1
|
Miyamoto K, Sujino T, Kanai T. The tryptophan metabolic pathway of the microbiome and host cells in health and disease. Int Immunol 2024; 36:601-616. [PMID: 38869080 DOI: 10.1093/intimm/dxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The intricate and dynamic tryptophan (Trp) metabolic pathway in both the microbiome and host cells highlights its profound implications for health and disease. This pathway involves complex interactions between host cellular and bacteria processes, producing bioactive compounds such as 5-hydroxytryptamine (5-HT) and kynurenine derivatives. Immune responses to Trp metabolites through specific receptors have been explored, highlighting the role of the aryl hydrocarbon receptor in inflammation modulation. Dysregulation of this pathway is implicated in various diseases, such as Alzheimer's and Parkinson's diseases, mood disorders, neuronal diseases, autoimmune diseases such as multiple sclerosis (MS), and cancer. In this article, we describe the impact of the 5-HT, Trp, indole, and Trp metabolites on health and disease. Furthermore, we review the impact of microbiome-derived Trp metabolites that affect immune responses and contribute to maintaining homeostasis, especially in an experimental autoimmune encephalitis model of MS.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Miyarisan Pharmaceutical Co., Research Laboratory, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
- Keio Global Research Institute, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Abdelkader H, Fatease AA, Fathalla Z, Shoman ME, Abou-Taleb HA. Meloxicam-amino acids salts/ion pair complexes with advanced solubility, dissolution, and gastric safety. Pharm Dev Technol 2024:1-9. [PMID: 39422559 DOI: 10.1080/10837450.2024.2417766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Amino acids have attracted attention as a potential functional excipient for optimizing biopharmaceutics characteristics of poorly soluble drugs. The amino acids are a diverse class with many functional groups, natural compounds, biocompatible, and low-molecular-weight substances. Two amino acids serine and arginine were investigated with meloxicam. Meloxicam has extremely low solubility; being NSAIDs, gastric upset, and ulcer are common side effects. Solid dispersions were produced by precipitation and physical mixing techniques. The produced combinations underwent in vitro dissolution, docking, DSC, FTIR, XRD, solubility, and gastric ulcer formation studies. Docking indicated ion pair/salt formation between the basic amino acid arginine and meloxicam. Both solubility and dissolution rates were increased by up to 3000-fold and 12-fold, respectively. DSC, FTIR an XRD supported these findings. Rats treated with meloxicam showed loss of surface gastric epithelium integrity and ulceration. The animal group received meloxicam: arginine showed intact gastric mucosa with the surface epithelium and gastric glands well organized and nearly similar to the untreated control. Arginine with the guanidine group that was capable of preserving gastric mucosa after repeated administration for 10 days. This study highlighted the role of arginine as a functional excipient that did not only improve solubility and dissolution rates but ameliorated the long-standing gastric side effects attributed to meloxicam.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Zeinab Fathalla
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mai E Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Suhag, Egypt
| |
Collapse
|
3
|
Gruzdev DA, Telegina AA, Ezhikova MA, Kodess MI, Levit GL, Krasnov VP. Synthesis of Novel Planar-Chiral Charge-Compensated nido-Carborane-Based Amino Acid. Molecules 2024; 29:4487. [PMID: 39339482 PMCID: PMC11434195 DOI: 10.3390/molecules29184487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Amino acids with unusual types of chirality and their derivatives have recently attracted attention as precursors in the synthesis of chiral catalysts and peptide analogues with unique properties. In this study, we have synthesized a new nido-carborane-based planar-chiral amino acid, in the molecule of which the amino group is directly bonded to the B(3) atom, and the carboxyl group is attached to the B(9) atom through the CH2S+(Me) fragment. 3-Amino-9-dimethylsulfonio-nido-carborane, prepared in three steps from 3-amino-closo-carborane in a high yield, was a key intermediate in the synthesis of the target planar-chiral amino acid. The carboxymethyl group at the sulfur atom was introduced by the demethylation reaction of the dimethylsulfonio derivative, followed by S-alkylation. The structure of new 3,9-disubstituted nido-carboranes was studied for the first time using NMR spectroscopy. The resonances of all boron atoms in the 11B NMR spectrum of 3-amino-9-dimethylsulfonio-nido-carborane were assigned based on the 2D NMR correlation experiments. The nido-carborane-based planar-chiral amino acid and related compounds are of interest as a basis for peptide-like compounds and chiral ligands.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Angelina A Telegina
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), Ekaterinburg 620108, Russia
| |
Collapse
|
4
|
Lv JY, Ingle RG, Wu H, Liu C, Fang WJ. Histidine as a versatile excipient in the protein-based biopharmaceutical formulations. Int J Pharm 2024; 662:124472. [PMID: 39013532 DOI: 10.1016/j.ijpharm.2024.124472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Adequate stabilization is essential for marketed protein-based biopharmaceutical formulations to withstand the various stresses that can be exerted during the pre- and post-manufacturing processes. Therefore, a suitable choice of excipient is a significant step in the manufacturing of such delicate products. Histidine, an essential amino acid, has been extensively used in protein-based biopharmaceutical formulations. The physicochemical properties of histidine are unique among amino acids and could afford multifaceted benefits to protein-based biopharmaceutical formulations. With a pKa of approximately 6.0 at the side chain, histidine has been primarily used as a buffering agent, especially for pH 5.5-6.5. Additionally, histidine exhibited several affirmative properties similar to those of carbohydrates (e.g., sucrose and trehalose) and could therefore be considered to be an alternative approach to established protein-based formulation strategies. The current review describes the general physicochemical properties of histidine, lists all commercial histidine-containing protein-based biopharmaceutical products, and discusses a brief outline of the existing research focused on the versatile applications of histidine, which can act as a buffering agent, stabilizer, cryo-/lyo-protectant, antioxidant, viscosity reducer, and solubilizing agent. The interaction between histidine and proteins in protein-based biopharmaceutical formulations, such as the Donnan effect during diafiltration of monoclonal antibody solutions and the degradation of polysorbates in histidine buffer, has also been discussed. As the first review of histidine in protein biopharmaceuticals, it helps to deepen our understanding of the opportunities and challenges associated with histidine as an excipient for protein-based biopharmaceutical formulations.
