1
|
Dold CA, Sahin AW, Giblin L. Effect of processing infant milk formula on protein digestion and gut barrier health (in vitro and preclinical). J Dairy Sci 2024:S0022-0302(24)01237-2. [PMID: 39694254 DOI: 10.3168/jds.2024-25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 12/20/2024]
Abstract
The infant gut is immature and permeable with high gastric pH, low protease activities and underdeveloped intestinal architecture. Protein digestion in the upper gastrointestinal tract of infants is slow and incomplete. During manufacture, infant milk formula (IMF) is typically heat-treated so it is safe for human consumption. This heat treatment causes denaturation and aggregation of milk proteins, and formation of undesirable Maillard reaction products. The aim of this review is to critically summarize the in vitro and preclinical data available on the effect of IMF thermal processing on protein digestion and gut barrier physiology in the immature infant gut. Recent research efforts have focused on reducing thermal loads during IMF manufacturing by sourcing ingredients with low thermal loads, by reducing temperatures during IMF processing itself and by seeking alternative processing technologies. This review also aims to evaluate if these thermal reductions have a knock-on effect on protein digestion and gut barrier health in the infant. The ultimate aim is to create a safe next generation IMF product that more closely mimics human breast milk in its protein digestion kinetics and its ability to promote gut barrier maturity in the infant.
Collapse
Affiliation(s)
- Cathal A Dold
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland; School of Food and Nutritional Sciences, University College Cork, Cork, T12 CY82, Ireland
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork, T12 CY82, Ireland
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| |
Collapse
|
2
|
Verhasselt V, Marchant A, Kollmann TR. Per Os to Protection - Targeting the Oral Route to Enhance Immune-mediated Protection from Disease of the Human Newborn. J Mol Biol 2024; 436:168718. [PMID: 39094783 DOI: 10.1016/j.jmb.2024.168718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Valerie Verhasselt
- Larsson-Rosenquist Foundation Centre for Immunology and Breastfeeding, School of Medicine, University of Western Australia, Perth, WA, Australia; Immunology and Breastfeeding Team, Telethon Kids Institute, Perth, WA, Australia
| | - Arnaud Marchant
- European Plotkin Institute for Vaccinology, Université libre de Bruxelles, Brussels, Belgium
| | - Tobias R Kollmann
- Dalhousie University, Department of Microbiology & Immunology, Pediatric Infectious Diseases, Canada.
| |
Collapse
|
3
|
Stewart New J, Glenn King R, Foote JB, Kearney JF. Microbiota and B-1 B cell repertoire development in mice. Curr Opin Immunol 2024; 89:102452. [PMID: 39180941 PMCID: PMC11365744 DOI: 10.1016/j.coi.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/02/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Microbiota-derived antigens play a critical role in the development of both the mucosal and systemic B cell repertoires; however, how glycan epitopes promote B cell repertoire selection is only recently being understood. The production of glycan-derived antigens by individual microbes within a host can be dynamic and influenced by interactions within other members of microbial communities, the composition of diet, and host-derived contents, including those of the mucosal immune system. The size and complexity of the emerging neonatal B cell repertoire are paralleled by the acquisition of a diverse microbiota from maternal and environmental sources, which is now appreciated to exert long-lasting influences on the nascent B cell repertoire.
Collapse
Affiliation(s)
| | | | - Jeremy B Foote
- Microbiology Department, University of Alabama at Birmingham, USA
| | - John F Kearney
- Microbiology Department, University of Alabama at Birmingham, USA.
