1
|
Chen L, Xue X, Wang F, Song R, Zhu Y, Ning J, Zha W, Deng X, Hang L, Gu W, Yuan H. Differences in the permeation of Licoricchalcone A-polysaccharide self-assembled nanoparticles on healthy and DNCB-induced atopic dermatitis in Balb/c mice. Int J Biol Macromol 2024; 282:136984. [PMID: 39490465 DOI: 10.1016/j.ijbiomac.2024.136984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Nanoformulation have been widely used in skin and transdermal drug delivery. However, the differences in integral nanoparticles absorption in healthy and diseased skin have not yet fully analyzed. The present study attempted to explore the percutaneous absorption of drugs via lesional skin by using atopic dermatitis (AD) as a model, dinitrochlorobenzene (DNCB) induced AD-like skin. In here, the small molecules of insoluble Licoricchalcone A (LA) and macromolecules glycyrrhizin polysaccharide were used to prepare LA-polysaccharide self-assembled nanoparticles (GPA-SANs) by micro-precipitation. An environment-responsive dye, P4, was loaded into SAN to track the transdermal translocation of the nanoparticles, while the drug marked with coumarin 6 (C6). Compared to healthy skin, the permeability of GPA-SANs on AD-like skin is stronger, which may be due to damage to the stratum corneum of the AD-like skin and increased intercellular spaces, resulting in an increased permeability coefficient. Therefore, the storage of nanoparticles and their diffusion at the lesion site also increased accordingly. CLSM shown that the fluorescence of P4 and C6 is observed to concentrate around the hair follicles and disseminate in the surrounding area in both AD-affected and healthy skin. It can be clearly seen that fluorescence signal of C6 in the intercellular spaces of the dermis and epidermis of AD-like skin, indicating that nano-drug on the disease skin can penetrate through the intercellular pathway to achieve therapeutic. The focus of the present study is to assess the permeability of healthy and disease skin, discuss their characteristics and discrepancy, aiming to provide a reference for the further study of nano-formulations in transdermal delivery.
Collapse
Affiliation(s)
- Li Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, Sichuan, China; Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Xuye Xue
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Fang Wang
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Rui Song
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - YuWen Zhu
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Jiantao Ning
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Wenting Zha
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Xiang Deng
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China
| | - Lingyu Hang
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China.
| | - Weijie Gu
- Department of Dermatology, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China.
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China.
| |
Collapse
|
2
|
Jin S, Wan S, Xiong R, Li Y, Dong T, Guan C. The role of regulatory T cells in vitiligo and therapeutic advances: a mini-review. Inflamm Res 2024; 73:1311-1332. [PMID: 38839628 DOI: 10.1007/s00011-024-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo. RESULTS In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed. CONCLUSIONS A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.
Collapse
Affiliation(s)
- Shiyu Jin
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Sheng Wan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Renxue Xiong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Yujie Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Tingru Dong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Cuiping Guan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Abdallah MH, Shahien MM, Alshammari A, Ibrahim S, Ahmed EH, Atia HA, Elariny HA. The Exploitation of Sodium Deoxycholate-Stabilized Nano-Vesicular Gel for Ameliorating the Antipsychotic Efficiency of Sulpiride. Gels 2024; 10:239. [PMID: 38667658 PMCID: PMC11048809 DOI: 10.3390/gels10040239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
The present study explored the effectiveness of bile-salt-based nano-vesicular carriers (bilosomes) for delivering anti-psychotic medication, Sulpiride (Su), via the skin. A response surface methodology (RSM), using a 33 Box-Behnken design (BBD) in particular, was employed to develop and optimize drug-loaded bilosomal vesicles. The optimized bilosomes were assessed based on their vesicle size, entrapment efficiency (% EE), and the amount of Sulpiride released. The Sulpiride-loaded bilosomal gel was generated by incorporating the optimized Su-BLs into a hydroxypropyl methylcellulose polymer. The obtained gel was examined for its physical properties, ex vivo permeability, and in vivo pharmacokinetic performance. The optimum Su-BLs exhibited a vesicle size of 211.26 ± 10.84 nm, an encapsulation efficiency of 80.08 ± 1.88% and a drug loading capacity of 26.69 ± 0.63%. Furthermore, the use of bilosomal vesicles effectively prolonged the release of Su over a period of twelve hours. In addition, the bilosomal gel loaded with Su exhibited a three-fold increase in the rate at which Su transferred through the skin, in comparison to oral-free Sulpiride. The relative bioavailability of Su-BL gel was almost four times as high as that of the plain Su suspension and approximately two times as high as that of the Su gel. Overall, bilosomes could potentially serve as an effective technique for delivering drugs through the skin, specifically enhancing the anti-psychotic effects of Sulpiride by increasing its ability to penetrate the skin and its systemic bioavailability, with few adverse effects.