Collapse
Affiliation(s)
- Jia-Yi Lv
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taizhou Institute of Zhejiang University, Taizhou, Zhejiang 317000, China; School of Pharmaceutical Sciences, Xiamen University, 4221 Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rahul G Ingle
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education & Research (Deemed to University), Sawangi, Wardha, India
| | - Hao Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Cuihua Liu
- Bio-Thera Solutions, Ltd, Guangzhou, Guangdong 510530, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taizhou Institute of Zhejiang University, Taizhou, Zhejiang 317000, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
5
|
Yang C, Li X, Deng Y, Qiu W, Chen L, Li L, Wang AL, Feng Y, Jin Y, Tao N, Li F, Jin Y. Effects of high voltage pulsed electric field on structural properties and immune reactivity of arginine kinase in Fenneropenaeus chinensis. Food Chem 2024; 449:139304. [PMID: 38608611 DOI: 10.1016/j.foodchem.2024.139304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
To evaluate the effect of high voltage pulsed electric field (PEF) treatment (10-20 kV/cm, 5-15 min) on the structural characteristics and sensitization of crude extracts of arginine kinase from Fenneropenaeus chinensis. By simulated in vitro gastric juice digestion (SGF), intestinal juice digestion (SIF) and enzyme-linked immunosorbent assay (ELISA), AK sensitization was reduced by 42.5% when treated for 10 min at an electric field intensity of 15 kV/cm. After PEF treatment, the α-helix content decreased, and the α-helix content gradually changed to β-sheet and β-turn. Compared to the untreated group, the surface hydrophobicity increased and the sulfhydryl content decreased. SEM and AFM analyses showed that the treated sample surface formed a dense porous structure and increased roughness. The protein content, dielectric properties, and amino acid content of sample also changed significantly with the changes in the treatment conditions. Non-thermal PEF has potential applications in the development of hypoallergenic foods.
Collapse
Affiliation(s)
- Chenyu Yang
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Xiaomin Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Yun Deng
- Department of Food Science and Technology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weiqiang Qiu
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Lanming Chen
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Li Li
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Ashily Liang Wang
- ADM (Shanghai) Management Co. Ltd., Room 220, 2nd Floor, Juyang Building, 1200 Pudong 17 Avenue, China (Shanghai) Pilot Free Trade Zone, Shanghai 200135, China
| | - Yuhui Feng
- Jilin Tobacco Industry Co., Ltd., Changbai Dong Road 2099, Yanji City, Jilin 133000, China
| | - Yingshan Jin
- College of Bioscience and Technology, Yangzhou University, Wenhui Dong Road 48, Yangzhou City, Jiangsu 277600, China
| | - Ningping Tao
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China
| | - Feng Li
- School of Electrical Engineering, Shanghai University of Electric Power, 1851 Hucheng Ring Road, Shanghai 200090, China
| | - Yinzhe Jin
- Engineering Research Center of Food Thermal-Processing Technology, College of Food Science and Technology, Shanghai Ocean University, Hucheng Huan Road 999, Pudong, Shanghai 201306, China.