| |
Collapse
|
4
|
Aburto MR, Cryan JF. Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol 2024; 21:222-247. [PMID: 38355758 DOI: 10.1038/s41575-023-00890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/16/2024]
Abstract
Crosstalk between gut and brain has long been appreciated in health and disease, and the gut microbiota is a key player in communication between these two distant organs. Yet, the mechanisms through which the microbiota influences development and function of the gut-brain axis remain largely unknown. Barriers present in the gut and brain are specialized cellular interfaces that maintain strict homeostasis of different compartments across this axis. These barriers include the gut epithelial barrier, the blood-brain barrier and the blood-cerebrospinal fluid barrier. Barriers are ideally positioned to receive and communicate gut microbial signals constituting a gateway for gut-microbiota-brain communication. In this Review, we focus on how modulation of these barriers by the gut microbiota can constitute an important channel of communication across the gut-brain axis. Moreover, barrier malfunction upon alterations in gut microbial composition could form the basis of various conditions, including often comorbid neurological and gastrointestinal disorders. Thus, we should focus on unravelling the molecular and cellular basis of this communication and move from simplistic framing as 'leaky gut'. A mechanistic understanding of gut microbiota modulation of barriers, especially during critical windows of development, could be key to understanding the aetiology of gastrointestinal and neurological disorders.
Collapse
Affiliation(s)
- María R Aburto
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Mehrotra S, Kalyan BG P, Nayak PG, Joseph A, Manikkath J. Recent Progress in the Oral Delivery of Therapeutic Peptides and Proteins: Overview of Pharmaceutical Strategies to Overcome Absorption Hurdles. Adv Pharm Bull 2024; 14:11-33. [PMID: 38585454 PMCID: PMC10997937 DOI: 10.34172/apb.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/04/2023] [Accepted: 08/16/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Proteins and peptides have secured a place as excellent therapeutic moieties on account of their high selectivity and efficacy. However due to oral absorption limitations, current formulations are mostly delivered parenterally. Oral delivery of peptides and proteins (PPs) can be considered the need of the hour due to the immense benefits of this route. This review aims to critically examine and summarize the innovations and mechanisms involved in oral delivery of peptide and protein drugs. Methods Comprehensive literature search was undertaken, spanning the early development to the current state of the art, using online search tools (PubMed, Google Scholar, ScienceDirect and Scopus). Results Research in oral delivery of proteins and peptides has a rich history and the development of biologics has encouraged additional research effort in recent decades. Enzyme hydrolysis and inadequate permeation into intestinal mucosa are the major causes that result in limited oral absorption of biologics. Pharmaceutical and technological strategies including use of absorption enhancers, enzyme inhibition, chemical modification (PEGylation, pro-drug approach, peptidomimetics, glycosylation), particulate delivery (polymeric nanoparticles, liposomes, micelles, microspheres), site-specific delivery in the gastrointestinal tract (GIT), membrane transporters, novel approaches (self-nanoemulsifying drug delivery systems, Eligen technology, Peptelligence, self-assembling bubble carrier approach, luminal unfolding microneedle injector, microneedles) and lymphatic targeting, are discussed. Limitations of these strategies and possible innovations for improving oral bioavailability of protein and peptide drugs are discussed. Conclusion This review underlines the application of oral route for peptide and protein delivery, which can direct the formulation scientist for better exploitation of this route.
Collapse
Affiliation(s)
- Sonal Mehrotra
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pavan Kalyan BG
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Pawan Ganesh Nayak
- Department of Pharmacology,Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | | | - Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
6
|
McGettigan SE, Aira LE, Kumar G, Ballet R, Butcher EC, Baumgarth N, Debes GF. Secreted IgM modulates IL-10 expression in B cells. Nat Commun 2024; 15:324. [PMID: 38182585 PMCID: PMC10773282 DOI: 10.1038/s41467-023-44382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
IL-10+ B cells are critical for immune homeostasis and restraining immune responses in infection, cancer, and inflammation; however, the signals that govern IL-10+ B cell differentiation are ill-defined. Here we find that IL-10+ B cells expand in mice lacking secreted IgM ((s)IgM-/-) up to 10-fold relative to wildtype (WT) among all major B cell and regulatory B cell subsets. The IL-10+ B cell increase is polyclonal and presents within 24 hours of birth. In WT mice, sIgM is produced prenatally and limits the expansion of IL-10+ B cells. Lack of the high affinity receptor for sIgM, FcμR, in B cells translates into an intermediate IL-10+ B cell phenotype relative to WT or sIgM-/- mice. Our study thus shows that sIgM regulates IL-10 programming in B cells in part via B cell-expressed FcμR, thereby revealing a function of sIgM in regulating immune homeostasis.
