1
|
Zhu Y, Zhang C, Liang Y, Shi J, Yu Q, Liu S, Yu D, Liu H. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers. Biomater Sci 2024; 12:1643-1661. [PMID: 38411223 DOI: 10.1039/d3bm02038j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Tissue adhesion is one of the most common postoperative complications, which is frequently accompanied by inflammation, pain, and even dyskinesia, significantly reducing the quality of life of patients. Thus, to prevent the formation of tissue adhesions, various strategies have been explored. Among these methods, placing anti-adhesion membranes over the injured site to separate the wound from surrounding tissues is a simple and prominently favored method. Recently, electrospun nanofibers have been the most frequently investigated antiadhesive membranes due to their tunable porous structure and high porosities. They not only can act as an essential barrier and functional carrier system but also allow for high permeability and nutrient transport, showing great potential for preventing tissue adhesion. Herein, we provide a short review of the most recent applications of electrospun nanofibrous antiadhesive membranes in tendons, the abdominal cavity, dural sac, pericardium, and meninges. Firstly, each section highlights the most representative examples and they are sorted based on the latest progress of related research. Moreover, the design principles, preparation strategies, overall performances, and existing problems are highlighted and evaluated. Finally, the current challenges and several future ways to develop electrospun nanofibrous antiadhesive membranes are proposed. The systematic discussion and proposed directions can shed light on ideas and guide the reasonable design of electrospun nanofibrous membranes, contributing to the development of exceptional tissue anti-adhesive materials in the foreseeable future.
Collapse
Affiliation(s)
- Yanting Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Chenwei Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Ying Liang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Jianyuan Shi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qiuhao Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, PR China
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
2
|
Ebrahimnia M, Alavi S, Vaezi H, Karamat Iradmousa M, Haeri A. Exploring the vast potentials and probable limitations of novel and nanostructured implantable drug delivery systems for cancer treatment. EXCLI JOURNAL 2024; 23:143-179. [PMID: 38487087 PMCID: PMC10938236 DOI: 10.17179/excli2023-6747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024]
Abstract
Conventional cancer chemotherapy regimens, albeit successful to some extent, suffer from some significant drawbacks, such as high-dose requirements, limited bioavailability, low therapeutic indices, emergence of multiple drug resistance, off-target distribution, and adverse effects. The main goal of developing implantable drug delivery systems (IDDS) is to address these challenges and maintain anti-cancer drugs directly at the intended sites of therapeutic action while minimizing inevitable side effects. IDDS possess numerous advantages over conventional drug delivery, including controlled drug release patterns, one-time drug administration, as well as loading and stabilizing poorly water-soluble chemotherapy drugs. Here, we summarized conventional and novel (three-dimensional (3D) printing and microfluidic) preparation techniques of different IDDS, including nanofibers, films, hydrogels, wafers, sponges, and osmotic pumps. These systems could be designed with high biocompatibility and biodegradability features using a wide variety of natural and synthetic polymers. We also reviewed the published data on these systems in cancer therapy with a particular focus on their release behavior. Various release profiles could be attained in IDDS, which enable predictable, adjustable, and sustained drug releases. Furthermore, multi-step or stimuli-responsive drug release could be obtained in these systems. The studies mentioned in this article have proven the effectiveness of IDDS for treating different cancer types with high prevalence, including breast cancer, and aggressive cancer types, such as glioblastoma and liver cancer. Additionally, the challenges in applying IDDS for efficacious cancer therapy and their potential future developments are also discussed. Considering the high potential of IDDS for further advancements, such as programmable release and degradation features, further clinical trials are needed to ensure their efficiency. The overall goal of this review is to expand our understanding of the behavior of commonly investigated IDDS and to identify the barriers that should be addressed in the pursuit of more efficient therapies for cancer. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Maryam Ebrahimnia
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sonia Alavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Hamed Vaezi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Karamat Iradmousa
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
El-Habashy SE, El-Kamel AH, Mehanna RA, Abdel-Bary A, Heikal L. Engineering tanshinone-loaded, levan-biofunctionalized polycaprolactone nanofibers for treatment of skin cancer. Int J Pharm 2023; 645:123397. [PMID: 37690657 DOI: 10.1016/j.ijpharm.2023.123397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Skin cancer is a challenging condition of the highest prevalence rate among other types of cancer. Thus, advancement of local therapeutic approaches for skin cancer is highly needed. Recently, the use of phytotherapeutics, like tanshinone IIA (Tan), as anticancer agents has become promising. In this work, we engineered Tan-loaded polycaprolactone nanofibers, biofunctionalized with levan and egg-lecithin (Tan@Lev/EL/PCL-NF) for local skin cancer therapy. Novel Tan@Lev/EL/PCL-NF were prepared using w/o-emulsion electrospinning, employing a 23-factorial design. Composite NF exhibited nanofiber diameter (365.56 ± 46.25 nm), favorable surface-hydrophilicity and tensile strength. Tan@Lev/EL/PCL-NF could achieve favorably