Collapse
Affiliation(s)
- Marwa H. Abdallah
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mona M. Shahien
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia; (M.M.S.); (S.I.)
| | - Alia Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia;
| | - Somaia Ibrahim
- Department of Pediatrics, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia; (M.M.S.); (S.I.)
| | - Enas Haridy Ahmed
- Department of Anatomy, College of Medicine, University of Ha’il, Ha’il 81442, Saudi Arabia;
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Hanan Abdelmawgoud Atia
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (H.A.A.); (H.A.E.)
- Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Hemat A. Elariny
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Ha’il, Ha’il 81442, Saudi Arabia; (H.A.A.); (H.A.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| |
Collapse
|
4
|
Mahajan A, Sharma G, Thakur A, Singh B, Mehta H, Mittal N, Dogra S, Katare OP. Tofacitinib in dermatology: a potential opportunity for topical applicability through novel drug-delivery systems. Nanomedicine (Lond) 2024; 19:79-101. [PMID: 38197372 DOI: 10.2217/nnm-2023-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Tofacitinib is a first-generation JAK inhibitor approved by the US FDA for treating rheumatoid arthritis. It exhibits a broad-spectrum inhibitory effect with abilities to block JAK-STAT signalling. The primary objective of this review is to obtain knowledge about cutting-edge methods for effectively treating a variety of skin problems by including tofacitinib into formulations that are based on nanocarriers. The review also highlights clinical trials and offers an update on published clinical patents. Nanocarriers provide superior performance compared to conventional treatments in terms of efficacy, stability, drug bioavailability, target selectivity and sustained drug release. Current review has the potential to make significant contributions to the ongoing discussion involving dermatological treatments and the prospective impact of nanotechnology on transforming healthcare within this field.
Collapse
Affiliation(s)
- Akanksha Mahajan
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Anil Thakur
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Hitaishi Mehta
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Neeraj Mittal
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Sunil Dogra
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC-centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
5
|
Liu J, Guo S, Hong S, Piao J, Piao M. Transdermal Drug Delivery System of Linagliptin Sustained-release Microparticle Gels: In vitro Characterization and In vivo Evaluation. Curr Drug Deliv 2024; 21:1537-1547. [PMID: 38243939 DOI: 10.2174/0115672018279370240103062944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Linagliptin (LNG) exhibits poor bioavailability and numerous side effects, significantly limiting its use. Transdermal drug delivery systems (TDDS) offer a potential solution to overcome the first-pass effect and gastrointestinal reactions associated with oral formulations. OBJECTIVE The aim of this study was to develop LNG microparticle gels to enhance drug bioavailability and mitigate side effects. METHODS Linagliptin hyaluronic acid (LNG-HA) microparticles were prepared by spray drying method and their formulation was optimized via a one-factor method. The solubility and release were investigated using the slurry method. LNG-HA microparticle gels were prepared and optimised using in vitro transdermal permeation assay. The hypoglycaemic effect of the LNG-HA microparticle gel was examined on diabetic mice. RESULTS The results indicated that the LNG-HA microparticle encapsulation rate was 84.46%. Carbomer was selected as the gel matrix for the microparticle gels. Compared to the oral API, the microparticle gel formulation demonstrated a distinct biphasic release pattern. In the first 30 minutes, only 43.56% of the drug was released, followed by a gradual release. This indicates that the formulation achieved a slow-release effect from a dual reservoir system. Furthermore, pharmacodynamic studies revealed a sustained hypoglycemic effect lasting for 48 hours with the LNG microparticle gel formulation. CONCLUSION These findings signify that the LNG microparticle gel holds significant clinical value for providing sustained release and justifies its practical application.