Collapse
Affiliation(s)
- Shannon Eileen McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lazaro Emilio Aira
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Romain Ballet
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eugene C Butcher
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Dept. Pathology, Microbiology & Immunology, University of California Davis, Davis, CA, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
7
|
Abu YF, Singh S, Tao J, Chupikova I, Singh P, Meng J, Roy S. Opioid-induced dysbiosis of maternal gut microbiota during gestation alters offspring gut microbiota and pain sensitivity. Gut Microbes 2024; 16:2292224. [PMID: 38108125 PMCID: PMC10730209 DOI: 10.1080/19490976.2023.2292224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
There has been a rapid increase in neonates born with a history of prenatal opioid exposure. How prenatal opioid exposure affects pain sensitivity in offspring is of interest, as this may perpetuate the opioid epidemic. While few studies have reported hypersensitivity to thermal pain, potential mechanisms have not been described. This study posits that alterations in the gut microbiome may underly hypersensitivity to pain in prenatally methadone-exposed 3-week-old male offspring, which were generated using a mouse model of prenatal methadone exposure. Fecal samples collected from dams and their offspring were subjected to 16s rRNA sequencing. Thermal and mechanical pain were assessed using the tail flick and Von Frey assays. Transcriptomic changes in whole brain samples of opioid or saline-exposed offspring were investigated using RNA-sequencing, and midbrain sections from these animals were subjected to qPCR profiling of genes related to neuropathic and inflammatory pain pathways. Prenatal methadone exposure increased sensitivity to thermal and mechanical pain and elevated serum levels of IL-17a. Taxonomical analysis revealed that prenatal methadone exposure resulted in significant alterations in fecal gut microbiota composition, including depletion of Lactobacillus, Bifidobacterium, and Lachnospiracea sp and increased relative abundance of Akkermansia, Clostridium sensu stricto 1, and Lachnoclostridium. Supplementation of the probiotic VSL#3 in dams rescued hypersensitivity to thermal and mechanical pain in prenatally methadone-exposed offspring. Similarly, cross-fostering prenatally methadone-exposed offspring to control dams also attenuated hypersensitivity to thermal pain in opioid-exposed offspring. Modulation of the maternal and neonatal gut microbiome with probiotics resulted in transcriptional changes in genes related to neuropathic and immune-related signaling in whole brain and midbrain samples of prenatally methadone-exposed offspring. Together, our work provides compelling evidence of the gut-brain-axis in mediating pain sensitivity in prenatally opioid-exposed offspring.
Collapse
Affiliation(s)
- Yaa F. Abu
- Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Salma Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Junyi Tao
- Department of Surgery, University of Miami, Miami, FL, USA
| | | | - Praveen Singh
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Jingjing Meng
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami, Miami, FL, USA
| |
Collapse
|
8
|
Kambe J, Usuda K, Inoue R, Hirayama K, Ito M, Suenaga K, Masukado S, Liu H, Miyata S, Li C, Kimura I, Yamamoto Y, Nagaoka K. Hydrogen peroxide in breast milk is crucial for gut microbiota formation and myelin development in neonatal mice. Gut Microbes 2024; 16:2359729. [PMID: 38816999 PMCID: PMC11146441 DOI: 10.1080/19490976.2024.2359729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Early life environment influences mammalian brain development, a growing area of research within the Developmental Origins of Health and Disease framework, necessitating a deeper understanding of early life factors on children's brain development. This study introduces a mouse model, LAO1 knockout mice, to investigate the relationship between breast milk, the gut microbiome, and brain development. The results reveal that breast milk's reactive oxygen species (ROS) are vital in shaping the neonatal gut microbiota. Decreased hydrogen peroxide (H2O2) levels in milk disrupt the gut microbiome and lead to abnormal metabolite production, including D-glucaric acid. This metabolite inhibits hippocampal myelin formation during infancy, potentially contributing to behavioral abnormalities observed in adulthood. These findings suggest that H2O2 in breast milk is crucial for normal gut microbiota formation and brain development, with implications for understanding and potentially treating neurodevelopmental disorders in humans.