| |
Collapse
|
6
|
Yao M, Chang L, Xu S, Zhang J, Li P, Tian B, Luo L, Yang D, Long Q, Zou X. Comparison of production performance and meat quality characteristics between Guizhou Black goats and F4 generation hybrids of South African Kalahari Goats. Sci Rep 2024; 14:18608. [PMID: 39127724 PMCID: PMC11316849 DOI: 10.1038/s41598-024-69174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
This study spanned 6 years and 4 generations, involving the progressive crossbreeding of South African Kalahari Goat (SK) and Guizhou Black Goat (GB) over three generations, followed by cross fixation F3 with F1 in the fourth generation, accompanied by the use of molecular markers technology to select a high fertility population, resulting in the creation of a hybrid goat, BKF4 (11/16 SK lineage and 5/16 GB lineage). A comparative evaluation of the BKF4 hybrid breed and its parental breeds was conducted. Reproductive and production parameters of GB, SK, and BKF4 goat groups were monitored, including lambing rate (LR), survival rate (SR), daily weight gain at 3 months of age (DWG), and adult body weight (ABW) (n = 110, 106, 112 per group). In addition, dressing percentage (DP) (n = 12 per group) and analyses of amino acids (n = 8, 6, 10 per group) and fatty acids (n = 6 per group) were conducted to evaluate meat quality indicators. Results: (1) Reproductive and production performance: The index of LR reached 199%, significantly higher than GB and SK (p ≤ 0.001), with a SR of 95.0%, markedly higher than SK (p ≤ 0.001); DWG was 276.5 g, ABW reached 56.6 kg and with a dressing percentage (DP) of 54.5%, they are significantly surpassing GB (p ≤ 0.001). (2) Regarding meat quality: pH45-value and crude protein content (CP) increased, while intramuscular fat content increased compared to GB and ash content decreased. The amino acid composition was similar to GB, but the taste was more similar to SK. However, there were some negative impacts on fatty acid composition and functionality. (3) PCA analysis revealed that: BKF4 exhibited superior meat quality compared to GB and SK, influenced by two key factors contributing 83.49% and 16.51% to the explained variance, respectively. The key factors affecting meat quality include intramuscular fat (IMF), nutrient index (NI), PUFAs/MUFAs, n-6FAs, and drip loss (DL).
Collapse
Affiliation(s)
- Min Yao
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou Province, China
| | - Lingle Chang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 500025, Guizhou Province, China
| | - Suyun Xu
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Jing Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Guiyang, 550005, Guizhou Province, China
| | - Ping Li
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou Province, China
| | - Bing Tian
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou Province, China
| | - Li Luo
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Danpin Yang
- Guizhou Kalahari Goat Breeding Company, Qianxinan, 562400, Guizhou Province, China
| | - Qingmeng Long
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou Province, China.
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
7
|
He W, Huang Z, Nian C, Huang L, Kong M, Liao M, Zhang Q, Li W, Hu Y, Wu J. Discovery and evaluation of novel spiroheterocyclic protective agents via a SIRT1 upregulation mechanism in cisplatin-induced premature ovarian failure. Bioorg Med Chem 2024; 110:117834. [PMID: 39029436 DOI: 10.1016/j.bmc.2024.117834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Currently, no effective treatment exists for premature ovarian failure (POF). To obtain compounds with protective effects against POF, we aimed to design and synthesize a series of spiroheterocyclic protective agents with a focus on minimizing toxicity while enhancing their protective effect against cisplatin-induced POF. This was achieved through systematic modifications of Michael receptors and linkers within the molecular structure of 1,5-diphenylpenta-1,4-dien-3-one analogs. To assess the cytotoxicity and activity of these compounds, we constructed quantitative conformational relationship models using an artificial intelligence random forest algorithm, resulting in R2 values exceeding 0.87. Among these compounds, j2 exhibited optimal protective activity. It significantly increased the survival of cisplatin-injured ovarian granulosa KGN cells, improved post-injury cell morphology, reduced apoptosis, and enhanced cellular estradiol (E2) levels. Subsequent investigations revealed that j2 may exert its protective effect via a novel mechanism involving the activation of the SIRT1/AKT signal pathway. Furthermore, in cisplatin-injured POF in rats, j2 was effective in increasing body, ovarian, and uterine weights, elevating the number of follicles at all levels in the ovary, improving ovarian and uterine structures, and increasing serum E2 levels in rats with cisplatin-injured POF. In conclusion, this study introduces a promising compound j2 and a novel target SIRT1 with substantial protective activity against cisplatin-induced POF.
Collapse
Affiliation(s)
- Wenfei He
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China.
| | - Zhicheng Huang
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, Ezhou Central Hospital, Ezhou, Hubei 436000, China
| | - Chunhui Nian
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Luoqi Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Miaomiao Kong
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Mengqin Liao
- School of Pharmaceutical Sciences, Wenzhou Medical Universtiy, Wenzhou, Zhejiang 325035, China
| | - Qiong Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wulan Li
- The 1th Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yue Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Jianzhang Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of the Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang 325000, China; The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University; Wenzhou 325027, China.
| |
Collapse
|
8
|
Chakraborty J, Mahali K, Henaish AMA, Ahmed J, Alshehri SM, Hossain A, Roy S. Exploring the solubility and intermolecular interactions of biologically significant amino acids l-serine and L-cysteine in binary mixtures of H 2O + DMF, H 2O + DMSO and H 2O + ACN in temperature range from T = 288.15 K to 308.15 K. Biophys Chem 2024; 311:107272. [PMID: 38824845 DOI: 10.1016/j.bpc.2024.107272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/14/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024]
Abstract
In the presented work, a study on the solubility and intermolecular interactions of l-serine and L-cysteine was carried out in binary mixtures of H2O + dimethylformamide (DMF), H2O + dimethylsulfoxide (DMSO), and H2O + acetonitrile (ACN) in the temperature range of T = 288.15 K to 308.15 K. l-serine exhibited the highest solubility in water, while L-cysteine was more soluble in water-DMF. The solvation process was assessed through standard Gibbs energy calculations, indicating the solvation stability order: water-ACN > water-DMSO > water-DMF for l-serine, and water-DMF > water-DMSO > water-ACN for L-cysteine. This study also explored the influence of these amino acids on solvent-solvent interactions, revealing changes in chemical entropies and self-association patterns within the binary solvent mixtures.