Collapse
Affiliation(s)
- Jiayan Liu
- College of Pharmacy, Yanbian University, Yanji, P.R. China
| | - Song Guo
- College of Pharmacy, Yanbian University, Yanji, P.R. China
| | - Shuai Hong
- College of Pharmacy, Yanbian University, Yanji, P.R. China
| | - Jingshu Piao
- College of Pharmacy, Yanbian University, Yanji, P.R. China
| | - Mingguan Piao
- College of Pharmacy, Yanbian University, Yanji, P.R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, P.R. China
| |
Collapse
|
6
|
van Staden D, Haynes RK, Viljoen JM. The Development of Dermal Self-Double-Emulsifying Drug Delivery Systems: Preformulation Studies as the Keys to Success. Pharmaceuticals (Basel) 2023; 16:1348. [PMID: 37895819 PMCID: PMC10610238 DOI: 10.3390/ph16101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Self-emulsifying drug delivery systems (SEDDSs) are lipid-based systems that are superior to other lipid-based oral drug delivery systems in terms of providing drug protection against the gastrointestinal (GI) environment, inhibition of drug efflux as mediated by P-glycoprotein, enhanced lymphatic drug uptake, improved control over plasma concentration profiles of drugs, enhanced stability, and drug loading efficiency. Interest in dermal spontaneous emulsions has increased, given that systems have been reported to deliver drugs across mucus membranes, as well as the outermost layer of the skin into the underlying layers. The background and development of a double spontaneous emulsion incorporating four anti-tubercular drugs, clofazimine (CFZ), isoniazid (INH), pyrazinamide (PZY), and rifampicin (RIF), are described here. Our methods involved examination of oil miscibility, the construction of pseudoternary phase diagrams, the determination of self-emulsification performance and the emulsion stability index of primary emulsions (PEs), solubility, and isothermal micro calorimetry compatibility and examination of emulsions via microscopy. Overall, the potential of self-double-emulsifying drug delivery systems (SDEDDSs) as a dermal drug delivery vehicle is now demonstrated. The key to success here is the conduct of preformulation studies to enable the development of dermal SDEDDSs. To our knowledge, this work represents the first successful example of the production of SDEDDSs capable of incorporating four individual drugs.
Collapse
Affiliation(s)
- Daniélle van Staden
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
| | - Richard K. Haynes
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
- Rural Health Research Institute, Charles Sturt University, 346 Leeds Parade, Orange, NSW 2800, Australia
| | - Joe M. Viljoen
- Faculty of Health Sciences, Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), Building G16, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; (D.v.S.); (R.K.H.)
| |
Collapse
|
7
|
Carreño GF, Álvarez-Figueroa MJ, González-Aramundiz JV. Dextran Nanocapsules with ω-3 in Their Nucleus: An Innovative Nanosystem for Imiquimod Transdermal Delivery. Pharmaceutics 2022; 14:pharmaceutics14112445. [PMID: 36432637 PMCID: PMC9695725 DOI: 10.3390/pharmaceutics14112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Transdermal administration of molecules across the skin has gained interest because it can be considered a non-invasive route compared with traditional ones. However, going through the skin is challenging due to the presence of the stratum corneum, the main barrier of substances. For this reason, the goal of this research was the combination of omega-3 (ω-3) and a dextran sulfate assembly in a nanostructure form, which allows passage through the skin and improves the bioavailability and the therapeutic profiles of active molecules, such as imiquimod. Here we report a new colloidal system, named dextran nanocapsules, with ω-3 in its nucleus and a coat made of dextran sulfate with a size ~150 nm, monomodal distribution, and negative zeta potential (~-33 mV). This nanosystem encapsulates imiquimod with high efficacy (~86%) and can release it in a controlled fashion following Korsmeyer-Peppas kinetics. This formulation is stable under storage and physiological conditions. Furthermore, a freeze-dried product could be produced with different cryoprotectants and presents a good security profile in the HaCaT cell line. Ex vivo assays with newborn pig skin showed that dextran nanocapsules promote transdermal delivery and retention 10 times higher than non-encapsulated imiquimod. These promising results make this nanosystem an efficient vehicle for imiquimod transdermal delivery.
Collapse
Affiliation(s)
- Gisela F. Carreño
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - María Javiera Álvarez-Figueroa
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (M.J.Á.-F.); (J.V.G.-A.)