Collapse
Affiliation(s)
- Jun Kambe
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kento Usuda
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Kazuhiko Hirayama
- Laboratory of Veterinary Public Health, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ken Suenaga
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sora Masukado
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hong Liu
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shiho Miyata
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
9
|
Martínez-Ruiz S, Sáez-Fuertes L, Casanova-Crespo S, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Badia J, Baldoma L. Microbiota-Derived Extracellular Vesicles Promote Immunity and Intestinal Maturation in Suckling Rats. Nutrients 2023; 15:4701. [PMID: 37960354 PMCID: PMC10649425 DOI: 10.3390/nu15214701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Microbiota-host communication is primarily achieved by secreted factors that can penetrate the mucosal surface, such as extracellular membrane vesicles (EVs). The EVs released by the gut microbiota have been extensively studied in cellular and experimental models of human diseases. However, little is known about their in vivo effects in early life, specifically regarding immune and intestinal maturation. This study aimed to investigate the effects of daily administration of EVs from probiotic and commensal E. coli strains in healthy suckling rats during the first 16 days of life. On days 8 and 16, we assessed various intestinal and systemic variables in relation to animal growth, humoral and cellular immunity, epithelial barrier maturation, and intestinal architecture. On day 16, animals given probiotic/microbiota EVs exhibited higher levels of plasma IgG, IgA, and IgM and a greater proportion of Tc, NK, and NKT cells in the spleen. In the small intestine, EVs increased the villi area and modulated the expression of genes related to immune function, inflammation, and intestinal permeability, shifting towards an anti-inflammatory and barrier protective profile from day 8. In conclusion, interventions involving probiotic/microbiota EVs may represent a safe postbiotic strategy to stimulate immunity and intestinal maturation in early life.
Collapse
Affiliation(s)
- Sergio Martínez-Ruiz
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Sáez-Fuertes
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Sergi Casanova-Crespo
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María J. Rodríguez-Lagunas
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Josefa Badia
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| | - Laura Baldoma
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (S.M.-R.); (L.S.-F.); (S.C.-C.); (J.B.)
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IRSJD), 08950 Barcelona, Spain
| |
Collapse
|
10
|
Hayashi A, Sakamoto N, Kobayashi K, Murata T. Enhancement of prostaglandin D 2-D prostanoid 1 signaling reduces intestinal permeability by stimulating mucus secretion. Front Immunol 2023; 14:1276852. [PMID: 37942331 PMCID: PMC10628818 DOI: 10.3389/fimmu.2023.1276852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction The intestinal barrier plays a crucial role in distinguishing foods from toxins. Prostaglandin D2 (PGD2) is one of the lipid-derived autacoids synthesized from cell membrane-derived arachidonic acid. We previously reported that pharmacological stimulation of PGD2 receptor, D prostanoid 1 (DP1) attenuated the symptoms of azoxymethane/dextran sodium sulfate-induced colitis and ovalbumin-induced food allergy in mouse models. These observations suggested that DP1 stimulation protects the intestinal barrier. The present study aimed to uncover the effects of DP1 stimulation on intestinal barrier function and elucidate the underlying mechanisms. Materials and methods Intestinal permeability was assessed in mice by measuring the transfer of orally administered fluorescein isothiocyanate-dextran (40 kDa) into the blood. The DP1 agonist BW245C (1 mg/kg) was administered 10 min prior to dextran administration. The intestinal permeability was confirmed using the ex vivo everted sac method. Tight junction integrity was evaluated in vitro by measuring the transepithelial electrical resistance (TER) in the human intestinal epithelial cell line Caco-2. Mucus secretion was assessed by observing Alcian Blue-stained intestinal sections. Results Pharmacological DP1 stimulation reduced intestinal permeability both in vivo and ex vivo. Immunohistochemical staining showed that DP1 was strongly expressed on the apical side of the epithelial cells. DP1 stimulation did not affect TER in vitro but induced mucus secretion from goblet cells. Mucus removal by a mucolytic agent N-acetyl-l-cysteine canceled the inhibition of intestinal permeability by DP1 stimulation. Conclusion These observations suggest that pharmacological DP1 stimulation decreases intestinal permeability by stimulating mucus secretion.