Collapse
Affiliation(s)
- Jit Chakraborty
- Department of Chemistry, University of Kalyani, Kalyani 741235, Nadia, India; Department of Chemistry, JIS College of Engineering, Kalyani 741235, Nadia, India
| | - Kalachand Mahali
- Department of Chemistry, University of Kalyani, Kalyani 741235, Nadia, India.
| | - A M A Henaish
- Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; NANOTECH Center, Ural Federal University, Ekaterinburg 620002, Russia
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aslam Hossain
- Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russian Federation
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Netaji Subhas Open University, Kolkata, West Bengal, India.
| |
Collapse
|
9
|
Li W, Zheng X, Xu BB, Yang Y, Zhang Y, Cai L, Wang ZJ, Yao YF, Nan B, Li L, Wang XL, Feng X, Antonietti M, Chen Z. Atomic Ruthenium-Promoted Cadmium Sulfide for Photocatalytic Production of Amino Acids from Biomass Derivatives. Angew Chem Int Ed Engl 2024; 63:e202320014. [PMID: 38598078 DOI: 10.1002/anie.202320014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
Amino acids are the building blocks of proteins and are widely used as important ingredients for other nitrogen-containing molecules. Here, we report the sustainable production of amino acids from biomass-derived hydroxy acids with high activity under visible-light irradiation and mild conditions, using atomic ruthenium-promoted cadmium sulfide (Ru1/CdS). On a metal basis, the optimized Ru1/CdS exhibits a maximal alanine formation rate of 26.0 molAla ⋅ gRu -1 ⋅ h-1, which is 1.7 times and more than two orders of magnitude higher than that of its nanoparticle counterpart and the conventional thermocatalytic process, respectively. Integrated spectroscopic analysis and density functional theory calculations attribute the high performance of Ru1/CdS to the facilitated charge separation and O-H bond dissociation of the α-hydroxy group, here of lactic acid. The operando nuclear magnetic resonance further infers a unique "double activation" mechanism of both the CH-OH and CH3-CH-OH structures in lactic acid, which significantly accelerates its photocatalytic amination toward alanine.
Collapse
Affiliation(s)
- Wulin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Xiuhui Zheng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changjiang West Road 66, Qingdao, 266580, China
| | - Bei-Bei Xu
- Physics Department, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
- School of New Energy, Nanjing University of Science and Technology, Wu Xi Shi, Jiangyin, 214400, China
| | - Yue Yang
- School of Physical Science and Technology, Shanghai Tech University, Huaxia Middle Road 393, Shanghai, 201210, China
| | - Yifei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| | - Zhu-Jun Wang
- School of Physical Science and Technology, Shanghai Tech University, Huaxia Middle Road 393, Shanghai, 201210, China
| | - Ye-Feng Yao
- Physics Department, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Bing Nan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Zhangheng Road 293, Shanghai, 201204, China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Zhangheng Road 293, Shanghai, 201204, China
| | - Xue-Lu Wang
- Physics Department, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, 200062, China
| | - Xiang Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changjiang West Road 66, Qingdao, 266580, China
| | - Markus Antonietti
- Department of Colloid Chemistry, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Zupeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
| |
Collapse
|
10
|
Pansuriya R, Doutch J, Parmar B, Kailasa SK, Mahmoudi N, Hoskins C, Malek NI. A bio-ionic liquid based self-healable and adhesive ionic hydrogel for the on-demand transdermal delivery of a chemotherapeutic drug. J Mater Chem B 2024; 12:5479-5495. [PMID: 38742683 DOI: 10.1039/d4tb00510d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The non-invasive nature and potential for sustained release make transdermal drug administration an appealing treatment option for cancer therapy. However, the strong barrier of the stratum corneum (SC) poses a challenge for the penetration of hydrophilic chemotherapy drugs such as 5-fluorouracil (5-FU). Due to its biocompatibility and capacity to increase drug solubility and permeability, especially when paired with chemical enhancers, such as oleic acid (OA), which is used in this work, choline glycinate ([Cho][Gly]) has emerged as a potential substance for transdermal drug delivery. In this work, we examined the possibility of transdermal delivery of 5-FU for the treatment of breast cancer using an ionic hydrogel formulation consisting of [Cho][Gly] with OA. Small angle neutron scattering, rheological analysis, field emission scanning electron microscopy, and dynamic light scattering analysis were used to characterize the ionic hydrogel. The non-covalent interactions present between [Cho][Gly] and OA were investigated by computational simulations and FTIR spectroscopy methods. When subjected to in vitro drug permeation using goat skin in a Franz diffusion cell, the hydrogel demonstrated sustained release of 5-FU and effective permeability in the order: [Cho][Gly]-OA gel > [Cho][Gly] > PBS (control). The hydrogel also demonstrated 92% cell viability after 48 hours for the human keratinocyte cell line (HaCaT cells) as well as the normal human cell line L-132. The breast cancer cell line MCF-7 and the cervical cancer cell line HeLa were used to study in vitro cytotoxicity that was considerably affected by the 5-FU-loaded hydrogel. These results indicate the potential of the hydrogel as a transdermal drug delivery vehicle for the treatment of breast cancer.
