. acidophilus, a control sample with Bifidobacterium BB12, a sample with 2.5% inulin and 1.5% apple fiber with Bifidobacterium BB12, a control sample with L. rhamnosus, a sample with 4% fiber and L. rhamnosus reported bacterial cell counts below 6 log cfu g-1 but higher than 5 log cfu g-1. However, in the remaining ice cream groups, viable counts of bacterial cells ranged from 6.11 to 8.88 log cfu g-1, ensuring a therapeutic effect. Studies have clearly indicated that sheep milk ice cream could provide a suitable matrix for the delivery of probiotics and prebiotics and contribute to intestinal homeostasis. The obtained results have an applicative character and may play an essential role in developing new functional sheep milk ice cream.
Collapse
|
7
|
Guo Q, Tang J, Li S, Qiang L, Chang S, Du G, Yue T, Yuan Y. Lactobacillus plantarum 21805 encapsulated by whey protein isolate and dextran conjugate for enhanced viability. Int J Biol Macromol 2022; 216:124-131. [DOI: 10.1016/j.ijbiomac.2022.06.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
|
8
|
Kiepś J, Dembczyński R. Current Trends in the Production of Probiotic Formulations. Foods 2022; 11:foods11152330. [PMID: 35954096 PMCID: PMC9368262 DOI: 10.3390/foods11152330] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Preparations containing probiotic strains of bacteria have a beneficial effect on human and animal health. The benefits of probiotics translate into an increased interest in techniques for the preservation of microorganisms. This review compares different drying methods and their improvements, with specific reference to processing conditions, microorganisms, and protective substances. It also highlights some factors that may influence the quality and stability of the final probiotic preparations, including thermal, osmotic, oxidative, and acidic stresses, as well as dehydration and shear forces. Processing and storage result in the loss of viability and stability in probiotic formulations. Herein, the addition of protective substances, the optimization of process parameters, and the adaptation of cells to stress factors before drying are described as countermeasures to these challenges. The latest trends and developments in the fields of drying technologies and probiotic production are also discussed. These developments include novel application methods, controlled release, the use of food matrices, and the use of analytical methods to determine the viability of probiotic bacteria.
Collapse
|
9
|
Rajam R, Subramanian P. Encapsulation of probiotics: past, present and future. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00228-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Probiotics are live microbial supplements known for its health benefits. Consumption of probiotics reported to improve several health benefits including intestinal flora composition, resistance against pathogens. In the recent years, there is an increasing trend of probiotic-based food products in the market.
Main body
Probiotics cells are targeted to reach the large intestine, and the probiotics must survive through the acidic conditions of the gastric environment. It is recommended to formulate the probiotic bacteria in the range of 108–109 cfu/g for consumption and maintain the therapeutic efficacy of 106–107 cfu/g in the large intestine. During the gastrointestinal transit, the probiotics will drastically lose its viability in the gastric environment (pH 2). Maintaining cell viability until it reaches the large intestine remains challenging task. Encapsulating the probiotics cells with suitable wall material helps to sustain the survival of probiotics during industrial processing and in gastrointestinal transit. In the encapsulation process, cells are completely enclosed in the wall material, through different techniques including spray drying, freeze drying, extrusion, spray freeze drying, emulsification, etc. However, spray-drying and freeze-drying techniques are successfully used for the commercial formulation; thus, we limited to review those encapsulation techniques.
Short conclusions
The survival rate of spray-dried probiotics during simulated digestion mainly depends on the inlet air temperature, wall material and exposure in the GI condition. And fermentation, pH and freeze-drying time are the important process parameters for maintaining the viability of bacterial cells in the gastric condition. Improving the viability of probiotic cells during industrial processing and extending the cell viability during storage and digestion will be the main concern for successful commercialization.