Collapse
Affiliation(s)
- Akane Hayashi
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoaki Sakamoto
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Kobayashi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahisa Murata
- Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Gajda-Morszewski P, Poznańska A, Yus C, Arruebo M, Brindell M. Encapsulation of Iron-Saturated Lactoferrin for Proteolysis Protection with Preserving Iron Coordination and Sustained Release. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2524. [PMID: 37764553 PMCID: PMC10535829 DOI: 10.3390/nano13182524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Lactoferrin (Lf) is a globular glycoprotein found mainly in milk. It has a very high affinity for iron(III) ions, and its fully saturated form is called holoLf. The antimicrobial, antiviral, anticancer, and immunomodulatory properties of Lf have been studied extensively for the past two decades. However, to demonstrate therapeutic benefits, Lf has to be efficiently delivered to the intestinal tract in its structurally intact form. This work aimed to optimize the encapsulation of holoLf in a system based on the versatile Eudragit® RS polymer to protect Lf against the proteolytic environment of the stomach. Microparticles (MPs) with entrapped holoLf were obtained with satisfactory entrapment efficiency (90-95%), high loading capacity (9.7%), and suitable morphology (spherical without cracks or pores). Detailed studies of the Lf release from the MPs under conditions that included simulated gastric or intestinal fluids, prepared according to the 10th edition of the European Pharmacopeia, showed that MPs partially protected holoLf against enzymatic digestion and ionic iron release. The preincubation of MPs loaded with holoLf under conditions simulating the stomach environment resulted in the release of 40% of Lf from the MPs. The protein released was saturated with iron ions at 33%, was structurally intact, and its iron scavenging properties were preserved.
Collapse
Affiliation(s)
- Przemysław Gajda-Morszewski
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland; (P.G.-M.); (A.P.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Prof. St. Łojasiewicza St 11, 30-348 Krakow, Poland
| | - Anna Poznańska
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland; (P.G.-M.); (A.P.)
| | - Cristina Yus
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Małgorzata Brindell
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland; (P.G.-M.); (A.P.)
| |
Collapse
|
12
|
Li W, Liu B, Lin Y, Xue P, Lu Y, Song S, Li Y, Szeto IMY, Ren F, Guo H. The application of lactoferrin in infant formula: The past, present and future. Crit Rev Food Sci Nutr 2022; 64:5748-5767. [PMID: 36533432 DOI: 10.1080/10408398.2022.2157792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human milk is universally regarded as the gold standard to fulfill nutrition needs of infants. Lactoferrin (LF) is a major multiple bioactive glycoprotein in human milk but little is presented in infant formula. LF can resist digestion in the infant gastrointestinal tract and is absorbed into the bloodstream in an intact form to perform physiological functions. Evidence suggest that LF prevents pathogen infection, promotes immune system development, intestinal development, brain development and bone health, as well as ameliorates iron deficiency anemia. However, more clinical studies of LF need to be further elucidated to determine an appropriate dosage for application in infant formula. LF is sensitive to denaturation induced by processing of infant formula such as heat treatments and spay drying. Thus, further studies should be focus on maximizing the retention of LF activity in the infant formula process. This review summarizes the structural features of LF. Then the digestion, absorption and metabolism of LF in infants are discussed, followed by the function of LF for infants. Further, we summarize LF in infant formula and effects of processing of infant formula on bioactivities of LF, as well as future perspectives of LF research.