Collapse
Affiliation(s)
- Raviraj Pansuriya
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| | - James Doutch
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Bhagyesh Parmar
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| | - Suresh Kumar Kailasa
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| | - Najet Mahmoudi
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
| | - Clare Hoskins
- Technology and Innovation Centre, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Naved I Malek
- Ionic Liquids Research Laboratory, Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat 395007, Gujarat, India.
| |
Collapse
|
11
|
Chakraborty J, Mahali K, Henaish AMA, Ahmed J, Alshehri SM, Roy S. Probing pharmaceutically important amino acids L-isoleucine and L-tyrosine Solubilities: Unraveling the solvation thermodynamics in diverse mixed solvent systems. Biophys Chem 2024; 309:107229. [PMID: 38555653 DOI: 10.1016/j.bpc.2024.107229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
The study specifically investigates the solubilities of L-isoleucine and L-tyrosine in water-mixed solvent systems (DMF, DMSO, and ACN), exploring the behaviour of amino acids in complex environments. The experimental methods prioritize meticulous solvent purification to ensure reliable results. The work explores solubility data, uncovering temperature-dependent trends and intricate interactions influencing solubility in the chosen mixed solvent systems. The study emphasizes the impact of thermodynamic properties, solvent-solvent interactions, and amino acid structure on solubility patterns. The broader implications highlight the relevance of understanding amino acid behaviour in diverse solvent environments, offering potential applications in cosmetics and pharmaceutical industries. The distinct solubility patterns contribute valuable insights, enhancing on the understanding of the solution stability and interactions of L-isoleucine and L-tyrosine in different solvent systems. In conclusion, work suggests the enhanced utilization of L-isoleucine and L-tyrosine in various industries, driven by a profound understanding of their solubility in mixed solvent systems. The research expands our knowledge of amino acid behaviour, paving the way for advancements in industries relying on protein-based products and technologies.
Collapse
Affiliation(s)
- Jit Chakraborty
- Department of Chemistry, University of Kalyani, Kalyani 741235, Nadia, India; Department of Chemistry, JIS College of Engineering, Kalyani 741235, Nadia, India
| | - Kalachand Mahali
- Department of Chemistry, University of Kalyani, Kalyani 741235, Nadia, India.
| | - A M A Henaish
- Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; NANOTECH Center, Ural Federal University, Ekaterinburg 620002, Russia
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Netaji Subhas Open University, Kolkata, West Bengal, India.
| |
Collapse
|
12
|
Zhang Y, Wu Y, Schöneich C. Near UV Photodegradation Mechanisms of Amino Acid Excipients: Formation of the Carbon Dioxide Radical Anion from Aspartate and Fe(III). Mol Pharm 2024; 21:1233-1245. [PMID: 38350108 DOI: 10.1021/acs.molpharmaceut.3c00893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Carbon dioxide radical anion (•CO2-) is a powerful reducing agent that can reduce protein disulfide bonds and convert molecular oxygen to superoxide. Therefore, the generation of •CO2- can be detrimental to pharmaceutical formulations. Iron is among the most prevalent impurities in formulations, where Fe(III) chelates of histidine (His) can produce •CO2- upon exposure to near-UV light (Zhang and Schöneich, Eur. J. Pharm. Biopharm. 2023, 190, 231-241). Here, we monitor by spin-trapping in combination with electron paramagnetic resonance spectroscopy and/or high-performance liquid chromatography-mass spectrometry analysis the photochemical formation of •CO2- for a series of common amino acid excipients, including arginine (Arg), methionine (Met), proline (Pro), glutamic acid (Glu), glycine (Gly), aspartic acid (Asp), and lysine (Lys). Our results indicate that in the presence of Fe(III), Asp, and Glu produce significant yields of •CO2- under photoirradiation with near-UV light. Notably, Asp demonstrates the highest efficiency of •CO2- generation compared with that of the other amino acid excipients. Stable isotope labeling indicates that •CO2- exclusively originates from the α-carboxyl group of Asp. Mechanistic studies reveal two possible pathways for •CO2- formation, which involve either a β-carboxyl radical or an amino radical cation intermediate.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Yaqi Wu
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
13
|
Sing N, Mahali K, Mondal P, Chakraborty J, Henaish AMA, Ahmed J, Hussain A, Roy S. Exploring solubility and energetics: Dissolution of biologically important l-threonine in diverse aqueous organic mixtures across the temperature range of 288.15 K to 308.15 K. Biophys Chem 2024; 306:107154. [PMID: 38142475 DOI: 10.1016/j.bpc.2023.107154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
This research provides a thorough investigation into the solubility behavior and solution thermodynamics of l-threonine in significant organic solvent systems. The work was done on measuring the actual solubility and subsequently calculating overall transfer solvation free energetics (∆Genergetic0i) and transfer entropies (∆St0i) at a temperature of 298.15 K. These measurements were performed as l-threonine transitioned from water to different water-organic mixed solvents systems. The saturated solubilities of l-threonine were determined using the 'gravimetric method' at five equidistant temperatures namely 288.15 K, 293.15 K, 298.15 K, 303.15 K and 308.15 K. By analyzing the data on solubility, we further obtained the different energies involved in solvation related issues. In the case of single solvents, the nature of solubility of l-threonine was observed like: dimethylsulfoxide (DMSO) < acetonitrile (ACN) < N, N-dimethylformamide (DMF) < ethylene glycol (EG) < water (H2O), irrespective of the experimental conditions. Specifically, at 298.15 K, the solubilities of l-threonine in single solvents were found to be as follows: 0.8220 mol per kg of water, 0.3101 mol per kg of EG, 0.1337 mol per kg of DMF, 0.1107 mol per kg DMSO and 0.1188 mol per kg of ACN. This research critically examines the relationship between the experimental saturated solubility of l-threonine and the complex properties influencing its solvation energy in diverse aqueous organic solvent systems.