controlled-release (100% in 5 days) and Tan skin-deposition (50%). In vitro anticancer studies verified prominent cytotoxicity of Tan@Lev/EL/PCL-NF on squamous-cell-carcinoma cell-line (SCC), with optimum cytocompatibility on fibroblasts. Tan@Lev/EL/PCL-NF exerted high apoptotic activity with evident nuclear fragmentation, G2/M-mitosis cell-cycle-arrest and antimigratory efficacy. In vivo antitumor activity was established in mice, confirming pronounced inhibition of tumor-growth (224.25 ± 46.89%) and relative tumor weight (1.25 ± 0.18%) for Tan@Lev/EL/PCL-NF compared to other groups. Tan@Lev/EL/PCL-NF afforded tumor-biomarker inhibition, upregulation of caspase-3 and knockdown of BAX and MKi67. Efficient anticancer potential was further confirmed by histomorphometric analysis. Our findings highlight the promising anticancer functionality of composite Tan@Lev/EL/PCL-NF, as efficient local skin cancer phytotherapy.
Collapse
Affiliation(s)
- Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Radwa A Mehanna
- Medical Physiology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications CERRMA, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Ahmed Abdel-Bary
- Department of Dermatology, Andrology, Venerology and Dermatopathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| | - Lamia Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
4
|
Zou L, Hou Y, Zhang J, Chen M, Wu P, Feng C, Li Q, Xu X, Sun Z, Ma G. Degradable carrier-free spray hydrogel based on self-assembly of natural small molecule for prevention of postoperative adhesion. Mater Today Bio 2023; 22:100755. [PMID: 37593217 PMCID: PMC10430199 DOI: 10.1016/j.mtbio.2023.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/27/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023] Open
Abstract
Postoperative peritoneal adhesion (PPA) is frequent and extremely dangerous complication after surgery. Different tactics have been developed to reduce it. However, creating a postoperative adhesion method that is multifunctional, biodegradable, biocompatible, low-toxic but highly effective, and therapeutically applicable is still a challenge. Herein, we have prepared a degradable spray glycyrrhetinic acid hydrogel (GAG) based on natural glycyrrhetinic acid (GA) by straightforward heating and cooling without the use of any additional chemical cross-linking agents to prevent postoperative adhesion. The resultant hydrogel was demonstrated to possess various superior anti-inflammatory activity, and multiple functions, such as excellent degradability and biocompatibility. Specifically, spraying characteristic and excellent antibacterial activities essentially eliminated secondary infections during the administration of drugs in surgical wounds. In the rat models, the carrier-free spray GAG could not only slow-release GA to inhibit inflammatory response, but also serve as physical anti-adhesion barrier to reduce collagen deposition and fibrosis. The sprayed GAG would shed a new light on the prevention of postoperative adhesion and broaden the application of the hydrogels based on natural products in biomedical fields.
Collapse
Affiliation(s)
- Linjun Zou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Yong Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Jiawen Zhang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Meiying Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Peiying Wu
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Changcun Feng
- School of Pharmacy; Guangxi Medical University, Nanning, 530021, China
| | - Qinglong Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xudong Xu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zhaocui Sun
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Guoxu Ma
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education; Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| |
Collapse
|
5
|
Singh P, Verma C, Gupta A, Mukhopadhyay S, Gupta B. Development of κ-carrageenan-PEG/lecithin bioactive hydrogel membranes for antibacterial adhesion and painless detachment. Int J Biol Macromol 2023; 247:125789. [PMID: 37437679 DOI: 10.1016/j.ijbiomac.2023.125789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The issue of wound dressing adherence poses a substantial challenge in the field of wound care, with implications both clinically and economically. Overcoming this challenge requires the development of a hydrogel dressing that enables painless removal without causing any secondary damage. However, addressing this issue still remains a significant challenge that requires attention and further exploration. The present study is focused on the synthesis of hydrogel membranes based on κ-carrageenan (CG), polyethylene glycol (PEG), and soy lecithin (LC), which can provide superior antioxidant and antibacterial attachment properties with a tissue anti adhesion activity for allowing an easy removability without causing secondary damage. The (CG-PEG)/LC mass ratio was varied to fabricate hydrogel membranes via a facile approach of physical blending and solution casting. The physicochemical properties of (CG-PEG)/LC hydrogel membranes were studied by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and mechanical analyses. The membranes showed significantly enhanced mechanical properties with excellent flexibility and had high swelling capacity (˃1000 %), which would provide a moist condition for wound healing. The membranes also exhibited excellent free radical scavenging ability (>60 %). In addition, the (CG-PEG)/LC hydrogel membranes showed reduced peel strength 26.5 N/m as a result of weakening the hydrogel-gelatin interface during an in vitro gelatin peeling test. Moreover, the membrane showed superior antibacterial adhesion activity (>90 %) against both S. aureus and E. coli due to the presence of both PEG and LC. The results also suggested that the hydrogel membranes exhibit NIH3T3 cell antiadhesion property, making them promising material for easy detachment from the healed tissue without causing secondary damage. Thus, this novel combination of (CG-PEG)/LC hydrogel membranes have immense application potential as a biomaterial in the healthcare sector.