Collapse
Affiliation(s)
- Wusun Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Biao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, PR China
| | - Yingying Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Peng Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Sijia Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, PR China
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| |
Collapse
|
13
|
Gleeson JP, Chaudhary N, Fein KC, Doerfler R, Hredzak-Showalter P, Whitehead KA. Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations. SCIENCE ADVANCES 2022; 8:eabm6865. [PMID: 35767604 PMCID: PMC9242445 DOI: 10.1126/sciadv.abm6865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Breast milk is chock-full of nutrients, immunological factors, and cells that aid infant development. Maternal cells are the least studied breast milk component, and their unique properties are difficult to identify using traditional techniques. Here, we characterized the cells in mature-stage breast milk from healthy donors at the protein, gene, and transcriptome levels. Holistic analysis of flow cytometry, quantitative polymerase chain reaction, and single-cell RNA sequencing data identified the predominant cell population as epithelial with smaller populations of macrophages and T cells. Two percent of epithelial cells expressed four stem cell markers: SOX2, TRA-1-60, NANOG, and SSEA4. Furthermore, milk contained six distinct epithelial lactocyte subpopulations, including three previously unidentified subpopulations programmed toward mucosal defense and intestinal development. Pseudotime analysis delineated the differentiation pathways of epithelial progenitors. Together, these data define healthy human maternal breast milk cells and provide a basis for their application in maternal and infant medicine.
Collapse
Affiliation(s)
- John P. Gleeson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Katherine C. Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rose Doerfler
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Reiner J, Thiery J, Held J, Berlin P, Skarbaliene J, Vollmar B, Jaster R, Eriksson PO, Lamprecht G, Witte M. The dual GLP-1 and GLP-2 receptor agonist dapiglutide promotes barrier function in murine short bowel. Ann N Y Acad Sci 2022; 1514:132-141. [PMID: 35580981 DOI: 10.1111/nyas.14791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Short bowel syndrome can occur after extensive intestinal resection, causing intestinal insufficiency or intestinal failure, which requires long-term parenteral nutrition. Glucagon-like peptide-2 (GLP-2) pharmacotherapy is now clinically used to reduce the disease burden of intestinal failure. However, many patients still cannot be weaned off from parenteral nutrition completely. The novel dual GLP-1 and GLP-2 receptor agonist dapiglutide has previously been shown to be highly effective in a preclinical murine short bowel model. Here, we studied the effects of dapiglutide on intestinal epithelial barrier function. In the jejunum, dapiglutide increased claudin-7 expression and tightened the paracellular tight junction leak pathway. At the same time, dapiglutide promoted paracellular tight junction cation size selectivity in the jejunum. This was paralleled by extension of the cation selective tight junction proteins claudin-2 and claudin-10b and preserved claudin-15 expression and localization along the crypt-villus axis in the jejunum. In the colon, no barrier effects from dapiglutide were observed. In the colon, dapiglutide attenuated the short bowel-associated, compensatorily increased epithelial sodium channel activity, likely secondary, by improved volume status. Future studies are needed to address the intestinal adaptation of the colon.