Collapse
Affiliation(s)
- Nilam Sing
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, India; Department of Chemistry, Vivekananda Mahavidhyalaya, Burdwan, West Bengal, India
| | - Kalachand Mahali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, India.
| | - Pratima Mondal
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, India
| | - Jit Chakraborty
- Department of Chemistry, University of Kalyani, Nadia, Kalyani 741235, India; Department of Chemistry, JIS College of Engineering, Nadia, Kalyani, 741235, India
| | - A M A Henaish
- Physics Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Nanotech Center, Ural Federal University, Ekaterinburg 620002, Russia
| | - Jahangeer Ahmed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Sanjay Roy
- Department of Chemistry, School of Sciences, Netaji Subhas Open University, Kolkata, West Bengal, India.
| |
Collapse
|
14
|
Li X, Zhang HS. Amino acid metabolism, redox balance and epigenetic regulation in cancer. FEBS J 2024; 291:412-429. [PMID: 37129434 DOI: 10.1111/febs.16803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/11/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Amino acids act as versatile nutrients driving cell growth and survival, especially in cancer cells. Amino acid metabolism comprises numerous metabolic networks and is closely linked with intracellular redox balance and epigenetic regulation. Reprogrammed amino acid metabolism has been recognized as a ubiquitous feature in tumour cells. This review outlines the metabolism of several primary amino acids in cancer cells and highlights the pivotal role of amino acid metabolism in sustaining redox homeostasis and regulating epigenetic modification in response to oxidative and genetic stress in cancer cells.
Collapse
Affiliation(s)
- Xiang Li
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Hong-Sheng Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
15
|
Jia S, Tan X, Wu L, Zhao Z, Song X, Feng J, Zhang L, Ma X, Zhang Z, Sun X, Han B. Lignin-derived carbon nanosheets boost electrochemical reductive amination of pyruvate to alanine. iScience 2023; 26:107776. [PMID: 37720096 PMCID: PMC10502407 DOI: 10.1016/j.isci.2023.107776] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
Efficient and sustainable amino acid synthesis is essential for industrial applications. Electrocatalytic reductive amination has emerged as a promising method, but challenges such as undesired side reactions and low efficiency persist. Herein, we demonstrated a lignin-derived catalyst for alanine synthesis. Carbon nanosheets (CNSs) were synthesized from lignin via a template-assisted method and doped with nitrogen and sulfur to boost reductive amination and suppress side reactions. The resulting N,S-co-doped carbon nanosheets (NS-CNSs) exhibited outstanding electrochemical performance. It achieved a maximum alanine Faradaic efficiency of 79.5%, and a yield exceeding 1,199 μmol h-1 cm-2 on NS-CNS, with a selectivity above 99.9%. NS-CNS showed excellent durability during long-term electrolysis. Kinetic studies including control experiments and theoretical calculations provided further insights into the reaction pathway. Moreover, NS-CNS catalysts demonstrated potential in upgrading real-world polylactic acid plastic waste, yielding value-added alanine with a selectivity over 75%.
Collapse
Affiliation(s)
- Shunhan Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
16
|
Yu J, Peng J, Peng H, Zhang Z, Fan K, Luo P, Wu J, Yang H, Zeng H, Wang X. Preparation of three structurally similar stationary phases with different ionizable terminal groups and evaluation of their retention performances under multiple modes in high performance liquid chromatography. J Chromatogr A 2023; 1708:464340. [PMID: 37660561 DOI: 10.1016/j.chroma.2023.464340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Three structurally similar silane reagents with different terminal groups were prepared and bonded to silica to obtain three structurally similar stationary phases (Sil-Ph-COOH, Sil-Phe and Sil-Ph-NH2). The prepared stationary phases were characterized through elemental analysis (EA) and Fourier Transform Infrared Spectroscopy (FT-IR). These three stationary phases provided acceptable retention repeatability (relative standard deviations between 0.08% and 0.13%) and high column efficiency (7.3 × 104 plates/m for uridine on Sil-Phe). The retention behavior of the three columns was investigated under different chromatographic conditions including different mobile phase ratio, salt concentration, pH etc. The retention mechanisms were explored by linear solvation energy relationships and Van't Hoff plots. Applications in separation under reversed phase liquid chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC) and ion exchange chromatography (IEC) mode were investigated. The results showed that the retention capacity of the stationary phases with different terminal groups to the analytes is very different, especially for carboxylic acids, because the surface charges of amino groups and carboxyl groups under weakly acidic conditions produce different electrostatic effects with dissociated carboxylic acids. Finally, the Sil-Phe column was employed to detect ibuprofen extracted from pharmaceutical ibuprofen capsules and vitamins extracted from vitamin tablets.