Collapse
Affiliation(s)
- Pratibha Singh
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amlan Gupta
- Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Tadong, Gangtok, Sikkim 737102, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
6
|
Klicova M, Rosendorf J, Erben J, Horakova J. Antiadhesive Nanofibrous Materials for Medicine: Preventing Undesirable Tissue Adhesions. ACS OMEGA 2023; 8:20152-20162. [PMID: 37323398 PMCID: PMC10268260 DOI: 10.1021/acsomega.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023]
Abstract
Undesirable postoperative tissue adhesions remain among the most common complications after surgery. Apart from pharmacological antiadhesive agents, various physical barriers have been developed in order to prevent postoperative tissue adhesions. Nevertheless, many introduced materials suffer from shortcomings during in vivo application. Thus, there is an increasing need to develop a novel barrier material. However, various challenging criteria have to be met, so this issue pushes the research in materials to its current limits. Nanofibers play a major role in breaking the wall of this issue. Due to their properties, such as a large surface area for functionalization, tunable degradation rate, or the possibility of layering individual nanofibrous materials, it is feasible to create an antiadhesive surface while maintaining biocompatibility. There are many ways to produce nanofibrous material; electrospinning is the most used and versatile technique. This review reveals the different approaches and puts them into context.
Collapse
Affiliation(s)
- Marketa Klicova
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Jachym Rosendorf
- Biomedical
Center, Faculty of Medicine in Pilsen, Charles
University, Alej Svobody
1655/76, 323 00 Plzen, Czech Republic
| | - Jakub Erben
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Jana Horakova
- Department
of Nonwovens and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| |
Collapse
|
7
|
Wu X, Chen J, Zhou A, Zhao Y, Tian Z, Zhang Y, Chen K, Ning X, Xu Y. Light-Activated Chemically Reactive Fibrous Patch Revolutionizes Wound Repair Through the Prevention of Postoperative Adhesion. NANO LETTERS 2023; 23:1435-1444. [PMID: 36752657 DOI: 10.1021/acs.nanolett.2c04774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A light-activated chemically reactive fibrous patch (ChemPatch) with tissue adhesion and wound healing activity was developed for preventing postoperative peritoneal adhesion. ChemPatch was constructed by an integrative electrospinning fabrication strategy, generating multifunctional PCL-NHS fibers encapsulating antioxidant curcumin and MnO2 nanoparticles. ChemPatch exhibited excellent photothermal conversion, which not only reformed the physical state to match the tissue but also improved conjugation between ChemPatch and tissues, allowing for strong attachment. Importantly, ChemPatch possessed good antioxidant and radical scavenging activity, which protected cells in an oxidative microenvironment and improved tissue regeneration. Particularly, ChemPatch acted as a multifunctional barrier and could not only promote reepithelialization and revascularization in wound defect model but simultaneously ameliorate inflammation and prevent postoperative peritoneal adhesion in a mouse cecal defect model. Thus, ChemPatch represents a dual-active bioadhesive barrier for reducing the incidence and severity of peritoneal adhesions.
Collapse
Affiliation(s)
- Xiaotong Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Jianmei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, P. R. China
| | - Yinfeng Zhao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi 830046, P. R. China
| | - Yiping Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Valentini G, Luis Parize A. Investigation of the interaction between curcumin and hydroxypropyl methylcellulose acetate succinate in solid and solution media. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|