Collapse
Affiliation(s)
- Johannes Reiner
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | - Johanna Thiery
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | - Jascha Held
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | - Peggy Berlin
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | | | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Robert Jaster
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | | | - Georg Lamprecht
- Division of Gastroenterology and Endocrinology, Rostock University Medical Center, Rostock, Germany
| | - Maria Witte
- Department of General, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
15
|
Wang ZW, Gao YN, Huang SN, Wang JQ, Zheng N. Ex Vivo and In Vitro Studies Revealed Underlying Mechanisms of Immature Intestinal Inflammatory Responses Caused by Aflatoxin M1 Together with Ochratoxin A. Toxins (Basel) 2022; 14:toxins14030173. [PMID: 35324670 PMCID: PMC8953104 DOI: 10.3390/toxins14030173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Aflatoxin M1 (AFM1) and ochratoxin A (OTA), which are occasionally detected in milk and commercial baby foods, could easily enter and reach the gastrointestinal tract, posing impairment to the first line of defense and causing dysfunction of the tissue. The objective of this study was to investigate the immunostimulatory roles of individual and combined AFM1 and OTA on the immature intestine. Thus, we used ELISA assays to evaluate the generation of cytokines from ex vivo CD-1 fetal mouse jejunum induced by AFM1 and OTA and explored the related regulatory pathways and pivot genes using RNA-seq analysis. It was found that OTA exhibited much stronger ability in stimulating pro-inflammatory cytokine IL-6 from jejunum tissues than AFM1 (OTA of 4 μM versus AFM1 of 50 μM), whereas the combination of the two toxins seemed to exert antagonistic actions. In addition, transcriptomics also showed that most gene members in the enriched pathway ‘cytokine–cytokine receptor interaction’ were more highly expressed in OTA than the AFM1 group. By means of PPI network analysis, NFKB1 and RelB were regarded as hub genes in response to OTA but not AFM1. In the human FHs 74 Int cell line, both AFM1 and OTA enhanced the content of reactive oxygen species, and the oxidative response was more apparent in OTA-treated cells in comparison with AFM1. Furthermore, OTA and AFM1 + OTA raised the protein abundance of p50/RelB, and triggered the translocation of the dimer from cytosol to nucleus. Therefore, the experimental data ex vivo and in vitro showed that OTA-induced inflammation was thought to be bound up with the up-regulation and translocation of NF-κB, though AFM1 seemed to have no obvious impact. Since it was the first attempt to uncover the appearances and inner mechanisms regarding inflammation provoked by AFM1 and OTA on immature intestinal models, further efforts are needed to understand the detailed metabolic steps of the toxin in cells and to clarify their causal relationship with the signals proposed from current research.
Collapse
Affiliation(s)
- Zi-Wei Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ya-Nan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Sheng-Nan Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jia-Qi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-W.W.); (Y.-N.G.); (S.-N.H.); (J.-Q.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
16
|
Pownall WR, Imhof D, Trigo NF, Ganal-Vonarburg SC, Plattet P, Monney C, Forterre F, Hemphill A, Oevermann A. Safety of a Novel Listeria monocytogenes-Based Vaccine Vector Expressing NcSAG1 ( Neospora caninum Surface Antigen 1). Front Cell Infect Microbiol 2021; 11:675219. [PMID: 34650932 PMCID: PMC8506043 DOI: 10.3389/fcimb.2021.675219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/21/2021] [Indexed: 02/01/2023] Open
Abstract
Listeria monocytogenes (LM) has been proposed as vaccine vector in various cancers and infectious diseases since LM induces a strong immune response. In this study, we developed a novel and safe LM-based vaccine vector platform, by engineering a triple attenuated mutant (Lm3Dx) (ΔactA, ΔinlA, ΔinlB) of the wild-type LM strain JF5203 (CC 1, phylogenetic lineage I). We demonstrated the strong attenuation of Lm3Dx while maintaining its capacity to selectively infect antigen-presenting cells (APCs) in vitro. Furthermore, as proof of concept, we introduced the immunodominant Neospora caninum (Nc) surface antigen NcSAG1 into Lm3Dx. The NcSAG1 protein was expressed by Lm3Dx_SAG1 during cellular infection. To demonstrate safety of Lm3Dx_SAG1 in vivo, we vaccinated BALB/C mice by intramuscular injection. Following vaccination, mice did not suffer any adverse effects and only sporadically shed bacteria at very low levels in the feces (<100 CFU/g). Additionally, bacterial load in internal organs was very low to absent at day 1.5 and 4 following the 1st vaccination and at 2 and 4 weeks after the second boost, independently of the physiological status of the mice. Additionally, vaccination of mice prior and during pregnancy did not interfere with pregnancy outcome. However, Lm3Dx_SAG1 was shed into the milk when inoculated during lactation, although it did not cause any clinical adverse effects in either dams or pups. Also, we have indications that the vector persists more days in the injected muscle of lactating mice. Therefore, impact of physiological status on vector dynamics in the host and mechanisms of milk shedding requires further investigation. In conclusion, we provide strong evidence that Lm3Dx is a safe vaccine vector in non-lactating animals. Additionally, we provide first indications that mice vaccinated with Lm3Dx_SAG1 develop a strong and Th1-biased immune response against the Lm3Dx-expressed neospora antigen. These results encourage to further investigate the efficiency of Lm3Dx_SAG1 to prevent and treat clinical neosporosis.