Collapse
Affiliation(s)
- Jiayu Yu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jingdong Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Huanjun Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zilong Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Kun Fan
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Pan Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiajia Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hanqi Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hanlin Zeng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiang Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Shahkhatuni AA, Shahkhatuni AG. Revisiting the influence of pH on 1J CαH and chemical shifts of glycine and alanine short oligopeptides. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230942. [PMID: 37800158 PMCID: PMC10548095 DOI: 10.1098/rsos.230942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The pH dependence of several NMR parameters of glycine and alanine short oligopeptides has been reported previously in different studies. Here we have thoroughly examined, summarized and demonstrated the dependences of 1H, 13C and 15N chemical shifts and protonation states of amino acids using two-dimensional NMR experiments. Nevertheless, 1JCαH one bond spin-spin coupling constants are more informative and convenient for determination of the position and protonation state of glycine and alanine residue in the oligopeptide chain. In particular, for various oligopeptides (up to six residues), it was shown that the pH dependence of 1JCαH of N-terminal glycine and alanine residues is larger than that of C-terminal groups, and in backbone residues, it is not influenced by pH and only slightly depends on the position of the amino acid residue in the chain.
Collapse
Affiliation(s)
- A. A. Shahkhatuni
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS RA, Yerevan, Armenia
| | - A. G. Shahkhatuni
- Scientific Technological Center of Organic and Pharmaceutical Chemistry of NAS RA, Yerevan, Armenia
| |
Collapse
|
18
|
Kamaraj S, Vuppu S. Recent Review on the Extraction and Qualitative Assay of Cysteine and Other Amino Acids from Vellore Feather Waste and Molecular Docking Studies of Cysteine for Pharmacological Applications. Mol Biotechnol 2023:10.1007/s12033-023-00862-4. [PMID: 37715883 DOI: 10.1007/s12033-023-00862-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/06/2023] [Indexed: 09/18/2023]
Abstract
Products produced from waste are a relatively recent innovation. Feather substrates are abundant in keratin content and improper disposal can cause ecosystem contamination. However, these pollutants can be transformed into value-added products for industrial application. Physical, chemical and cutting-edge microbiological methods were utilized for decomposing keratin and aid in the identification and estimation of amino acids from poultry feather wastes. These beneficial approaches are receiving more attention due to their retrieval of harmless and value added byproducts. These keratin-based compounds are used widely in pharmaceutical, livestock feed, fertilizer, and a variety of other industrial sectors. Since keratin is primarily consisting of amino acids, it can be utilized to affirm and estimate the amino acids in these feather substrates. This study primarily highlights the various methodologies employed for the qualitative estimation of amino acids in feather waste samples and the inhibitory activity of keratinase enzyme by EDTA and pepstatin in order to accumulate amino acids for drug delivery purpose and their importance in various pharmaceutical industries. In addition to that, molecular docking studies of cysteine with many standard pharmaceutical drugs like acetaminophen, pethidine, methylphenidate, carbamazepine, cillin and amlodipine were performed using autodock to demonstrate how cysteine greatly reduces conventional drug toxicity and its side effects.
Collapse
Affiliation(s)
- Sathvika Kamaraj
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India
| | - Suneetha Vuppu
- School of Biosciences and Technology, Department of Biotechnology, VIT University, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
19
|
Zhang X, Zhao J, Xie P, Wang S. Biomedical Applications of Electrets: Recent Advance and Future Perspectives. J Funct Biomater 2023; 14:320. [PMID: 37367284 DOI: 10.3390/jfb14060320] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Recently, electrical stimulation, as a non-pharmacological physical stimulus, has been widely exploited in biomedical and clinical applications due to its ability to significantly enhance cell proliferation and differentiation. As a kind of dielectric material with permanent polarization characteristics, electrets have demonstrated tremendous potential in this field owing to their merits of low cost, stable performance, and excellent biocompatibility. This review provides a comprehensive summary of the recent advances in electrets and their biomedical applications. We first provide a brief introduction to the development of electrets, as well as typical materials and fabrication methods. Subsequently, we systematically describe the recent advances of electrets in biomedical applications, including bone regeneration, wound healing, nerve regeneration, drug delivery, and wearable electronics. Finally, the present challenges and opportunities have also been discussed in this emerging field. This review is anticipated to provide state-of-the-art insights on the electrical stimulation-related applications of electrets.