Graphical abstract
Collapse
|
10
|
Christfort JF, Polhaus CJM, Bondegaard PW, Chang TJ, Hwu ET, Hagner Nielsen L, Zór K, Boisen A. Open source anaerobic and temperature-controlled in vitro model enabling real-time release studies with live bacteria. HARDWAREX 2022; 11:e00275. [PMID: 35509897 PMCID: PMC9058704 DOI: 10.1016/j.ohx.2022.e00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
In vitro release and dissolution models are widely used in the development phases of oral drug delivery systems to measure how an active pharmaceutical ingredient (API) is released from a dosage form. However, additional requirements for these models arise when evaluating probiotic dosage forms since they are often sensitive to temperature and oxygen levels. As a solution to this, we propose a custom-designed anaerobic in vitro release setup, made mainly by 3D printing and laser cutting, to function together with state-of-the-art pharmaceutical dissolution equipment - in this case, a microDISS Profiler™. The in vitro release model makes it possible to study the release rate of oxygen-sensitive probiotics in simulated intestinal conditions, while ensuring their survival due to the anaerobic conditions. This has not been possible so far since the available in vitro dissolution models have not been compatible with anaerobic conditions. With two different case studies, the developed model combined with a microDISS Profiler™ has proven capable of measuring the release of a probiotic and a small-molecule API from microdevices for oral drug delivery. Further, the model facilitated the survival of anaerobic bacteria present in the release medium.
Collapse
Affiliation(s)
- Juliane Fjelrad Christfort
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Chrysillis Judy Magaard Polhaus
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Pi Westi Bondegaard
- The National Food Institute, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tien-Jen Chang
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - En Te Hwu
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Line Hagner Nielsen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- BioInnovation Institute Foundation, 2200 Copenhagen, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- BioInnovation Institute Foundation, 2200 Copenhagen, Denmark
| |
Collapse
|
11
|
Premjit Y, Mitra J. Optimization of Electrospray-Assisted Microencapsulation of Probiotics (Leuconostoc lactis) in Soy Protein Isolate-Oil Particles Using Box-Behnken Experimental Design. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02670-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Development of gastro-resistant coated probiotic granulates and evaluation of viability and release during simulated upper gastrointestinal transit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Naissinger da Silva M, Tagliapietra BL, Flores VDA, Pereira Dos Santos Richards NS. In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Curr Res Food Sci 2021; 4:320-325. [PMID: 34095855 PMCID: PMC8165489 DOI: 10.1016/j.crfs.2021.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
The search for functional foods grows constantly, and in this demand, the supply of industries that seek to produce and sell supplements also grows, as is the case of probiotics freely sold in pharmacies and supermarkets. Given a large number of foods with probiotic appeal and supplements sold without the need for a nutritional or medical prescription, this study came up to evaluate the viability of commercial probiotic cells, through in vitro gastrointestinal simulation and analyzing the information present in their labeling. Eleven commercial probiotic samples were analyzed, and viable cell counts were performed before and after in vitro simulation. These products usually use appealing labeling and induce the consumer to purchase these probiotics, which often do not offer the benefits described on the packaging. The results showed that only two samples had the initial concentration indicated on their labeling and four samples offered a concentration of 3 log CFU g−1 in the ileum portion. All samples had a reduction in concentration during the gastrointestinal simulation, which varied from 1 to 4 log CFU g−1, but most do not fulfill the offer of a probiotic supplement, and there should be more inspection and control over the commercialization of this product niche. Of eleven probiotics analyzed, only two were in accordance with their labeling. Only six probiotics showed an initial concentration above 8 log CFU g-1. After gastrointestinal simulation, six probiotics showed viability greater than 6 log CFU g-1. Probiotic fermented milk and microorganisms protected by capsules showed the best results. Technologies are needed that contribute to maintaining probiotic viability in storage and digestion.
Collapse
Affiliation(s)
- Maritiele Naissinger da Silva
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência de Alimentos, Rua Antonio Botega, 270, CEP 97095-030, Santa Maria, RS, Brazil
| | - Bruna Lago Tagliapietra
- Universidade Estadual de Campinas, Departamento de Tecnologia de Alimentos, Campinas, SP, Brazil
| | - Vinícius do Amaral Flores
- Universidade Federal de Santa Maria, Departamento de Tecnologia e Ciência Dos Alimentos, Santa Maria, RS, Brazil
| | | |
Collapse
|