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (M.J.Á.-F.); (J.V.G.-A.)
| |
Collapse
|
8
|
Gold nanoparticles for skin drug delivery. Int J Pharm 2022; 625:122122. [PMID: 35987319 DOI: 10.1016/j.ijpharm.2022.122122] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 02/01/2023]
Abstract
Nanoparticle-based drug carriers are being pursued intensely to overcome the skin barrier and improve even hydrophilic or macromolecular drug delivery into or across the skin efficiently. Over the past few years, the application of gold nanoparticles as a novel kind of drug carrier for skin drug delivery has attracted increasing attention because of their unique properties and versatility. In this review, we summarized the possible factors contributing to the penetration behaviors of gold nanoparticles, including size, surface chemistry, and shape. Drug loading, release, and penetration patterns were captured towards implicating the design of gold nanoparticles for dermal or transdermal drug delivery. Physical methods applicable for future enhancing the delivery efficacy of GNPs were also presented, which mainly included microneedles and iontophoresis. As a promising "drug", the inherent activities of GNPs were finally discussed, especially regarding their application in the treatment of skin disease. Thus, this paper provided a comprehensive review of the use of gold nanoparticles for skin drug delivery, which would help the design of multifunctional systems for skin drug delivery based on gold nanoparticles.
Collapse
|
9
|
Boss A, Heeb L, Vats D, Starsich FHL, Balfourier A, Herrmann IK, Gupta A. Assessment of iron nanoparticle distribution in mouse models using ultrashort-echo-time MRI. NMR IN BIOMEDICINE 2022; 35:e4690. [PMID: 34994020 PMCID: PMC9286043 DOI: 10.1002/nbm.4690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Microscopic magnetic field inhomogeneities caused by iron deposition or tissue-air interfaces may result in rapid decay of transverse magnetization in MRI. The aim of this study is to detect and quantify the distribution of iron-based nanoparticles in mouse models by applying ultrashort-echo-time (UTE) sequences in tissues exhibiting extremely fast transverse relaxation. In 24 C57BL/6 mice (two controls), suspensions containing either non-oxidic Fe or AuFeOx nanoparticles were injected into the tail vein at two doses (200 μg and 600 μg per mouse). Mice underwent MRI using a UTE sequence at 4.7 T field strength with five different echo times between 100 μs and 5000 μs. Transverse relaxation times T2 * were computed for the lung, liver, and spleen by mono-exponential fitting. In UTE imaging, the MRI signal could reliably be detected even in liver parenchyma exhibiting the highest deposition of nanoparticles. In animals treated with Fe nanoparticles (600 μg per mouse), the relaxation time substantially decreased in the liver (3418 ± 1534 μs (control) versus 228 ± 67 μs), the spleen (2170 ± 728 μs versus 299 ± 97 μs), and the lungs (663 ± 101 μs versus 413 ± 99 μs). The change in transverse relaxation was dependent on the number and composition of the nanoparticles. By pixel-wise curve fitting, T2 * maps were calculated showing nanoparticle distribution. In conclusion, UTE sequences may be used to assess and quantify nanoparticle distribution in tissues exhibiting ultrafast signal decay in MRI.
Collapse
Affiliation(s)
- Andreas Boss
- Institute of Diagnostic and Interventional RadiologyUniversity Hospital ZurichZurichSwitzerland
| | - Laura Heeb
- Division of Visceral SurgeryUniversity Hospital ZurichZurichSwitzerland
| | | | - Fabian H. L. Starsich
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. GallenSwitzerland
- Department of Mechanical and Process Engineering, ETH ZurichNanoparticle Systems Engineering LaboratoryZurichSwitzerland
| | - Alice Balfourier
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. GallenSwitzerland
- Department of Mechanical and Process Engineering, ETH ZurichNanoparticle Systems Engineering LaboratoryZurichSwitzerland
| | - Inge K. Herrmann
- Laboratory for Particles‐Biology InteractionsSwiss Federal Laboratories for Materials Science and Technology (Empa)St. GallenSwitzerland
- Department of Mechanical and Process Engineering, ETH ZurichNanoparticle Systems Engineering LaboratoryZurichSwitzerland
| | - Anurag Gupta
- Division of Visceral SurgeryUniversity Hospital ZurichZurichSwitzerland
| |
Collapse
|
10
|
Han S, Jang HS, Shim JH, Kang M, Lee Y, Park JS, Kim M, Abudureyimu G, Lee D, Koo H. Development of minoxidil-loaded double emulsion PLGA nanoparticles for the treatment of hair loss. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|