Collapse
Affiliation(s)
- Xinyuan Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Pei Xie
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
20
|
Vasilev NA, Voronin AP, Surov AO, Perlovich GL. Influence of Co-amorphization on the Physical Stability and Dissolution Performance of an Anthelmintic Drug Flubendazole. Mol Pharm 2023; 20:1657-1669. [PMID: 36732935 DOI: 10.1021/acs.molpharmaceut.2c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this work, the co-amorphization approach was applied to flubendazole (FluBZ), resulting in the formation of two novel solid forms of FluBZ with l-phenylalanine (Phe) and l-tryptophan (Trp). A variety of physicochemical techniques have been used to describe new systems, including powder X-ray diffraction, thermal methods, infrared spectroscopy, and scanning electron microscopy. Co-amorphization has been shown to suppress crystallization tendency and considerably increase the shelf-life storage of amorphous flubendazole solid across a wide range of relative humidities. The dissolution behavior of the amorphous forms in biorelevant media at pH = 1.6, pH = 6.5, and 37 °C has been studied in terms of Cmax (maximum FluBZ concentration), Tmax (time to attain peak drug concentration), and AUC (concentration area under the curve during dissolution). At pH = 6.5, a continuous supersaturation and the highest AUC value of all examined systems were observed for the FluBZ-Phe (1:1) system. The phase solubility diagrams revealed that the reason for the better dissolution performance of FluBZ-Phe (1:1) at pH = 6.5 is a complexation between the components in a solution. This work highlights the applicability of co-amorphous systems in improving the physical stability and dissolution performance of drug compounds with poor biopharmaceutical characteristics.
Collapse
Affiliation(s)
- Nikita A Vasilev
- G.A. Krestov Institute of Solution Chemistry RAS, 153045Ivanovo, Russia
| | | | - Artem O Surov
- G.A. Krestov Institute of Solution Chemistry RAS, 153045Ivanovo, Russia
| | | |
Collapse
|
21
|
Abou-Taleb HA, Shoman ME, Makram TS, Abdel-Aleem JA, Abdelkader H. Exploration of the Safety and Solubilization, Dissolution, Analgesic Effects of Common Basic Excipients on the NSAID Drug Ketoprofen. Pharmaceutics 2023; 15:pharmaceutics15020713. [PMID: 36840035 PMCID: PMC9964971 DOI: 10.3390/pharmaceutics15020713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Since its introduction to the market in the 1970s, ketoprofen has been widely used due to its high efficacy in moderate pain management. However, its poor solubility and ulcer side effects have diminished its popularity. This study prepared forms of ketoprofen modified with three basic excipients: tris, L-lysine, and L-arginine, and investigated their ability to improve water solubility and reduce ulcerogenic potential. The complexation/salt formation of ketoprofen and the basic excipients was prepared using physical mixing and coprecipitation methods. The prepared mixtures were studied for solubility, docking, dissolution, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), in vivo evaluation for efficacy (the writhing test), and safety (ulcerogenic liability). Phase solubility diagrams were constructed, and a linear solubility (AL type) curve was obtained with tris. Docking studies suggested a possible salt formation with L-arginine using Hirshfeld surface analysis. The order of enhancement of solubility and dissolution rates was as follows: L-arginine > L-lysine > tris. In vivo analgesic evaluation indicated a significant enhancement of the onset of action of analgesic activities for the three basic excipients. However, safety and gastric protection indicated that both ketoprofen arginine and ketoprofen lysine salts were more favorable than ketoprofen tris.
Collapse
Affiliation(s)
- Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag 82755, Egypt
| | - Mai E. Shoman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tarek Saad Makram
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, October 6 12585, Egypt
| | - Jelan A. Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
- Correspondence:
| |
Collapse
|
22
|
Bueno MS, Longhi MR, Garnero C. Pharmaceutical Systems as a Strategy to Enhance the Stability of Oxytetracycline Hydrochloride Polymorphs in Solution. Pharmaceutics 2023; 15:pharmaceutics15010192. [PMID: 36678821 PMCID: PMC9862800 DOI: 10.3390/pharmaceutics15010192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
In order to improve the stability of oxytetracycline hydrochloride, a polymorphic antibiotic set of novel binary systems were developed using β-cyclodextrin and amino acids with different acid-basic characteristics as ligands. The formation constants for each system containing β-cyclodextrin, L-aspartic acid, histidine and N-acetylcysteine were determined by Scott's method and statistical studies. The structure of the binary systems with β-cyclodextrin and N-acetylcysteine was elucidated by NMR experiments. The effect β-cyclodextrin and N-acetylcysteine on the polymorph's chemical stability in aqueous and phosphate buffered saline solutions at 25 °C was monitored by an optimized and validated high-performance liquid chromatography method. The combination of N-acetylcysteine with the three polymorphs and the β-cyclodextrin system obtained with the form III demonstrated a reduction in the degradation rate of oxytetracycline hydrochloride in the aqueous solution when compared to each free form, with an increase of 20 h in the half time. It evidences that the use of amino acids as ligands constitutes an interesting alternative for pharmaceutical areas. In conclusion, based on the results obtained, these pharmaceutical systems could be candidates for the development of a pharmaceutical formulation for the administration of the drug through reconstituted solutions using the binary system as a promising tool for improving the stability of oxytetracycline hydrochloride polymorphs in solution.
Collapse
Affiliation(s)
- Maria S. Bueno
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, UNITEFA, Córdoba X5000HUA, Argentina
| | - Marcela R. Longhi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, UNITEFA, Córdoba X5000HUA, Argentina
| | - Claudia Garnero
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre and Medina Allende, Science Building 2, Córdoba X5000HUA, Argentina
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, UNITEFA, Córdoba X5000HUA, Argentina
- Correspondence:
| |
Collapse
|
23
|
Ting W, Jingchao C, Lun W, Zheting W, Baomin F. Asymmetric Transfer Hydrogenation of α-Aryl Amidates Using Methanol as Hydrogen Source. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|