Collapse
Affiliation(s)
- William Robert Pownall
- Division of Small Animal Surgery, Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, DIP, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Department for BioMedical Research (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephanie C. Ganal-Vonarburg
- Department for BioMedical Research (DBMR), Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philippe Plattet
- Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Camille Monney
- Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Franck Forterre
- Division of Small Animal Surgery, Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, DIP, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Moghimipour E, Abedishirehjin S, Baghbadorani MA, Handali S. Bacteria and Archaea: A new era of cancer therapy. J Control Release 2021; 338:1-7. [PMID: 34391833 DOI: 10.1016/j.jconrel.2021.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
Cancer is one of the most important mortality in the world. The major drawbacks of chemotherapy are the poor absorption of drugs into tumor tissues and development of resistance against anti-cancer agents. To overcome these limitations, the use of microorganisms has been extensively considered in the treatment of cancer. Microorganisms (bacteria/Archaea) secrete different bioactive compounds that can efficiently inhibit cancer cells growth. Biological nanocarriers derived from microorganisms including outer membrane vesicles (OMVs), bacterial ghosts (BGs) and archaeosomes have also been considered as drug delivery systems. Conjugation of drug loaded nanocarriers to bacteria strongly kills the cancer cells after internalization through the bacteria. Merging of microbiology and nanotechnology may provide versatile microbial nano-hybrids for promising treatment of cancer. This strategy causes more amount of drug to enter into cancer cells. In this review, we present evidence that microorganism, their derivatives as well as their intervention with nanotechnology can be a powerful vehicle for eradication cancer.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Abedishirehjin
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Gleeson JP, Fein KC, Whitehead KA. Oral delivery of peptide therapeutics in infants: Challenges and opportunities. Adv Drug Deliv Rev 2021; 173:112-124. [PMID: 33774115 PMCID: PMC8178217 DOI: 10.1016/j.addr.2021.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
The vast majority of drugs are not designed or developed for pediatric and infant populations. Peptide drugs, which have become increasingly relevant in the past several decades, are no exception. Unfortunately, nearly all of the 60+ approved peptide drugs are formulated for injection, a particularly unfriendly mode of administration for infants. Although three peptide drugs were recently approved for oral formulations, this major advance in peptide drug delivery is available only for adults. In this review, we consider the current challenges and opportunities for the oral formulation of peptide therapeutics, specifically for infant populations. We describe the strategies that enable oral protein delivery and the potential impact of infant physiology on those strategies. We also detail the limited but encouraging progress towards 1) adapting conventional drug development and delivery approaches to infants and 2) designing novel infant-centric formulations. Together, these efforts underscore the feasibility of oral peptide delivery in infants and provide motivation to increase attention paid to this underserved area of drug delivery and formulation.
Collapse
Affiliation(s)
- John P Gleeson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|